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Local Hardy spaces on Chébli-Triméche hypergroups
by
WALTER R. BLOOM and ZENGFU XU (Perth, Western Australia}

Abstract. We investigate the local Hardy spaces h¥ on Chébli-Triméche hypergroups,
and establish the equivalence of various characterizations of these in terms of maximal
functions and atomic decomposition.

In this paper we continue the study of Hardy spaces on Chébli-Trimeche
hypergroups of exponential growth begun in [BX?2], devoting our attention
to a study of the local Hardy spaces h?.

The theory of Hardy spaces became important in the study of harmonic
analysis on euclidean spaces and other homogeneous spaces through its bet-
ter understanding of related topics such as singular integrals, multiplier op-
erators, maximal functions and, more generally, real-variable methods (see
[FeS], [Coi], [Lat], [CW], [MS] and [FoS]}. Hardy spaces H? can be regarded
as good “substitutes” for IP {0 < p < 1). Indeed, while the L? spaces for
0 < p < 1 are quite pathological, the corresponding H® spaces enjoy many
of the properties of L? for p > 1. In addition, as would be expected, H? = LP
for p > 1. However, for 0 < p < 1 this comparison breaks down in some
aspects: HP does not contain the Schwartz class of rapidly decreasing test
functions, and pseudo-differential operators are not bounded on HP. This
deficiency can be overcome through the use of local Hardy spaces hP, which
were introduced in [G]. The spaces h? can. also be identified with I” when
p > 1, they contain the Schwartz class, and any smooth quasi-homogeneous
multiplier is bounded in hP. While H? sits well within Fourier analysis, the
h? theory is more suited to problems associated with partial differential
equations (see {G], [Cha] and [P8]).

The moment condition of an HP function plays an essential role in the
theory of Hardy spaces. In fact, it is cancellation that makes various max-
imal Functions integrable. However, this property does not remain signifi-
cant in the setting of exponential volume growth where the radial maximal
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function of an atom may not be integrable (a counterexample is given in
[BX3]). There is some work on local Hardy spaces in [K1] and [K2] for a
noncompact symmetric space of rank 1 which is of exponential growth, and
it was proposed as an open problem in [K2] whether the characterizations
of h? in terms of maximal functions and atomic decomposition are equiv-
alent. In this paper we investigate b¥ on Chébli-Triméche hypergroups of
exponential growth, and establish the equivalence of the real Hardy spaces
and the atomic Hardy spaces. The main problems arise from the difficulty
in handling the generalized translation and also the exponential growth of
the underlying hypergroup. Some natural properties of the translation are
largely unavailable, and the Haar measure does not satisfy the doubling con-
dition enjoyed by euclidean spaces or homogencous spaces, both of which
are of polynomial growth.

Our paper is organized as follows. In §1 we give a short introduction to
some basic results of harmonic analysis on Chébli~Trim&che hypergroups,
and §2 is devoted to some estimates for the characters. Various maximal
operators are introduced and investigated in §3. Finally, in §4 we define
the local Hardy spaces in terms of maximal functions, and establish the
identification of the real Hardy spaces with the atomic Hardy spaces.

1. Harmonic analysis on Chébli-Triméche hypergroups. Let
(Ry,*(A}) denote the Chébli-Triméche hypergroup associated with a func-
tion A that is continnous on Ry, twice continuously differentiable on R* =
10, 00[, and satisfies the following conditions (see [Z] and, for general details
on hypergroups, [BH]):

(1.1} A(0) = 0 and A(z) > 0 for = > O;

(1.2) A is increasing and unbounded;

(1.8) A'(x)/A(z) = (2a+1)/a + B(z) on a neighbourhood of 0 where
a > —1/2 and B is an odd C*-function on R;

(1.4) A'(z)/A(z) is a decreasing C*-function on R%, and hence the
following limit exists:

i )

. ] a—+00 A(qg)

The hypergroup (R, *(4)) is noncompact and commutative with neu-
tral element 0 and the identity mapping as the involution. The Haar measure
on (Ry,*(A)) is given by m := AMg, where Mg, is the Lebesgue measure
on R;. The growth of the hypergroup is determined by the number g in
(1.4). T o > 0 then (1.4) imaplies that A(z) > A(1)e2¢®=1 for » > 1 and
so the hypergroup is of exponential growth. Otherwise we say that the hy-

pergroup is of suberponential growth. In this paper we restrict ourselves to
Chébli-Triméche hypergroups of exponential growth.

1
= - > .
0=3 >0
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Let L = L 4 be the differential operator defined for = > 0 by
A(z) o
i
for each function f twice differentiable on Rj . The multiplicative .functio.ns
on (Ry,*(A4)) coincide with all the solutions wx (X € C) of the differential
equation
(1.6) Loa(z) = (A +oDea(z), @a0)=1, @5(0)=0,

and the dual space R} can be identified with the parameter set R U i[0, o]

For 0 < p < co the Lebesgue space LF(R,, Adz) is defined as usual, and
we denote by | f||p.4 the LP-norm of f € LP(Ry, Adz). For f € LY (R, , Adz)
the Fourier transform of f is given by

Fy = | f@)er@)Alz) da.
Ry
- 1.7. TueoReM (Levitan-Plancherel; see [BH, Theorem 3.2.13]). There
exists a unigue nonnegaiive measure g on RY with support [0?, ool such that

the Fourier transform induces an isometric isomorphism from I2(R, , Adz)
onto L2(RA | o), and for any § € L*(Ry, Adz) N L* (R, Adz},

| 1F@PA@ do = | [FOFo(dr).
Ry R}
To determine the Plancherel measure o we must place a further restric-

tion on A. A function f is said to satisfy condition (I) if for some a > 0, f
can be expressed as

flo) = Tt (o)

for all large = where
[o=]

S "¢ (z)| dow < o0

teds]
for some zg > 0 and ¢(z) is bounded for = > zo; here y(a) = a + 1/2 if
a > 1/2 and v(a) = 1 otherwise. For z > 0 we put

f
1/ Az)\? 1 (A’(m)) .
= b (G S
Gl=) : 4(A(m) + 5\ A()
1.8. THEOREM (see [BX1, Proposition 3.17]). Suppose that G satisfies
condition (H) together with one of the following conditions:

i) a>1/2;.
(i) @ # |of;
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(iii) a = a < 1/2 and

o0

§ £ () po (1 A(Y? dt # —2a/ My
or i
Tt"‘“_ﬂc(t)zpo(t)A(t)l/z dt =0
where i

Ma = lim 7% YA(z) end ((z)=Glx)+ M.

ot m2
Then the Plancherel measure o is absolutely continuous with respect to the
Lebesgue measure and has density |c(\)| ™ where the function c()) satisfies

the following: There exist positive constants Cy, Ca, K such that for any
A € C with Tm(A) <0,

Cy|ASFH2 < (M) < Co)APH2, A S K, a>0,
CUAPTME < Je(N)|™F S ColA]* 2, A > K.
In the sequel we assume that 4 satisfies the conditions of Theorem 1.8.

In addition we assume that for each k € N, (A4’'(z)/A(z))™™ is bounded

for large z € Ry. The following result can be found in [BX1, Lemmas 2.5
and 3.28].

1.9. LEMMA. We have

Afz) ~ T (25 0%),  Afs) ~ 6™ (3 o0).

Let £, be the unit point mass at 2 € Ry. For any =,y € R, the proba-
bility measure ¢, * £, is m-absolutely continuous with

(1.10) supp(ee * &) C [z — y|,z + ).

We denote by T f the generalized translation of a function f by z € Rt
defined by

(L.11) Tof(y) = flzy) = | £(2) (e * £,)(d2).
Ry

The convolution of two functions f and g is defined by

(112) - Frgle) = | Tf(w)e(w)Aly) dy.
%, .

Finally, we use C to denote a positive constant whose value may vary

from line to line. Depéndence of such constants upon parameters of interest
will be indicated through the use of subscripts.
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2. Some estimates for characters. In this section we establish some
estimates for the derivatives of characters.

2.1. LEMMA (see [BX1, Lemmas 2.8 and 3.27]). There ezists a positive
constant Ca such thot

1, Az eRy,
CazA(z)™2/?, AeRy, z>1,
ex@ =9 Cad(@) 202 20N, Aol @>

CaA(z)H2c(N)], Ax>1, z>1
2.2, LEMMA. There ezist K1, K5 > 0 such that for X € C, |A] > Kq,

CAA(m)”l/zwD‘*l/?(ja(Am) + O(,\:c))‘, |Az| £ Kz,
(,0)\(:2) — OAA(;L,)—]./2)\—(G+1/2) (cle——v\m + cze’)‘m)
x (1 + oY)+ O(()\:c)“‘l)), [Az| > Ky,
and
1A' (z)
. + Cale)A{z) 3 (x>~ 1/2 + 22 T3/2)0(1), x| £ Ko,
A= 14 v e g
20T 0 (@) + iCa(a)ATET 2 A(R) TR (e TP + ope)
2 A(z)
% (1+ 01 +0((0x)™), |l > Ka,

where jo(z) = 22 (e + 1)27%Ja(2) and Jo is the Bessel function of order
o, and c1, ¢y are constants which can be determined explicitly.

Proof. For each A € C consider the differential equation
Lu= (A +¢*)u,

which becormes

a? — 5
(2.3) o' (z) = (x(r) it L )v(m)

2

under the transform

v(z) = / Alz)u(z)

1A @\ 1(A@Y _ . 1l4-o
x(z) = 1 (m) + E(A(cc)) 0°+ =
Let t = 2 and w = /zv. Then '

¥ 1a-oti x(0) | x(VE -x(O), _
w’ (t) + (EE+ " + o7 + o w = 0.
Note that Ci(t) := (x{v2t) — x(0)}/2t € GM(IR;) and Ci(t) € Q(R+).
Therefore by Theorem 1 in [Lan], (2.3) has a solution v = n(z, A) with the

where
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property that there exist K, K > 0 such that for A € C, |A| > K3,

o) = { Q0 002, Al < K,
(1679 + ) (1 + O((Ax) ™) + O(ATY)}, [Az| > K,
and
d 3 . JURTER
i | aoeroey s B0, el sk
%U(w’ ) - ’.':)\(“C]_G_Mm =+ Czei’\m)

x (14 0((Az)~1) + 0(x~1)), 25| = Ka,
where ¢1, ¢p are congtants which can be determined explicitly. Now

Wl X) = Ca (A1 u(0 3 = 1, %u(m, N =0@) (z—0%),

which implies @, (z) = u(z, A), and the lemma follows. w

2.4. LEMMA. For each k € N we have
Ar<l, 2<1,

8 Call+ Nk,
o3 ()] < ¢ CazA(z)/?, Az <1, 2> 1,
CaA(z) 12 e(N)|(1 + M), x> 1.
We also have the following alternative estimate:
ol ()] < CaA) 2 0a) 2L+ NF, Az <1, 2> 1.
Proof. Appealing to (1.5) and (1.6) we have

2 2 @
(25) () =~ At a
0
and
k-2 i
(k) () — _ k=2 [ A@\D sy 5 -
o (e) = ;ﬂ( CEE) A0 - 00 e,

Therefore by induction we obtain, using Lemmas 1.9, 2.1 and 2.2 and The-
orem 1.8 together with cur assumption on the derivatives of 4'(z)/A(z)
(k) Cazd(z)~1/? Az <1 1
QU T S { H /e R T > 1
o3 @) CadA(z) ™ 2A~e~1/2(1 A% Az > 1, A> L.
Now we consider the case when Az < 1 and = < 1. For any 8 > 0 and
differentiable function f we define
1 z
Hp(f)(a) = — § Flu)u?? du.
Then integration by parts gives

(2.6) - Ho(f)V(2) = Hp s (f ) (a).
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Let C(z) = 2722~ A(z). By (1.3), C{z) is an even and positive C'**-function
for 0 < z < 1. In view of (2.5) we have

M4 oz
‘('W))—H2a+2(fh)(m)

where fi(z) = pa(z)C(z). Hence applying Lemma 2.1, (1.2) and (2.6) we
obtain by induction
e @) <Call+ N, Az<1 21
In view of Theorem 1.8 it remains to show that for z > 1,

(k) CaA(z) " Y20z) 2 %e(N)|(1+NF, e <1,
2. <
27 or (=) = {CAA(m)“l/zlc()\)Kl + A)®, Az > 1.
We refer to the proof of [BX1, Lemma 3.4]. The differential equation Ly =
(A% 4 p%)u has two linearly independent solutions @) and @_» such that

walz) = c(A)Ba(z) + (NP _r(z), z>0.

wi(e) =~

Thus we have
o (2)] < 20e(N)IS%] ().

Let H 52) be the second class of Hankel functions of order v, and let wy (z, A}
= (\z)Y2HP (Az), wa(z, ) = (Az)/2Ta(Az). Now $_, can be written as
F_y(z) = A(x) e W (2, A)

where W (z, A) satisfies the integral equation

W{z,\) = C{ayw(z, A)er 4 Dsok(a:, t, AW (t,A)dt

and
= (et E)
k(z,t, A) 22_)\C(iﬁ)e
X (wl(tr)‘)w2(ms’\) "'wQ(t:)‘)wl(w:A))a 0<a<t.
By applying the properties of the derivatives of the Bessel and Hankel func-

sions and the method of successive approximation, (2.7) now follows read-
ily, w

3. Maximal functions. The purpose of this section is to investigate
various maximal functions, which will lead us to our definition of local Hardy
spaces. After reviewing some facts concerning maximal functions on LF,
p > 1, we turn to the grand maximal function and establish the relationship
between it and the heat and radial maximal functions.

‘We begin with introducing Schwartz functions and distributions. For
0 < g < 2 the generalized Schwartz space Sy(R+,%(A)) consists of the
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restrictions to R, of all functions in §;(R) where

8y(R) := {g € C*°(R) : g is even and u{ (9} < oo, k,l € No}

and

ui (g) = Sélmli(l + 3)400(x) 29 |g®) ().

A g-distribution on Ry is a continuous linear functional on S4(Ry, #(A4));
the totality of g-distributions on R, is denoted by S (R.,*(A4)). For v e

SRy, x(A4)) and ¢ € S,(Ry,*(A)) the convolution of u and ¢ is a g-
distribution defined by

(3.1) uk () =u(d ), P € SRy, x(4)).
Let f € Sp(Ry.,*#(A)). The heat maximal function H¥ f is defined by
HY f(z) = sup |+ hy(2)|

where h; is the heat kernel (see [AT]). For a reasonably well-behaved function
¢ the radial mazimal function Myf is defined by

My f(z) := sup | f * ¢y(z)]
120

where

A
(32) (e = g ).
Denote by Hy f the local heat mazimal Junction defined by

H{ f(z) = sup [f » he(z)].
D<t<l

The local radial mazimal function My o f is defined similarly with supgcye;
replacing sup,.,q in the definition of M, f. -
The IP-behaviour of these maximal functions is investigated in [BX2].

For s > 1 and n € Ny let B.n(Ry,*(A)) denote the set of functions ¢ in
S1(Ry., #(A)) satisfying, for k= 0,1,...,n,

X
(3.3) o™ (2) < Cap(l+m(0,2))"° and | p(z)A(z) de = 1.

0
We write B, (Ry,*(4)) as Bo(R., *(A)) if n = 0. The starting point of
Hardy space theory is the following version of the classical maximal theorem:

3.4. THEOREM (see [BX2, Theorem 3.11]). Let ¢ € B, (R, #(A)). Then

the mazimal operators HY and My are of weok type (I, L') and bounded
on LF(Ry , Adz) for1 < p < .

- The converse of the maximal theorem (for p> 1) is also true.
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3.5. THEOREM (see [BX3, Corollary 2.13]). Let f € &,{Ry,*(4))
(0<¢<2) andl <p<oo. If Mis any of the mazimal operators H, HY,
My and My o where ¢ € Sg(Ry, x(A))N B, (Ry, Adz), then f € LP(Ry, Adz)
if and only if M f € LP(Ry, Adz). Moreover,

1M fllp,a ~ ilfllp,a-

The theorem is not valid for p = 1 (a counterexample was constructed
in [BX3]). However, we cap exhibit large classes of distributions whose local
maximal functions are in I? for any p > 0. For this purpose we first introduce
the local grand maximal function f. Set D, (Ry) = D.(R)|r, where

D.(R) = {g € C*(R) : g is even with compact support}.

Let m € Ny and z € R., and denote by K,,{z) the set of functions
% € D.(R,.) such that for some 0 < r < 7o (where rg is a fixed constant
independent of z and m),

o

[ [ (wA)du <1

0

supp(¥) C B(z,7),

and
(3.6)  |[¢® ()| < Cagr~¥|Blz,0)"Y,  k=0,1,...,m+[2a+2]+2,

where B(z,r) = {y € R: |y —z| <r} and |B(z,7)] is the .Haar measure of
B(z,r). In the following we implicitly associate such an r w1thjea.ch functm.n
W € Km(z). The (local) grand masimal function of f € & (R, #(A)) is
given by

() = sup{|f(¥)| : ¥ € K ()}

3.7. THEOREM. (i) (see [BX2, Theorem 4.52]) The grand maximal func-
tion fr 1is of weak type (LY, LYY for m > 2a + 3, and strong type (LP,LF)
forp>1andm > (2a+2)/p+1.

(i) Let f € Sj(Ry,*(4)) and 1 < p < oo. If f, € L?(R,., Adx) then
f € LP(Ry., Adz), and for m-almost all z € Ry,

£ (z)] < frl=).

Proof We only give the proof of (ii). Choose ¢ & D.(R.) such that

supp(¢) C [0,1], ¢(u) = 1 for u € 0,1/2]) and ||¢[l1,a = 1. For 0 <t <1

it is straightforward to verify The € K (z) using (1.3), (1.10), (1.11) and
Lemma 1.9. Hence

(3.8) |f (Tade)] < fou(@)-

i *. Now proceeding
By (3.1) observe that f*¢; — fin S{(R+,*(A)_) agt — 0 :
asyifl th)e proof of [FoS, Theorem (2.7)] we obtain f € L? (R4, Adz). Finally,
we use (3.8) and the fact that f * ¢:(z) — f(z) for m-almost every = € Ry
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(see [BX2, Corollary 3.16]) to obtain
[f(@)] < finlz)

as required. m

As in the case of euclidean spaces the local grand maximal function is
dominated by the local heat and radial maximal functions.

3.9. THEOREM (see [BX2, Corollary 4.51]). Suppose that f € S5(R,., *(A))
and 0 < p < co. If HY f € L*(Ry., Adz) then fr € LP(Ry, Adx) for m >
(20 +2)/p+1 and

£ lp.a < Co, all H fllp,a-

Neow we proceed to prove the demination of Sfn. by the radial maximal
function. The main difficulty comes from the fact that (4} does not form
a semigroup, nor does g—tgbt = L¢; hold. Hence some of the techniques in
proving Theorem 3.9 cannot be employed.

3.10. LEMMA. Ift) € Kp,(z0) then for any ke N, k < m, + e +2]+2
with k even,

. Cawr ™ T B(ag, 7)| 711 + X) kg2t T < 2,
[ << Caer ™Y Blao, )|~ (1 + N) “*zpee, zg > 2,
Coakr™ 4B (o, r) [~ (1 4+ N)~h=omV2g80™2 hgy 59, 2 > 2.
)

Proof. By (1.3) and (1.5) there exists & > 0 such that
" 20041
(1) Li(@) = -f'(e) - 12 f(a) - Bla)f (@), 0<w<s

Notice that 1 is an even C*-function on R. Therefore by (1.5), (3.11) and
(3.6) we obtain

(3.12) |L*/24p(@)] < Cager™*|B(mo, )|
In view of (1.5), (1.6) and (3.12) integration by parts gives

07+ 2500 = | § $(e)H201 0) Ae) ]

0
= | § 20 @) () Ata) dsf
0

SCaprBlao, )™ | lea())A(2) da.
B(za,r)
Hence the lemma follows immediately from Lemmas 2.1 and 2.2. m
3.13. LEMMA. Let 1 € Kpn(zo). Then for = € B(zo,r) and y & Ry,

[(TeY® ()] < Capr™|Blao, )Y, k=0,1,....m.
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Proof. Appealing to [BX1, (3.27) and (2.17)] and Theorem 1.7 we have

o0

(3.14) (Te) P () = | DNea(z)el (1)l dA.
0

We only give the proof for the case where ¥ €< = < zg < 2. The proof for
the other cases can be carried out similarly using (3.14), Lemma 3.10 and
the estimates for characters given in §2. By (3.14) we write

1
(T)® (@) = [N )ea(@)el (m)|e(N) " dx
0

1/mg
+ | Beala)el (@)]e(0)] 2 dr

1

iz

+ § 2@l ()l 72 d
1/wo
1/y N

+ D(Nea(z)eE (@) e(N)| 2 dA
i/x

+ DSO BN pa(@)es? (1)]e(N)| 72 dA
1/y

=h+L+L+L+ I

Using Lemmas 3.10, 2.1 and 2.4 together with Theorem 1.8 we immediately
obtain
It < Capr *|B(mo, )| ™

and if zq > r thei
Iy € Car™*|Blxo,r)| 7"

If g < r then we write

1/v 1/moA .
L= | $0ea@elP @l dr+ | el @)le(h)] ™ dx
1 1/r

= 1N+ 1.

Assume that both k and k + [2c + 2] are even (otherwise consider & — 1 or
k+ [2a + 2] + 1). We now apply Theorem 1.8, Lemmas 2.1 and 2.4, and

2 .
Lemma 3.10 (with & replaced by &+ [2a + 2] 4 2 for I§”)) to obtain
I < Capr®|Blzo,r)™,  i=1,2.
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For I; (j = 3,4,5), if g < 2r then we apply Theorem 1.8, Lemmas 2.1
and 2.4, and Lemma 3.10 (with & replaced by k + [2a: + 2] 4 2) to obtain

I; < Capr®|Blzo, 7)™t j=3,4,5

If 2o > 2r then |z — zg| < 1 implies that zo/z £ 2 and r/z < 1. Thus a
similar argument gives

I3 < Capr~ " Blzg,r)|™*
and if y > r then
I; < Capr™|Blmo,m)|™!,  1=14,5
If y < r then write

1/r 1/y
L= { $Nexa@ed @2 dr+ | $(0)ealz)o w)le(3)| 2 dx
1/ L/r

=1 4 1),
Now applying Theorem 1.8, Lemmas 2.1 and 2.4, and Lemrma 3.10 {with
k replaced by &+ 2 for I{% and I5) we obtain
I; < OA’kT—kEB(IBQ,T)J—l, j=45nu

Let ng be a positive integer and let Iy, l1,...,1l,, be distinct numbers
(with 1/4 < 1; <1/2for § =0,1,...,n9). Then {by a standard argument of

linear interpolation theory) there exist cg,c1,...,¢n, € R such that
np ng
(3.15) Yoey=1 and Y gli=0
=0 F=0
fori=1,2,...,n9. For ¢ € B,(Ry,*(A)) and ¢ > 0 define o; by
nq
(3.16) o) 1= ciduye(a)
=0
and set
(3.17) oy =0oyp—oy and gy = Ot/2 + Ot

3.18. LEMMA. Suppose that ng is o nonnegative integer and 1 €
Koo+i(zo). Then for z € B(zg,r),

o %9 (@)] < Cang | Blwo, m)| 7H{t/r) e
Proof. By (3.16) we have
0% $(2) =Y ¢5th * buyu(x)-

j=1
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By (1.12) and {3.2) we observe that for any positive integer &,

b o0
(3.19) %ﬂ * ¢i(z) = | d(u)y* (Te)™ (ty) Aly) dy.
0
Hence using Lemma 3.13 we have
k
(3.20) gg,;ip * ¢y(z)| < Capr™|B(zo,r)| 7"

Therefore expanding v * ¢y,:(z) about ¢ = 0 the lemma follows readily from
(3.15), (3.17), (3.19) and (3.20). u

3.21. LeMMA. Let ¢ € B, »(Ry,*(A)). Then for any nonnegative integer
E<nandt <1,

(k) Capt™ 2072, r <t
g (@)l < { Cart~ " LA(0) Al /), © >t

Proof. Let C(z) = z72* 1 A(z) and C¢(z) = C(z/t)/C(z). Then ¢i(z)
= t~22-20,(z)¢(z/t). By our assumption on A we see that C'{z)/C(z)

e C*(R) and
C'(z) (k)
— < Clag.
’ ( Clz) ) -
Thus in view of Lemma 1.9 we obtain by induction
(k) Caxt™, z <t
|G (=) < {OA,;ct“Hg“HA(:E)_1A(a:/1:), >t m

For any N > 0 and ¢ € B,(Ry, *(A)) we mtroduce the following local
tangential and nontangential maximal functions:

" Bl \"
p2) e = s 1 a0l BEr 7o)
o<1
d
D@ = s Frs) i ()= s L ia)
ly—=|<t ly—z|<t Y
0<t<1 pt<l

where f € S{(R,,*(A4)). .
We now compare these with the local grand maximal function.

3.23. THEOREM. For any N > 0 choose ng,m € N such that ng =
20+ 2)N—Llandm2no+ 1 Ifp€ B, (Ry,*(A)) with s > 2N + 1 then
there exists a positive constant C depending only on A, N,np and m such

that for f € S{(Ry, *(4)),
fr (@) < Coy(filz).
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Proof From (3.3) we see that lim,_g+ 5()\) = 1. Using the Fourier
inversion formula ([BH, Theorem 2.2.36]) and Theorems 1.7 and 1.8 we
have, for any ¢ € D, (R..),

(3.24) JHm Gy x gy x(y) = 9(y)

uniformly for y € Ry. Consequently we can write, by (3.15)-(3.17),

Yly) =+ o, 5o (y) + Z C";_—kr kO, ¥ Wy}
fe=0

where r < 7 is as in the definition of f2,. Now the theorem can be proved

in a similar way to the proof of [BX2, Proposition 4.10] using Lemmas 3.18
and 3.21. =

3.25. THEOREM. Suppose that f € S{(Ry,*(4)) and 0 < p < oo. If
¢35 (f) € LP(Ry, Adx) then fr, € LP(R.., Adz) for m > (2a+2)/p+1 and

17mllpa < Cp,all#% (Flp,a-

Proof. This is similar to the proof of [BX2, Theorem 4.36].

To compare ¢*(f) with ¢} (f) the corresponding method for the non-
tangential maximal functions defined by the heat kernel h; fails to work. We
consider the following estimates.

3.26. LEMMA. Let ¢ € B, n(Ry,*(A)). Then for any given constant ¢y
and k=0,1,...,n~2a+2] -3,

|(T,5%Ty¢t(z))m<u>

Capt~ k223 ¥, 2 <cot and t < 1,
< § Capt™ 2(AOA(2)12 y<tLa<1,
7] Capt™ R A AWV, 2<t<y <,

Caxt ™ 2(AA(2)"2  otherwise,

where Ca i depends only on A and k.

Proof. Applying the Fourier inversion formula ([BH, Theorem 2.2.36])
and [BX1, (2.17) and (2.18)] we obtain

[+a]

5 (k) . 5
(Tzza—yfyqst(z)) (w) = | &Nk Whea(@)el (w)le(N)] 2 dA.
. 0

Also, in view of Lemma 3.21 the same argument as in the proof of Lem-
ma 3.10 gives, for any positive even integer j < n,

(3.27) |6e(A)] < Cagt™9 (14 X).
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Therefore we can proceed similarly to the proof of Lemma 3.13 to obtain
the result using (3.27), Lemmas 2.1, 2.2, 2.4 and Theorem 1.8. u

Lemma 3.28. Suppose that ng is o nonnegative integer and ¢ €
B s(Ry,«(A4)) with n > np + [2a + 2] + 3. Then for any given constant
cp>1landy, z e Ry,

<

o
6_yTyJ: * ¢’t (Z)

where C'4 ., depends only on A and ng.

CA;ﬂuTnu_Ht“nnuza_Lly y, z < cof,
Clano (A(Y)A(2)) "1/ 2rmotli—m0—3  ptherwise,

Proof. By (1.12) and (3.2) we have, for any positive integer &,
a* d
5 (9757 * B—yTy¢t(2))

0 5 (#)
= g c,'b('u,)u’“ (Tz E)_ymTygtpg(z)) (tu)A(uw)du, y,z€Ry.

<

Applying Lemma 3.26 gives
{ Cypt—h 23, ¥,z < cot,

g* b3 ] !
ork (qu ¥ @Tygbt(z)) Cart™ 2(A(y)A(2z))"Y/?  otherwise.

Hence the result follows using a similar argument to the proof of Lem-
ma 3.18. w

3.29. LEMMA. Let 0 <t < 1 and ¢ € Bsn(By,*(A)) with s > 1 and
n > [20+2]4+2. Then for any0 < & < 2(s—1) and k =0,1,...,n—[2a+2]-2,

ak CA kt_k_lA(m, o t)a !.’,B " yi <ct,
’WquBt(y)‘ s {CA,kt"k‘lA(m,y, t)e”5@|m—yl/’f, ir—y| > e,

where A(z,y,t) = min{(A(z)Ay))~?, (AB)A(2))"Y2, (A A(y) /2,
e > 1 is any given constant and Cay depends only on A, k and c.

Proof. We first consider the case where |z —y| < c¢t. As in the proof of
Lemma 3.26 we have

k so
2 Tutd) = | B:0r @l @02
0

Thus a similar argument to the proof of Lemma 3.13 shows the lemma for
|z —y| < ct with the use of {3.27), Lemmas 2.1, 2.2, 2.4 and Theorem 1.8.

For |z — y| > ¢t we use the idea in [A] and choose w € C*°(R) such that
w(z) = 0for z < 1/2 and w(z) = 1iorz = 1. For any fixed z,y € By with
|z — gyl >t define
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Wamyls (1) = w(E |z — y| + u))w (7 (2 — ¥ —u)).
Then wig_y|,s € DRy ), wig—y),e(u) = Lforu < |z—y|-tand wy_y) +(u) =0
for u > |z — y| — /2. Set Qjo—yps = 1 — wigy),- Then Qpp_y, € Du(Ry)
satisfies
0, 0<u<lz—y -t
0 = )
o-v1<() {1, u>lz -yl -t/2

and

Let b =k = ¢, 1 = Ak and m = Fk = Fyl where A is the Abel
transform and Fp is the classical Fourier transform on R (see [T]). Put
oyt = WMoyl Koyl = A Mjoy|e 80d MYa_y) s = Folja_y)s. Now
I =gy € D(Ry) is supported in [0, |& — y| —t/2]. Hence by [T] we have
supp(k — kjz—y|,:) C [0, |z — y| — /2], which implies that

$r(u) = k(u) = kjg_y 1 (u),

Thus Tp¢:(y) = Tukje—y),:(y) and by [BH, Theorem 2.2.36] and [BX1, (2.17)
and (2.18)],

u> |z —y| —t/2.

(330)  Tedilt) = | meyie(Npa(@)oals)le) 2 dr
For j=0,1,... kput D
iz g2, (1)

. |z —y| +u &y —u
_ OF it IS WNEEL Y |
é;f(Jw( ) () e

and ljg—y|,e.5(0) = {w) 25— y1¢.5 (). Then

i .
B e—utt(8) = 7 0oy 5(u).

Recall that F = FyA (see [T]). Therefore

&7

o
Fyg amvla(A) = ¢ ' § Yoyt 1 cO8 M = 67 Foljy 4,5 ()
0

and hence by (3.30),
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ak
(3.31) @Tmt(m

k =)
- (’?)ri [ Moy eg (ea @)l ()02 dA
7=0 J 0

We claim now that for any integer 0 < L < k,
T Lz Y2 L-1/2 -6 t
(3.32) { § 1721e g6 (V)L + 2| dA} < Cyjpt b1 2embelmullt,
0

In fact, because of the properties of the classical Fourier transform and

!llm -/, tj(u)| < CA,i Zt—i-l-q‘l(q)(u‘)‘: i=0,1,..., L,
a=0 '

Z!m_ym,j(u):o if u < !Cﬂ—yl—t/2

we have

(3.33) { T MYy, (A (L + A d}‘}m

1/2
< CajL Z{ S Im—ykta )[Zdu}

i=0
L i .
<Cayz Z Z t—“‘q{ S 1@ ()2 du}llz
i=0g=0 fo—yi—t
L s
s Cagr ZZ e yl/t{t | 19 u)ele)? du}
=0 g=0

L i
—itq —dpolz—y|/t
= Cagr .y t e el mvlltr,

i==0 g=0

Appealing to the properties of the classical Fourier transform and the ana-
Iyticity of ¢ we obtain

2 e _ 1/2
|100) () efe®) 2du} Y ={ S [1a) () efet 1”)|2al?.a}

0
1/2
(H%—) ¢t(,\+z§—‘-’) d)\} .

-]
-{i
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By the Laplace representation of characters (see [Ché]),

x
pa(m) = | e®—ey (dt), weRy, AeC,

—I

we see that forz € Ry and A=£+ine C,

(3.34) loa(z)] < e (a).

Thus by (3.34) and Lemmas 1.9, 2.1 and 3.21 we argue similarly to the

proof of Lemma 3.10 to obtain, for any positive even integer m and A =
£+idpft e C,

02 + 728 = | | I™24(0)pa () Alw) |
0

t
< CA,m (t_m—Qa—QSedgw/tgoo(v)fi(?)) dv
0

+¢7mt f%:e&av/*% (v)A(v) d”)

< CA,mt—m
provided & < 2s — 2. Consequently we have
(3.35) I, < Cy =72

and (3.32) follows from (3.33) and (3.35).

Now we use (3.31) and (3.32) to prove the lemma for |z — y| > ct. We
only consider the case where ¢ < y < 2 < ¢ and |z —y| > ct; the other cases
(for |z —y| > ct) can be proved similarly. By (3.31) we write

5% k . e .
oyr 9(v) = ; (’j)t( | mesiesMer(z)el™ wle()] =2 ax

2:—1

+ | Mooy (Vs (€)™ () o(A)] 2 dA

,y—l

+ § My Nea@)elF (1) e(A) 2 da
+ 5 My —y,5 (V@A (@) (1)]e(A) 2 dA

icm
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oo

+ | mamyi s Woa@)el ™ @)l ~2 dA)
=1
LI .
= ( ,)t_J(J1+J2—l-J3+J4—|-J5).
=0 7
Applying Lemmas 2.1, 2.2, 2.4, Theorem 1.8, (3.32) and the Cauchy—Schwarz
inequality we see that
c-—-].
|1l € Cai § Imiamy s (A)[AF7IT20H 4N
0

T 1/2 ' e
< { V 1miz—y,eg (M) d«\} < Cppt R 2 deloalit
0

21

-1

T ; ye® . 1/2
<{] miemy g+ PG (14 220D ar}

e—1 o1

< Caut P (A(r) Aly)) Y/ 2 feleui/t
and similarly
Ti] € Capt™ (Al@)A(y) 20091/t i =3,4,5.
3.36. THEOREM. For any N > 0 choose ng € N such that ng > N(2a +

9) — 1. Let f € 8 (Ry,+(A)) and ¢ € By s(Ry,*(A)) with s > 2N + 1 and
n > ng + [2a + 2] + 3. Then there ezists a constant C > 0 depending only

on A, N,ng such that ,
#(1)(=) < OO (@)

Proof. This is similar to the proof of [BX2, Propositions 4.10 and 4.15].
By (3.24) and (3.16)-(3.17) we can write

pr(y) = ¢ * oy * o4(y) + Za;—kt * Oy * Be(Y)

k=0
and hence
o0 9 _
a%f * ¢f (y) = § f * gt(z)'é—?;TyUt * ¢t(Z)A(Z) dz
SNTL azﬂkdz)%no;kt » $u(2)A(z) dz.
k=0 O :
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Consequently, by (3.22) we have, for any =,y € Ry and [z —y| < ¢

td%fwt(y)'

1

(3.37)

< Ow?\}“(f)(w){ S g(m,z,t,N)Q 2 107 5 (2
4]

A(z)dz

(ol o] a ~
- Z S g(=, 2,27, N)’@Ty%—kt * ¢y (2)
0

k=0

A(z) dz}

where g(z,2,t, N) = (|B(z, |z — 2| + £)|/|B(2,t)). Applying Lemma 3.26
(with & = 0) and Lemma 3.29 (with k = 1) gives the following estimates:

S aiTyat“ * by (2)

|z—z|<24

A(2)dz < Cugt™, and

(3.38)

- Tyo; (2)
o™

For any s > 2/N+1 there exists § > 0 such that 4V < § < 25—2. The theorem
now follows from a similar argument to the proof of [BX2, Proposition 4.10]
with the use of (3.37), (3.38), Lemma 3.29 (with & = 1 and 4N < § < 25—2)
and Lemma 3.28. w

Now using Theorems 3.23, 3.25 and 3.36 the standard method in eu-
clidean spaces (see [FeS] and [BX2]) gives the following results.

3.39. THEOREM. Suppose that f € 81 (Re,+(4)) and ¢ € B, n(Ry., +{A))
with s > 2/p+1 where 0 < p < o0 and n > (2a+2)/p+ 20 + 2] + 4. If
Myof € PRy, Adz) then ¢%(f) € LP(Ry, Adz) and

85 {)lp.4 < CoallMy0flp,a-

3.40. COROLLARY. Suppose that f € S, (R, %(A)) and ¢ € By n(Ry, #(A4))
with 8 > 2/p+ 1 where 0 < p < o0 and n > (2a+2)/p+ 20+ 2] + 4. If
Myof € LP(Ry, Adz) then f2, € LP(R,, Adz) form > (30 +2)/p+ 1 and

[ frllpa < CpallMyof|lpa.

0 A(z)dz < Cut™L

4. Local Hardy spaces. In this section we introduce the local Hardy
spaces h? by means of the maximal functions and the atomic Hardy spaces

hZ, and then prove that they are identical; the methods used parallel those
in the euclidean case {see [FoS]).

4.1. DEFINITION. Let 0 < p < o0.
(i) The Hardy space H? = HP(R, ,*(A)) is defined by
H?:={f e $i(R+,#{4)) : HY f € L”(R.., Adz))}.
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(ii) The locel Hardy space h? = hP(R, ,*(A)) is defined by
b? = {f € S{(Ry.,*(A)) : Hf f € LP(Ry, Adm)}.

Moreover, we introduce the quasi-norms || f]| g := | HY fllp,4 and || fllus =
|| g #llp,4 to define topologies on HP and h? respectively.

For p > 1, H? and b? coincide with LP(IR , Adzx).

4.2. THEOREM (see [BX3, Proposition 2.16]). If 1 < p < oo then
H? =h? = LP(R, , Adzx).

4.3. THEOREM. For 0 < p < o0, h? is complete.

Proof. It suffices to show the inclusien h? C S§{(Ry,*(A4)) is contin-
uous. The theorem can then be proved by mimicking the proof of. [FoS,
Proposition (2.16)]. Note that D.(R; ) is dense in 8;(Ry,*(A)) (this can
be proved in the same way as for noncompact symmetric spaces; see GV,
p. 254]), so we need only show that if f — f in b? then (fn, %) — (F.1))
for all 1 € D, (Ry).

For any ¢ € D, (R ) there exists a positive integer ky such thatksupp(a,!))
- U?;l B(z;,1) where z; € supp(¥), § = 1,...,ky. Let {#;};%, be a
partition of unity satisfying ¢; € Du(Ry.,*(A)), supp(d;) C B(z;,1), 0 <
¢; <1 and ¢; = 1 on B(z;,1/2). Thus

ky

(f) = _(f.45)

i=1

where 1p; = 1)¢;, and there exists a constant Cy > 0 such that ¥;/Cy €
K. (y) for any y € B{x;, 1). Therefore

k
l(f,w)l“’scaai\B(wj,l)] | )P AG) dy

i=1 B(x;,1)
< Cay | FWPAG) Ay, € DBy, x(4)
1)

and by Theorem 3.9 the proof is complete. m

We assume throughout that the exponents p and g are admissible in the
sensethat 0 < p <1, 1<g<ooandp < g,and put d = [(2a+2)(1/p—1)].

4.4. DEFINITION. (i) A local (p, ¢)-atom is a function a € LR, Adx)
such that for some zg € R, and r > 0, supp(a) C B(zo, 7},

(45) lalg.a < m(Blzg,r))/e /P
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together with the following (local) moment condition: if r can be chosen not
exceeding 1 then

(4.6) T t*A(z) dz =0

for all integers k satisfying 0 <k<d.

(ii) The local atomic Hardy space hE = hE(R.,*(A)) is the space of
all distributions f € S{(R,, #(A)) having a representation f == Z]__l Az
where the a; are local (p, g)-atoms and > 52, |A[P < co. Write

o0 o
[[fllpg := inf { Z AP :Z Ajaj is an atomic representation of f

j=1 i=1
using local (p, g)-atoms}.

We first proceed to prove that the maximal operators are bounded from
h? to LP(R,, Ade) for 0 <p < 1.

4.7. LeMMA. Let 0 <t <1 and ¢ € By (R, %(A)) with s > 2/p+1
where 0 < p < 1 and n = (2a+2)/p + [2a + 2] + 4. Then there exists
4/p < 8§ < 2(s — 1) such that for k=0,1,...,n— [2a 4+ 2] — 2,

Caple —y[T* 141 (2, y),
|z ~y| < ¢ |z —yl < min{z,y},
Caplz —y|7"273245(z,y),
min{z, y} < [¢ -y <
Caplz —y| 1 A(z)Aly))~2e%el=yl,
lz —yl >c,

j Ba;,ﬂ T (y)‘

where Ag(z,y) = min{A(z) "%, A(y)~1/*}, k=1,2.

Proof. This follows immediately from Lemma 3.29. w
4.8. THEOREM. Suppose that ¢ € B, (Ry, #(A4)) with s > 2/p+ 1 where

0<p<1andn = (2a+2)/p+[2a+ 2]+ 4. Then there exists a positive
constant Cap such that for each local (p, q)-atom a, | My pollpa < Cap.

Proof Let a be a local (1,¢)-atom supported in B(zg, ) for some zg €
Ry and r > 0.

First we assume » > 1 and write

agbrl )
[ Mypalpa= | Mpoa(a)PA@)dz+ | Mypa(n)PAlz)de
0 2p+r+1
= I + I,

icm
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By Lemma 1.9 we know that

Clag +r)2ot2 zo+r < Cp, zo <1,
(4'9) ‘B(CUO?T)I 2 nga+17‘a Tog T S CD: To > T,
Cerelzotr) zo+r>Cy
and
Clzg + 7+ 1)222, 20+ 7 < O,
<
(4.10) B0, 20 +r+1) < { Qeelzotr) xo +7r > Cp

where Cp > 1 is a sufficiently large constant. Thus using Hblder’s inequality,
Theorem 3.4 and the size condition (4.5) we have

It < CaplBlmo, )P/ 97 Y B, 5o + 7 + 1)*7P/% < Cap.

To estimate Iz we obgerve that

oor

a*py(o) = S

max{0,co—7}

a)Tetr(v)Aly) dy, @220 +r+1.

By Lemmas 2.1 and 4.7 (with k = 0) we have

OAm—«o:-—S/2e—(6+1)gw’

Equbf( )| = { 1(A(m)A(y))—l/Ze—ég(m«mn—'r)'

C A(:l: — Ty — ’P)—
Consequently, using {4.5) and (4.9) gives

1

la* ds ()| < |

max{zo—7,0}

() Tz (y)| Aly) dy

zo+T

£ 1 e b)) dy

1
< Calljallz,az
=+ "a’HooA(fU)d1”28_59(”“”0"")69(%4—?))

< Cy(zo 3 2~ ee

—oc-—3/2€-(45+1)9m

e A(:c)"1/28‘59(”—%—1”)6(1—2/13)a(mo+r))_

Hence by Lemma 1.9, |Iz| € Cap and this completes the proof of the theo-
rem in the case of r > 1.

Now we assume 7 < 1. Let Py, denote the Taylor polynormial of order
d of Ty at xg. Applying the moment condition (4.6) gives
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(411) & xy(x)]

o

= | (Tuu(0) ~ Pacal))4l0) o
0

5d+1
< | le@)lly - =*t sup WTw(Pt(w)’A(y)dy.

Bzg,r) wEB(zg,r)

For g < 3r we write

Br oo
1Ms0allp,a = § Mypoa(x)P Alz)da + | My pa(z)PAlz)de = Ji + Jo.
0 8

Using Hélder's inequality, Theorem 3.4, Lemma 1.9, (4.5}, (4.9) and (4.10)
we see that

JL € Ca g

To estimate Jp we appeal to (4.11), (4.9), (4.10) and Lemmas 4.7 and 1.9
to obtain

CA plat2— (20e—|—2)/p+d+l —d—2c— 3 z <O ,
la * ¢u(z)] < { P ploti—(20+2)/p+d+l,, —d—a-~5/2 —@ter g CE’
where Cy > 1 is a sufﬁcmntly large constant. Therefore by Lemma 1.9,
Ou oo
Jo = | Myoa(2)P A(z)de + | Myoa(z)P Ale) do < Ca .
8r CQ
For x4 > 3r we write
IMpoallpa= | Myoa(z)P Aw) da
B(zp,2r)
+ | Myoal@)PAl)de = s + Ty
]R+\B(Cco,2’f‘)

Proceeding as for the estimate of J; we get J3 < Cap.
It remains to obtain a bound for Jy. In view of (4.11), (4.5) and Lem-
mas 1.9 and 4.7 a straightforward calculation leads to the following esti-

mates: if 3r < 2y < Cp then
la * ¢4(z)]

Caprdti=Ply — | =92 4(z) /P, 0<z<xg— 2,
< CA 7,.d+2 l/p(lw xord 2.:4(.’3) 1/p+A($D)l l/pw—d =2 — 3), )

B @+ 2r < ¢ < 20,

CA,PT.d-I»E—l/pA(mO)1—1/pm—d-—2a—36—(5+1)g:c, @ > 200,

and if £y > Cp then
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Caprit2-1/p A(z)"1/P, 0<x < Cy/2,
CA,p?”d+2_l/P(|$ _ m0|_d_2A(CC)_1/p 4 A(mg)1/2_1/pA(m)l/2),
lakgs ()] < Co/2 <z < zg— 27,
Ca,pr® 1P|y — mo| =42 (A(z) =1/
+ Az) Y2 A(mg) M2 Pe— 0+ 1)e%) 1 » g 4 20

Consequently, by Lemma 1.9 we have, for 3r < zp < Cy,

zg—2r 2Cq
Ja= | Myoa@)PA(z)dz+ | Myoa(z)PA(z)dz
d zo+2r

o0
+ | Myoa(2)PA(z) dz < Capp,
C,

2Co

and for zg > Cg,

Co/2 wo—2r
Jy = S My pal{z)? A(z) de + S My pa(z)PA(z) dx
0 Co/2
o0

4 S M¢,0a(a:)pA(m) de < Cyhp. m

zp+2v
4.12. LEMMA. Let k be o nonnegative integer and c1 > 1 and c2 > 1 any
given constants. Then for z,y € Ry withz #y and for 0 <t <1,

(CavE " Az, 1), -yl < eV,
kti2et2] —|a—y|?/(42)
Cu lz -yl g
ok ¢ @ —yl/
By kTmht y)\<{ avt<|z—y| <e 2,y < ey,
o[ o — g\ P eteul/ )
Ca(A(z)Aly)) ™ ( 7 ) Tz —y|t72
| avi < |z —y| < e and z,y > ca, or |z —y| > ca,
where

o~ -2l _
Alw,y,t) =min{Vi L (A AWVE) T
(AAND) 2, (A(z)A@y) "}
Proof. The lemma can be proved using a similar argument to the proofs
of Lemma 3.29 and [BX2, Theorem 2.17}. w

Using Lemma 4.12 and arguing as in the proof of Theorem 4.8 we im-
mediately obtain the following result.
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4.13. THEOREM. Let a be a local (p,q)-atom. Then there is a positive
constant Cap independent of a such that | Hy allpa < Cap.

4.14. THEOREM. Suppose that ¢ € B, (Ry,*(A)) with s > 2/p-+ 1
where 0 < p < 1 andn > (20 + 2)/p+ [2a+ 2] +4. Then the grand mazimal
operator f — £, (where m > 2a + 3) and the mazimal operators Hy and
My, are bounded from hE to LP (R, , Adz).

Proof. This follows readily from Corollary 3.40 and Theorems 4.8
and 4.13. »

We now show that the local Hardy spaces h? coincide with the atomic
Hardy spaces h#. By Theoremn 4.14 it suffices to give the atomic decompo-
sition for each function f in h?, We start by presenting a useful covering
lemnma which is a variant of a classical result of Whitney on R™.

4.15. LEMMA (Whitney-type covering lemma). Suppose that B is open in
R, such that m(E) < oo. Then there exist 21, za,. .. in B, positive numbers
r1,72,... ond N = Nm(BE)) e Nwithr; = 1 for L< i < N and r; <1
otherwise, satisfying the following conditions:

(a) E= U5, Blzs,ry)s

(b) the intervals B(mj-, %Tj) are disjoint,

(c) if i > N then B(x;,187;) N E° =0, but B(xz;,54r;) N E® 5 0,

(d) no point of E belongs to more than M of the intervals B(xz;,187;),
where M = M (A) is a positive constant depending only on A.

Proof. The lemma can be proved following the proof of [FoS, (1.67)]. n

4.16. LeMMA. Let f € S,’;(R+,*(A)) (0 < g £ 2). Then [, is lower
semicontinuous.

Proof. For any v > 0, if f (z) > < then there exists ¢ € K,,(x) with
supp{)) C B(z,r) such that |f(¢¥)| > . Let 0 < § < min{r, (ro — r}/2}.
Then by (1.10) and (1.11) it is straightforward to verify that Ty €
K (z £ 6). Since f € S} (R, *(A)) and Tstp — o in S;(Ry, +(4)) we obtain
F(Tsp) — f(af) as § — 0, Hence there exists dy > 0 such that f5,(y) > 7
for all y € B{x,8). m

Fix febh? (0<p<])and for any k € Z put
Oy ={z Ry : fr(2) > 2"},

In the sequel we write from time to time {7 f(z)9(x)A(z)dz instead of

(f,4) for f € S{(Ry,*(4)) and ¥ € S{(Ry,*(A)). By Lemma 4.16 and
Theorem 3.9, {2, is open and, since f}, € LP(Ry, Adz),

(417) m(2) < 2P S0
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We apply Lemma 4.15 to these sets 25 (k € Z) obtaining (z¥) in 2 and
a sequence of positive numbers r¥ < 1 satisfying (a)-(d) in Lemma 4.15.
Choose once for all an even C*°-function § on R such that supp(8) C [~2, 2],
0<6<1and8(z)=1for x € [1,1], and set 65(z) = 8((z — zF)/rF).
Then 8% € D.(R, ), supp(6*) C B(z*,2r¥), 0%(z) = 1 for = € B(aF,rF) and

a4’ .
Eez(m) SOj‘T‘i_j, j:0111"'>

where C; depends only on j. Set

k 6’-“(93) z €2
Gz)i=9 T, 65 ’
0 otherwise.

By Lemma 4.15 we have
FeD Ry Hrf <1, supp(¢f)C B(zk, 2rF),

418
419 0<¢r<t, (Flz)=1 onBaf,rf), Y Fa)=xalx)

For each pair i,k if rf < 1 we let Py, denote the space of polynomials on
R, of degree < d with the Hilbert space norm

171 = (§ A as) | IPEIPCHE)A) da
0 0

and denote by PP the projection of f into Py, that is,

(4.19) oﬁof(y)Q(y)C? WA@)dy = | PFLIQW)CEWAW) dy, Q € Paik
0 Q

If ¥ = 1 we define P} = 0. Furthermore, for each i,k we define

(4.20) bh = (f — PFYCF and gkmf—z_b?.

4.91. LEMMA. There is a constant C4 independent of f,4,k such that
\PFy)| € C42F, ye B(zk, 2rk).

Proof Let my,...,7m; (L = dim Pg%) be an orthonormal basis for
Pa,:,k- Then by (1.2), (4.18) and Lemma 1.9,

4 1= (1 dwAGd) | mePE@A) i
0 0
zmm | Im)PAG) dy

B(zf.r¥)



224 W. R. Bloom and Z, Xu

1/2
a | Im(rby + by PyPetldy, oF <o,
0
1/2
Ca | Imirky+2b)? dy, af > rf.
0

v

Since Py, is finite-dimensional it is easy to see from (4.22), using the
equivalence of the I2 and L norms, that

(4.23) sup  |m(y)| € sup |m(rfu+zf)| < Ca,
yeB(nf,2rk) 0<u<?

and applying Bernstein’s inequality

(4.24) @) < Clrf)™™ Sélpﬁm(mf%-Tﬁ)l

._u_n
S Cm([ri) m: Y & B(m'{lcuz""zl.ﬂ)‘

In view of (4.19) we have, for rf < 1,

L o]
(4.25) Pr) = Y ( | £@)ek @)m(z)Alz) do ) m(y)
=1 0

where
#5@) = ( | o)A du)cF ().
1]

By Lemma 4.15 we can take z € B(x¥,54rF) N 02¢. Thus using (4.18), (4.23)
and (4.24) a straightforward calculation shows that ¢* € K,,(z), and hence
by (4.23) and (4.25), :
[PEw)] S Cafl(2) < Ca2t. w
Now by analogy with Pf we define Pk+l to be the orthogonal projection
of (f ~ PF*)¢F on Pyjpr if rit < 1 and PEY = 0 otherwise. The
following result follows from a sumlar argument to the proof of Lemma 4.21.

4.26. LeMMa. [PEYY < C a2k

4.27. LEMMA. There exists ko > 0 such that for any k > ko the series
> b¥ converges in h? and

g (Zb’“) ()P A(z)de < Ca | £ (o) Alz) da.
12
Proof. We first note that r*** < C4{B(z,r)| if r < 1. Hence by (4.17)

there exists ko > 0 such that for any k > ko, 7 < 1 for all 4. In the sequel
we assume k > kg.
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Let B(z;a,b) = {y e Ry : 0 < |y — z| < b}. We claim that

(498)  (BF)2,(0)
Cafm(®), z € B(zk, 2rk),
Cal{filz)+ Qk)XB(mf;zrf,lsrf)(v’C)

’r"!c d+1
+CA2k(]ac :wﬂ) XB(ah;18rF 2)(93) z & B(zf, 2rf).

In fact, if z € B(zF, 2rF) then by Lemma 1.9 and (4.18) it is straightforward
to verify ¢ € Kp(z) for any o € K,,(z), and hence (4.28) follows from
(4.20) and Lemma 4.21.

Now we prove (4.28) for z & B(z}, 2r}). If z € B(zf,18r¥) then for any
W € Kpn{z) we can use Lemma 1.9 and (4 18) to get 1,1)(:’“ € Km(m) Thus
(4.28) follows from (4.20) and Lemma 4.21. Assume now = & B(:a1 ,1875)
and ft,b e Km( ). We need only consider the case where 7 > 16rF and = &
Blz¥; 1878, r + 27"’“) otherwise by (4.18), vw¢f = 0. For r > 167‘ and €
B (mf, 187F, 7 +2rF) let Py, be the Taylor polynomial of ¢ at zk of degree d
and Ry o = ~ Pd,w Then the integral form of the remainder of the Taylor
expansion gives

(1 - y) 3 I (0 — ok )y + =f) dy) (u—zF)di2, j < d,

@) (w), j>d.

RY) (u) = (

Q:’1|—1

/-\

Thus by (3.6),
st

. AT kAt B . =4
ORI TOTER S o |
A BE ) CTTEIE™
Let
w0~ B it

where #F = (I3 ¢F(v)Afv) dv) ~1¢k, By Lemma 4.15 we can choose z €
B(x}, 54r%) N 2¢. Then applying Lemma 1.9, (4.18) and (4.29) we can ver-
ify 915 € Km(z) Therefore by (4.19), (4 20), (4 18) (4.29) and Lemmas 1.9
and 4.21 we obtain, for & € B(z¥;18rF, 7+ 2rf),

(85, 0)] = |(BF, Rae)| < |(f¢CE, Rao) + (PECE D)

d+1—j
e (T:|3!+1|B(9: r)] ( S G () AW) dv) 5,2l
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+] T PRI ) Ren (0 A() ] £ Ca2H ey — a4

0
This gives for = ¢ B(zk, 18r%),

(4.30) (B (@) < 25(f) e — 2F " X pakiaaes 2 (),

which completes the proof of (4.28).
We now apply (4.28) to prove the lemma. For any 4 we write

[ WhnePa)de = | (BN)5(=)PA(z)ds
0 B(zk,2rF) :

+ | hn@rA@)d
(B{ak,2rE))e
=10 + L.
By (4.29) we immediately obtain
Li<Cap | frl(z)PA()ds
B(zk,18rk)
and

L2 < Cup | (Unle)? 4+ 27 Af) da
B(wk;2rh 180k)

+Cap | fu(@)PAlz)de
B(wf;18rp,2)
_ I( 12(22)
By Lemma 4.15 we have B(z¥, 18*) C £2;. Hence
L3 <0up | fa(@)PA()ds+ Cap27%|B(ok, 1800)
B(azk,1875)
<Cap | fla)PA(z)da.
B(zk,18rk)
A straightforward calculation using Lemma 1.9 gives
2 .
I} < Cag? B, 2rf) S Cap | Fue)Al) do.
B(zk,18rF)

Consequently, by Lemma 4.15 we obtain
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(4.31) Z g (53 ()P A(z) do < CAPZ | (@) A(z)dz
i B(z%,18r%)
<Cup | 2P Alz) dz.
{2y
The result now follows from (4.31) and Theorem 4.3. »

4.32. LEMMA. There exists kg > 0 such that for any k > ko, (gr)h, €
LRy, Adx) and

1(g)5lln,a < Cap20PFITLIE 4
Proof. Let Fi(2) = 26(rF) e — of |~ xp(or1aer 2y (). @ € (25

then by Lemma 4.15, = & B(z¥,r¥) for all 4, and hence applying (4.20) and
(4.30) leads to the following estimate:

(4.33) (gr)m (@) < frm(@) + Ca ZFik(m), € 5.

If z € {2 then by Lemma 4.15, z € B(z¥,r¥) for some i. Let J := J;
{j: B(zF, 2rF)n B{zf, 18rF) # 0}. By Lemma 4.15, card(y) < M. In view
of {4.30) we have

S Fn(a) < Ca Y. Fle).

g JgJ
For f— debe let z € B(zf, 54r8) N 2f and ¢ € K, (). Observe that
1-3 ey CF =0 on B(z} 18r"’) by Lemma 4.15 and hence (1—3_ ;07 (F) =
0 if r < 16r¥. Thus if g 167 we have by (4.20), (4.18) and Lemma 4.21,

(7= 8h)| = (3o PEG )| < Ca2t
JEJ jeJ
If r > 16rF then by Lemima 1.9 we verify ¢ € Km (2). Thus

(£, 9)] < fr(2) < 2
and by (4.30) and Lemma 4.15,
\(;by,w)i WLECE 0a 3 Fl?) < Oal
Consequently,
(438 (e <Ca(T Fa@+2"), zeB@Ehrh).
ig
Now we apply (4.33), (4.34), (4.17) and Lemma 4.15 to obtain
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V@) A(z) de < Cap | fr(@)A@)de +Cap ¥ | Fulz)A(z)do
0 e i 0
OapY, § (Y Fal@)Ade) deo
i B(zk,rk) JEJ

< Cu 2P | fr (2P A(z) dz + Cap2*| B(zE, )|
)

i

< gA’pg(l-p)k

J
4}

+Cap Y | Fin(z)Alz)ds
0
§ (@) Alz) de + Cp 28| B(F, 7))
0

< CA,pz(l—p)k“fr’:LHP,A- n

The following result is an immediate corollary of Theorem 3.7 and Lem-
mas 4.27 and 4.32.

4.35. THEOREM. For 0 < p < 1, h? N LY(R,., Adz) is dense in
LY Ry, Adz). i )

Now using Lemmas 4.21 and 4.26 and Theorem 4.35 we can argue sim-

ilarly to the case of euclidean spaces (see [FoS, Chapter 3] and [JSW]) to
obtain

4.36. THEOREM. For 0 < p <1, h? C h®. Moreover, if f € hP then
Ifnz < Capl fllne-

4.37. COROLLARY. For 0 < p < 1 we have h? = bE, and for f € h?,

£ llne ~ | fllnz -

Proof. This is a consequence of Theorems 4.14 and 4.36. =

The following result is immediate from Theorems 3.9, 3.25, 3.39 and 4.14
and Corollaries 3,40 and 4.37.

4.38. COROLLARY. Suppose that ¢ € B, (R, *{A)) with s > 2/
sn(Ry, p+1
andn > (20 + 2)/p+ {204+ 2] +4 where 0 < p < 1. Then the grand mazimal

operator f = fr, (m > 20 -+ 3) and the mazimal operators H and Moo
are bounded from ® to LP(R,, Adz) and ’

frllo,a ~ I Hy Fllpa ~ 1Mp0f llp,a ~ |65 (Fllp,a ~ 1]]ne-
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On strongly asymptotically developable functions
and the Borel-Ritt theorem

by
J. SANZ and F. GALINDO (Valladolid)

Abstract. We show that the holomorphic fanctions on polysectors whose derivatives
remain bounded on proper subpolysectors are precisely those strongly asymptotically de-
velopable in the sense of Majima. This fact allows us to solve two Borel-Ritt type inter-
polation problems from a functional-analytic viewpoint.

Introduction. It is well known that, for a function f holomorphic on
a sector § in the complex plane with vertex at 0, the existence of asymp-
totic expansion as the variable tends to 0 amounts to the boundedness of
the derivatives of f on bounded proper subsectors of §. The Borel-Ritt
theorem assures the existence of holomorphic functions on a given sector §
admitting a prescribed asymptotic expansion at 0 in S. There are several
classical proofs of this result in the literature (see, e.g., [Ol, Chapter 1, §9,
p- 22|, [Wa, Chapter 111, §9.2, p. 43]). One of them (based on the ideas of
[Ol, Chapter 4, §1.1, p. 106]; see Theorem 5.1 in this paper) has the par-
ticular feature that the derivatives of the solution are in fact bounded on
unbounded proper subsectors of 5. Sa, the Borel-Ritt interpolation problem
is solvable in a different setting,

The aim of this paper is to transfer this characterization and results
to the case of strongly asymptotically developable holomorphic functions
of several complex variables, as defined by Majima [Maj. To this end, Sec~
tiom 3 is devoted to the study of the space A{S) of holomorphic functions
on a polysector § of C* whose derivatives remain bounded in bounded
proper subpolysectors of S; we give A(S) a natural Fréchet space topol-
ogy, and prove that it is precisely the space of holomorphic functions on S
strongly asymptotically developable at the origin. This equivalence allows
us to obtain many properties of these functions in an elementary way. The
main ideas in this section first appeared, for the Gevrey case, in the paper
of Haraoka [Ha]; the results, in the present terms, come from the work of
Herndndez [He].
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