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On strongly asymptotically developable functions
and the Borel-Ritt theorem

by
J. SANZ and F. GALINDO (Valladolid)

Abstract. We show that the holomorphic fanctions on polysectors whose derivatives
remain bounded on proper subpolysectors are precisely those strongly asymptotically de-
velopable in the sense of Majima. This fact allows us to solve two Borel-Ritt type inter-
polation problems from a functional-analytic viewpoint.

Introduction. It is well known that, for a function f holomorphic on
a sector § in the complex plane with vertex at 0, the existence of asymp-
totic expansion as the variable tends to 0 amounts to the boundedness of
the derivatives of f on bounded proper subsectors of §. The Borel-Ritt
theorem assures the existence of holomorphic functions on a given sector §
admitting a prescribed asymptotic expansion at 0 in S. There are several
classical proofs of this result in the literature (see, e.g., [Ol, Chapter 1, §9,
p- 22|, [Wa, Chapter 111, §9.2, p. 43]). One of them (based on the ideas of
[Ol, Chapter 4, §1.1, p. 106]; see Theorem 5.1 in this paper) has the par-
ticular feature that the derivatives of the solution are in fact bounded on
unbounded proper subsectors of 5. Sa, the Borel-Ritt interpolation problem
is solvable in a different setting,

The aim of this paper is to transfer this characterization and results
to the case of strongly asymptotically developable holomorphic functions
of several complex variables, as defined by Majima [Maj. To this end, Sec~
tiom 3 is devoted to the study of the space A{S) of holomorphic functions
on a polysector § of C* whose derivatives remain bounded in bounded
proper subpolysectors of S; we give A(S) a natural Fréchet space topol-
ogy, and prove that it is precisely the space of holomorphic functions on S
strongly asymptotically developable at the origin. This equivalence allows
us to obtain many properties of these functions in an elementary way. The
main ideas in this section first appeared, for the Gevrey case, in the paper
of Haraoka [Ha]; the results, in the present terms, come from the work of
Herndndez [He].

1001 Mathematics Subject Classification: 34805, 41A60, 41A.
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232 J. Sanz and F. Galindo

Tn Section 4, the corresponding Berel-Ritt problem in this context is
stated: given a coherent family F (see Section 3 for the definition}, does
there exist f € A(S) such that TA(f) = F7

Majima [Ma2, Part I, Theorem 3.1, p. 35] gives a partial solution: for such
an F and for a bounded proper subpolysector T of S, there exists f € A(T)
such that TA(f) = 7. Hernindez [He] solves the problem, as initially stated,
by a constructive method which strongly depends on the boundedness of the
subpolysectors imposed in the definition of .A(S). He considers the Fréchet
space A{S, E) of holomorphic functions on a polysector S, with values in a
Fréchet space B, and whose derivatives remain bounded on proper bounded
subpolysectors of S. After obtaining a solution in series form when S s
a sector, he studies its properties in the particular case in which £ is of
the type A(U, B), U being a polysector; this, together with the fact that
A(S, A(U, E)) and A(S x U, E) are isomorphic, allows applying an induction
argument on the number of variables to conclude.

The solution in this paper is completely different, due to the following
reasons. Section 5, of mainly theoretical interest, is devoted to obtaining a
Borel-Ritt type theorem in the framework of the space B(S) of holomor-
phic functions on an unbounded polysector § of C* whose derivatives are
bounded on unbounded proper subpolysectars of §. This result corresponds,
in the several variables case, to Theorem 5.1, and it was the motivation for
the present work. We were able neither to obtain a solution in series form
in the one-dimensional case, nor to make a suitable study of the sclution
obtained in Theorem 5.1 {(which remains valid when we consider the space
B(S, E), E being a Fréchet space, instead of B(S)) so that we might ap-
ply induction. So, a different approach was necessary. Functional-analysis
techniques turned out to be fruitful not only in this situation, but also in a
similar treatment for A(S).

2. Notation. For n€N, n>1, put N={1,...,n}. Let a=(0o1,...,an),
B = (B1,...,Bn) € N* be two multiindices, m a natural number, and z =
(21,.-.,2n) € C*. We set
a+B={(c1+0B, 0+ b)), ma=(moay,.. . ,man),
ol =03 + ...+ an, al=ol.. ol
a<B&a; <P jeN, a<Beo<f; jEN,
1= (1,. . .,1), e; = (5@)?:1,
2% =222, 2 = 2 =T e,
pe_ 0 __ o
Bz~ P70z

If J is a nonempty subset of N, the number of elements of J will be #J.
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Let n be a natural number, n > 1, and consider, for j = 1,...,n, an
open sector in C with vertex at the origin,

Sj = {2 € C:0y; <arg(z) < ;}, 0< by —0; <27,

v1Any cartesian product of open sectors in € with vertex at 0, § =
Ilje1 83 € €7, will be called an (unbounded open) polysector in C* with
vertex at 0.
‘We say a polysector 1" in € (Witl}_vertex at the origin) is a proper
subpolysector of S if T =T[;_, Ty with T; ¢ §; U{0}, i =1,...,n. If

Ty ={z € C:p1; <arg(z) < pa;, 0< 2] <74},

we say 1" is a bounded proper subpolysector of S.

If J = {j1 < ... < jx} is a nonempty subset of N and z = (z1,..., Zn)
€ C™, we put 25 = (24,...,%; ). Let J and L be nonempty disjoint subsets
of N. For zy € €7 and 21 € CF, {21,21) represents the element of C/Y%
satisfying (27,zr)s = 2y and (25,20)r = z1; we also write J° = N — J,
and for j € N we use 5° instead of {7}°. In particular, we shall use these
conventions for multiindices.

Finally, if § = []}.; S is a polysector of C*, then §; =[[;¢5 55 C Cc’.

3. Characterization of strongly asymptotically developable
functions. Denote by A(S) the complex vector space consisting of the com-
plex functions f defined and holomorphic in S, such that for each bounded
proper subpolysector T of S and each « € N*,

Qr.o(f) =sup{|D¥f(z)| : z €T} < co.

Clearly, A(S) is closed under product and differentiation. We equip .A(S)
with the topology generated by the family {Q1 ) of seminorms; this makes
A(9) a Fréchet space.

Let f € A(S). Since all its derivatives are bounded on bounded proper
subpolysectors of S, Barrow's formula implies that they are also lipschitzian.
Hence, if ) % J C N and ey € N/, we can define a function from Sy to C
by

D05 f(2)
(1) faJ(ZJC) = z%;lgo "“"—C“;J!—"‘—, Zye € Sjc,
zgeTs

for any subpolysector Ty of Sy; the limit is uniform on bounded proper
subpolysectors of Sye {whenever J # N), which implies that fa, € A(Sye)
(setting A(Sy+) = C). Also, the map from A(S) to A(S <) sending f to fa,
is continuous.
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Accordingly, we may associate with f a family
F(f) = {fa, € A(Ss2) : 0 £ T C N, ay € N},

which we call the derived family for f. The aforementioned uniformity in
the limits defining its elements entails

ProposrTioN 3.1 (Coherence conditions). Let f € A(S), and let F(f)
be its derived fomily. Then:

(1) For any disjoint nonempty subsets J and L of N with JU L # N,
for every oy € N and oy, € NE, and for every proper subpolysector Ty,
of 8¢,

. D0 ()

zr—0 aL!
zLeTy,

uniformly on bounded proper subpolysectors of S yurye-

(i) For each nonempty subset J of N, for each multiindez o € N* and
for each proper subpolysector Tre of Sy,

= fagan)(Zun)):

D= z
lim _L(Jc.l = f,eC.
Zye—0 aJc!
zye €T e

Hereafter, we will say that a family
F={fa; € ASy): £ JCN, aye N},

or briefly 7 = {fa,}, I8 coherent if it satisfies (i) and (ii).

‘The concept of strong asymptotic development was introduced by Ma-
jima (see [Mal) in order to study solutions for integrable connections with
irregular singular points. Let f be a complex function defined and holomor-
phic in a polysector § of C" with vertex at 0. We say that f is strongly
asymptotically developable at 0 if there exists a family

F={fu,:0#£JCN, ayeN},
where f,, is a holomorphic function from Sy to € when J # N, and
fa, € C when J = N, satisfying the following hounds: if we define

Appo(F)(z)= D (- 3" fp(2r)dY, ae N, ze S,
@#£TJCN B eN’
ﬁJSC‘J—l.T

then for every bounded proper subpolysector 7" of § and for every o € N*,
o |2 A2

za
Under these conditions, F will be called the total family of strongly asymp-
totic expansion associated with f, and will be denoted by TA(f). For agN™,

:zET}<OO.
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the function App,(F), defined and holomorphic from § to €, is called the
approzimate funciion of order o corresponding to the family F.

THEOREM 3.2. Let f: S — C be holomorphic. Then f is strongly asymp-

totically developable ot 0 in S if and only if f € A(S). If this is the case,
then F(f) = TA(F).

Proof Assume f is strongly asymptotically developable. Consider a
proper bounded subpolysector T of § and o € N*. We may take a new
proper bounded subpolysector T of .S such that T is proper in. 71, which
allows us to find r > 0 such that for every z € T, the closed polydisc
centered at z with polyradius 7(2) = (r(z1],...,7|2.]) € (0,00)*, dencted
by Er(z)(z), is contained in 7. If w belongs to the distinguished boundary
8Dy (2}, then |w|™ < (1+7)1l|2/* and |w — 2|*+1 = plaln|gjetl Ag f
admits a strongly asymptotic expansion at 0, there exists C1y e > 0 such
that

|(2) — Appo(TA(F))(2)] < Cryal2l®, z€ T,
Since D®App,(TA(f)) = 0 on S, we can apply Cauchy’s integral formula
to find that, for every z £ T,

Do) = | | LA CRINE)

60 l_ir(z) (z)

1 ia|
galcﬂ,a( "::’") < o0,

and we deduce that f € A(S).
Conversely, let f € A(S) and F{f) be its derived family. The error
formula

f(2) — Appa(F(f))(2)

no % ti tig =1
=TT (Vdtsa { dtiao | dtiey) D2 F(trans - stnan)
1]

was given by Haraoka (cf. [Ha|; a proof valid in our setting can be found in
a paper by Zurro [Zu]}. Consider a proper bounded subpolysector T' of S.
Since f € A(S), for every o € N™ we have sup,cp | Df(2)] = Cra < .
Hence if 2 € T', then

|2
1£(2) — Appa(F()A) < E 0,
so f admits a strongly asymptotic expansion at 0, and TA(f) = F(f). =

Some remarks are in order. The uniqueness of TA(f) follows from the ex-
pressions given in (1). So, the approximate functions will be denoted hence-
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forth as App,(f), @« € N*. For 0 ¢ J C N and oy € NV, fo, € A(Sr):
thus, the elements of the total family are strongly asymptotically devel-
opable, and from the coherence conditions it becomes obvious that

TA(fa;) = {flas8,) 1 95 LCJ°, B, e NFL

We also note that the notion of consistent family given by Majima (see
[Ma2, Part I, p. 25]) is now seen to be equivalent to that of coherent family.
Finally, it is evident that the family {Pr .} of seminorms, defined on A(S)
for every bounded proper subpolysector T of § and o € N” as

Pro(f) =sup {b fz) = Appa(f)(z) rz € T},

za
generates in A(S) the original topology.

4. Interpolation problem of Borel-Ritt type in A(S). If f € A(S),
then TA(f) is coherent. Thus, the following Borel-Ritt type problem arises:

Given a coherent family F = {fo,}, does there exist f € A(S) such that
TA(f) = F?

In order to solve this problem we now give another two equivalent set-
tings, obtained by changing the initial interpolation data. This will also let
us go deeper into the relations linking the different elements in the concept
of strongly asymptetic expansion.

First approach. If f € A(S), then the first order fomily associated
with f is
TA'(f) = {fmyyy € A(Sse) 15 €N, m e N},
iLe., the subfamily of TA(f) consisting of those elements in n — 1 variables.

For convenience, we write f;,,, instead of f,, PR TA'(f) satisfies “Arst order”
coherence conditions:

(a) Let @ € N and 5,1 € N. For each bounded proper subpolysector T'
of S,

Dan fﬁm (zl"')

2;e—0 ajc! Zye =0 oye!
zje€Tyc zZie €Ty

Moreover, for n > 3, we have:

(b) Let L be a proper subset of N consisting of at least two elements,
ar € N* and 7% a bounded proper subpolysector of Sy,. For every 7,1 € L,
—~{it,0pe , o
- Dl g5),0L )f_'lllj (zjc) _ irm Dlen_y,00 )flcz; (zlﬂ)
2L—{5) =0 op—riy! 2L (13 —0 ay.p!
#1451 €T 153 tar Zn—{1 €101y o

uniformly on bounded proper subpolysectors of Sze.

icm

Strongly asymptotically developable functions 237

It turns out that TA'(f), under these first order conditions, determines
TA(f) uniquely. Indeed, the case n = 2 is obvious; otherwise, let J be a
subset of N consisting of at least two elements, and let ey € N/. Choose
j € J; then f,, can be recovered as

(-g5p00ed £ (2
@) fayler)=  Gim DT ey (2

Zr~{51—0 ay_qiy!
2r-131€T7-44)

3 ZJe ESJ':i

Ty_¢;3 being a bounded proper subpolysector of S 7-{5}- In fact, if we con-
gider a family
F'={fim € A(Sss):j € N, m € N}

under the previous first order coherence conditions (henceforth, we will say
that 7' = {f;m} is a coherent first order family), the relations in (2) define,
with no ambiguity, a function f,, € A(S.), and we may construct a family
F = {fa,} that, by Proposition 3.1 applied to the functions Fim., is seen to
be coherent. So, the Borel-Ritt problem may be rewritten as follows:

Given o coherent first order family F', prove the eristence of a function
I e A(S) such that TA'(f) = F'.

Second approach. Consider the family of approximate functions for f &
A(S), App(f) = (Appo(f))acw . Of course, the knowledge of TA(f) entails
that of App(f); the converse is also true, since, for § # J € N and ay ¢ N/
we have, from the coherence conditions,

DUarOIIApDiy s 1,050 ()2, 20)
ch-!

fas(25)= zﬁlgo
zy€Ty
Ty being a bounded proper subpolysector of Sy. Next, observe that, for
every «x € N*, we have App,(f) € Ag, where _
Ag = {g € A(S) : there exists h € A(S) with g = App,{(h)}.
Moreover, if a, 3 € N* and 8 < e, a straightforward calculation gives

Apps(App,(f)) = Appg(F),
and so, if we set P = ][], cpm Aa; then App(f) € D, where
D= {{ga)agn € P :if 8,76 N" and 3 <, then Appy(gy) = gs}-
Conversely, if we begin with (ga)aen= € D, we may construct a family
F = {fa, € A(Ss) 1B J C N, ay € N} by defining

foy (2ge)= lim D10 g 1,050 (20, Zre)
g o) =

zy—0 CI!J!
zs€Ty

and it may be easily proved that F is coherent. Hence, our problem may
also be expressed in these terms:

H

H
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Given a family T € D, does there exist a function f € A(S) such that
App(f) =1°¢

We shall answer the problem in the affirmative in this second approach,
while the first one will come into play in the last section.

Define 4 : A(S) — D by 9¥(f) = App(f). Sclving the problem amounts
to proving the surjectivity of .

For each ex & N", equip Ay C A(S5) with the subspace topology. Then
Ay is a Fréchet space. P = [loen Aa is given the product topology, and
D C P the subspace topology. Again, D is a Fréchet space.

The map 9 : A(S) — D is continuous. Indeed, it suffices to prove that
for every o € N*, the map %, : A(S) — A, defined by

Palf) = Appa(f), [ e A(S),

is continuous. Suppose a sequence {f;}72, C A(S) converges to g € A(S)
and {App, (fi)}2, converges to h € Ay; then the continuity of the map
from A(S) to A(Ss<) sending f to fo, implies that

ApPpa(9)(2) = lim App,(fi)(z}, =€

Since the convergence in A, assures the pointwise convergence, this last
limit equals A{z), and we conclude with the Closed Graph Theorem.

We may then apply the following result (see [Ho, Chapter 3, §13, Propo-
sition 3 and its Corollary, pp. 263-264]): % is surjective if and only if its
transpose ‘4 : D' — A(S)’ is injective and *¢(D') is o (A(S)', A(S))-closed
in A(S)'. Also, * is injective if and only if 1 (A(S)) is dense in D.

To prove the density, let Z = (fa)aenr € P. A neighbourhood V of 7 is
the product of neighbourhoods V, of f, for each o € N where V, = A,
except for finitely many multiindices, o, ..., ay,. Consider the multiindex

Qg =y +... + ay € NT,

and the function fu, € Aq, C A(S). Since oy < g for [ = 1,...,m, we
ha‘ve Appaz (fao) = faz’ a'nd 50 ¢(fﬂo) = (Appa(fao))chN“ S V' Hence: tq/)
is injective.

To prove that *¢(7’) is weakly closed in A(S)', the following three results
are needed.

ProposiTION 4.1. Let L € A(S) belong to the weak closure of t(D).
Then

m Ker(1a) C Ker(L),

acl» ]
e, if f e A(S) is such that App,(f) =0 for all o &€ N", then L{f) = 0.
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Proof Let f & [ e Ker(3a). For p € N, p > 1, consider the weak
neighbourhood V,, of I,
V= {M € A(S) : |M(f) - L(f)| < 1/p}.
Since VpMtih(D') #£ 0, there exists & € D' such that [*9(&,) (/) L{F)| < 1/p.
As D is provided with the subspace topology of P = [],cpn Aa, we have
Pl = EBaeNn AL, C D', and it makes sense to define " Doen Az — A(IY
by

W) ="Plelp) =*ypoult), te D AL,
N
where 1 represents restriction to D of continuous linear functionals defined
on. P. By the Hahn-Banach theorem, u is surjective. Thus, there exists
T € P’ = Puenn AL such that u(n,) = £,. Then

J("?p) = tTI') o .‘-5("71:) = tw(fp)
We may write, for a suitable ag € N, p = EaeNn a<ap Mo T € AL For
g€ A(S), o
$(ne)(g) =" 0 p(06)(9) = “Y(nalp)(9) = 1alp 0 ()
= NalD((APPa(9))aenr ) = Na(APPalg)) = N © Palg)-
Since 1o (f) = 0 for all ct, we see that for each p e N, p > 1,
LA =20 = 3 e wal )] = 17 = Blme) )
a<og
= |L(f) = (&) ()] < 1/p,

and hence, L(f} = 0. u

PROPOSITION 4.2. Let L € A(S) have the following property: If § €
A(S) and App,(f) = 0 for all & € N*, then L(f) = 0. Then there exists

re N, r>1, such that if f € A(S) and App,(f) =0 for all & € N with
|| < 7+ 1, then L(f) = 0.

Proof For j € N, consider a sequence of bounded proper subsectors
of 54, {Tjr}ren, such that:

(i) Tj» is a bounded proper subpolysector of Tj ,.1, r € N.

(if) If K is a compact subset of Sj, then there exists r € N such that

(ili) Ty, has nonempty interior.
For r € N, define T}, == [ ;e 5 Tjr, and let p, be the seminorm on A(S) given
by

pe(f)=  sup sup 1(z) - Aip"‘(f)(z) .
cENt, 0<|al<r 2€Ty z
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The increasing sequence {p, }ren of seminorms defines the topology of A(S).
Hence, the sets Vs, = {f € A(S) : p.(f) < &}, r € N, § > 0, form a
fundamental system of neighbourhoods of the origin in A(S), and given
¢ = 1, there exist § > 0 and r € N such that, if f € V5, then [L(f)| < L.
Notice that Vs C Vs if r’ > r, so that we can assume, without loss of
generality, that r > 1.

Let g € A(S) be such that App,(g) = 0 for all &« € N* with || <741
We will prove that L(g) = 0 by constructing a sequence {gix}fr; < A(S)
such that L{gz) = L{g) for all k, and limk_,c L{gx) = 0.

For o with jo S r 41, there exists Cq r > 0 such that

g(z)

(3) SUp | =2

z€Tr

< Clar-

The following fact can be easily proved (cf. [Co]): given a sector U in C with
vertex at 0, there exists a holomorphic function g : U — € satisfying:

(1) sup,ep |8(2)] < o0;
(ii) for each j € N,

IO NP () 3

P = A

(iii}) there exist H, R > 0 such that for z € U with |z} > R, we have
|8(=)] < H/l=|"".

Without loss of generality, we may assume that the sectors S;, 7 =1,...,n,
have the positive real semiaxis as their symmetry semiaxis. Then we can
consider a function 3 as above, holomorphic in a sector U of C, such that
S;cU,jeEN. Definey: 5 —Chy

vy =1- ("] Blz) -1 = > —)**[]8()

JEN PEJCN Jed

< 005

for z = (#z1,...
satisfies:

(") sup,es [7(2)] < 1+ T jen(l+sup, eq; 10(2;)]) < o0
(ii') for every a0 € N,

,2n) & S. Then + is obviously holomorphic in S, and it

. z)—1 -1
lim %‘ =0 and sup lgf)a——‘ < oo,

for I € N; hence v € A(S9).
For k ¢ N, k > 1, we define the functions
Te(2) =v(kz), gu(2) =m(2)g(z), =z€85.
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Ifx e N" and [ € N, we have

sup | ) = Ara()(2)| 1 7s(2)g(2) — g(2) + 9(2) — Appale)(2)

2€Ty z= 2Ty =
z)—1 — A
< sup |g(2)| sup %‘ + sup |92) = APPa(9)(2) ,
z&T) zET, z 2ETy zo

where we have used (ii'). So, gr € A(S), k > 1, and App,{gx) = App.{9),
a € N", which leads to L{gz) = L(g), &k = 1.

Next we prove that for every o € N* with |arf < r there exists a constant
Cp(e) > 0 such that

9x(2)

zﬂ

Cola)
R
whenever k > R? (R being the constant introduced in (iii)).

Fix o € N* with |a| <r,andlet Z®=a+e;, je N. As[a|=la|+1 <
r+ 1, by (3) and {i') we see that for every z € T},

sup
2Ty

gr\® i z e
z(a) = ’“(z)a() <G ()|z:|<ocm|zjl
If |2;] < 1/vk for any j € N, then
gx(z) 1 1 Cy(ex)
< . < e r ) < =L
s CrCote \/E —Ow(%aﬁcca+ » }\/E = /R

If |z;| > 1/& for all j € N, suppose that k > R?. We have [kz;| > vk > R,
and so

B(kz)| < Hf bz
On the other hand, [2%] = [T,y |2;|%7 > (k7}/2)2ttan = k172, Ap-
plying again (3) and the definition of 7, we may write

gx(2) =ﬁwk(z)g(z)| Oor| ||’Y(kz)|

<2 S (TLste)) < 25 3 (II o)

JCN jel JCN
J#Q
H#* ( - 1)H.Cy,  Cola)
SCO'P Z = == t
’ ~la|/2p(r+1){#1)/2
JCN,J#B k=il e \/E \/E

because (r+ 1)(#J) — o] = r+1—|af > 1, with Hy = maxgescn H#J,
Therefore, . there exists Cole) = max(Ci{e),Ca(e)) > 0 such that, if
k> R?, then :
ge(7)| . Coley

z NI

z&Th
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and thus,

gr(2)

maxoglajgr Cola) — Cp
pr(gr) = sup sup pors = —7=

0<|ar|<r z€T7 vk vk

or, in another way, p,(k*/“gr) < Co/k*/4, k > R?. There exists k1 € N with
k1 > R2? such that if k > ky, then p,(k"/%gy) < 4, therefore |L(k*/4ge)| < 1,
and L(g) = ].lmk_.,oo L(Qk) == 0 | |

The existence of the natural number r in Proposition 4.2 ensures the
existence of a multiindex 8 € N* (e.g., 3= (r+1L,r+1,...,r +1)) such
that if f € A(S) and Appy(f) = 0 for all & € N* with o < 3, then
L(f)=0.

PrOPOSITION 4.3. Let L € A(S) be such that there exists 3 ¢ N™ with
the following property: L(f) = 0 for every function f € A(S) such that
App (f) = 0 for all & € N* with e < 3. Then there ezists a functional
H € D' such that L = H o1.

Proof. Consider an arbitrary function h € A(9). The function & given
as

h(z) = h(z) — Appg(h)(z), z€ 5,
is in A(S), and for all y € N* with v < 3 we have

App, (k) = App,,(h) — App,(Apps(h)) = 0,

so that L(k) = 0, ie., L{h) = L{Apps(h)) for every h € A(S). Define
H :D — C given by

H((fﬂ)ﬂEN”) = L(f.ﬁ)a (fa)aEN“ eD.

The natural injection from D into P, the projection from P to Apg, and
the natural injection from Ag into A(S) are continuous mappings; hence
H € D'. On the other hand, for f € A(S),

(H o ¢)(f) = H{(Appa)aer-) = L(Appg(f)) = L(f),

as desired. u

The last three propositions allow us to deduce that *4(D') iy weakly
closed in A(S)’, and hence, the surjectivity of ).

5. A new Borel-Ritt interpolation problem. In this section we
prove the corresponding Borel-Ritt theorem in the space B(S) of holomor-
phic functions on an unbounded polysector S of C" whose derivatives are
bounded on unbounded proper subpolysectors of S. Section 3 may be re-
peated word by word for B(S5), just changing bounded proper subpolysectors
of 5 to unbounded ones. So, elements of B(S) are strongly asymptotically
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developable at 0 in S in a somewhat different sense; having this in mind,
we use the same phrasing in this section.

The Borel-Ritt interpolation problem is stated as follows:

Given a coherent family F = {fo, € B(Sse) : 0 £ J C N, ay € N/},
does there exist f € B(S) such that TA(f) = F?

The main difference between the settings in A(S) and B(S) is that,
whereas in the former the approximate functions for an element remain in
the space considered, in the latter this need not to be so (see the situation
in dimension one, in which approximate functions are polynomials). This
makes it impossible to use the second approach (see Section 4) to solve the
present problem. Instead, we adopt the first one, based on coherent first
order families, .

For each j € N and m € N, define Bj,, = B(S;:), provided with the
natural topology. Then B;,, is a Fréchet space. Denote by P the product
space || cn men Bim, endowed with the product topology, and let D be
the subspace of P consisting of coberent first order families ' = {f;m}.
The subspace topology makes T a Fréchet space. The map v which sends a
function f € B(S) to its first order family TA'(f) € D is continuous, since
so are the maps ,, 7 € N, m € N, sending f € B(S) to fjm € Bjm.

Our aim iz to prove that 1 is surjective; we apply the same argument
as in the previous section. Due to the way D and its topology have been
defined, 1/(B(S)) is dense in D if we prove the possibility of interpolating
finitely many elements of a family in D (in fact, in a “continuous” way, which
will be decisive later on). This will be done in Proposition 5.3, after two
auxiliary results. The first one is the one-dimensional Borel-Ritt theorem in
this context.

THEOREM 5.1. Let § be an unbounded sector of C with vertex at the
origin. For any sequence {a,}5%, of complex numbers, there ezists a holo-
morphic function f: 5 — C such that for every proper subsector T of 9,

Fl2) =T 0

Fi

sup < oo, meN,

=T

In this situation, we write f ~g > o0 @nz™.

Proof. It is easy to reduce the problem to the sector S = {2 : |arg(z)|
< m/4}, By the classical Borel theorem, we find ¢ € C*°(R) with compact
support such that ¢™{0) = a,, n € N. Then the function

o0
F(z2)= S e Hg(tydt, =ze€S,
i
is holomorphic in 8, and f(z) = #~*F({z™!) solves the problem in S, as can
be seen by taking § = 7/4 and ¢ = 0 in [Ol, Chapter 4, §1.1, p. 106]. =
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LEMMA 5.2. Let n € N, n > 1, and N == {1,...,n}. Let J be a nonempty
proper subset of N, f € B(Ss) and g € B(Ss) with TA'(f) = {fjm} and
TA'(g) = {gm}. Then fg € B(S), and if TA'(fg) = {Ajm} then

him(25e) = { Fim(zgogmelg(zs) o 7€ J%
JmALiE = gjm(ZJ_{j})f(ZJc) 'l)f j e J.

PROFOSITION 5.3. Let 8 be a polysector of C* with vertex at 0. Then:

(i) Given F' = {fim} € D and p € N, there exisis F' € B(S) such that
if TA'(F) = {Fym}, then Fim = fim, j=1,...,n, m=0,1,...,p.

(ii) Let {Fitrew C D converge to 0, where Fy = {fjmx}, k € N. Given
p € N, there exists a sequence {Fytrew C B(S) converging to O such that
Zf TAI(FR:) = {ij,k}a k€ N: then ij,k = fjm,ka Jj=1L..,nm=
0,1,...,p.

For a better understanding of the procedure, and to get rid of cur-
bersome notation, we limit ourselves to the case n = 2. The proof for an
arbitrary dimension is analogous.

In the two-dimensional case the statement is as follows: Let 5 = 8§, x 8,
be a polysector of C? with vertex at the origin.

(i) Consider a coherent first order family 7' = {f, € B{(51), gm €
B(S3) : n,m &€ N}, i.e., for every m,n € N, and any proper subsectors 7}
of 51 and 75 of Sz, we have

m) n)
Q ti 208 gy I
z—+ m! w—0 nl
zE€Ty wedy

Then, given p € N, there exists F & B(S) with
TA'(F) = {hp € B(51), Im € B(S2) : n,m € N},
satisfying
b =fny lm=gm, mnm=01...p
(ii) For k& € N, consider coherent first order families
Fr =A{fax € B(SL), gmx € B(S2) : n,m € N}

such that {F}ren converges to 0 in D. Then, given p € N, there exists a
sequence {Fj bren C B(S) converging to 0 such that if

TA'(Fr) = {hnk € B(S1), bnp € B(S2) :n,me N}, keN,
we have hpx = fo g a0d ;g = gmp, n,m=0,1,...,p, k €N,

For brevity, we write {fn,gm} instead of {f, € B(S1), gm € B(S:) :
n,m € N}. The proof of {i) is carried out in two steps. In the followmg,
T =T1 x T; denotes an arbitrary proper subpolysector-of .
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STeP 1. We will obtain a function F € B(S) such that if TA'(F) =
{hn,lm}, then by = fo. n = 0,1,...,p, and Iy = go. Indeed, by The-
orem 5.1, we can consider, for j = 0,1,...,p, a function a; € B(S») such
that oy (w) ~s, wi. Define G; : § — C by Gj(z,w) = fj(z)aj(w) (z,w) € 5.
According to Lemma 5.2, G € B(S). Let TA" ) = {Pnjrim,i} By the
choice of ), for z & 51, we have

©Om) g,
hj(2) = lim DG (2 0)

w0 nl
wETy

where dy ; equals 1 if n = j and 0 if n # j. Hence, hy,; = 0if n # j, and
hj; = f;. The function G = Y.X_ G; belongs to B(S), and if TA'(G) =
{Hpn, Ly}, it is clear that H, = 0 for n > p, and H, = f, forn < p.

Let By € B{S51) be such that fy(z) ~g, 1, and define M : § — C by

M(z,w) = Bo(2)(go(w) — Lo(w)), (2,w)€S.

By Lemma 5.2, M & B(S). If TA'(M) = {H,,, L.}, then, according to (4)
and the coherence conditions for the family TA'(G), for n <p and z € S;
we have

== fj(z)(sﬂ,ji

DO M (z,w) g (w) — I {w)

Hulz) = ul)imr% n! = Folz) ulﬂ% !
w&Th wETh
— () lim (fale) — o)) = O
zZ€TY

on the other hand, by the choice of Gy, for every w € 53 we have
Eofew) = lim M(z,w) = (go(w) — Lo(®)) 1mn fo(2) = go(w) — Lo(w).
.:ET1 z€Ty

The additivity of first order families allows us to conclude that the function
F=@G+ M € B(S) is a solution for the first step.

STeP 2. To get the result mentioned, we use recurrence, assﬁming that
there exists G € B(S) such that if TA'(G) = {Hy, Ln}, then H, = f, if
n<pand Ly =gm fm<p—1

Consider 3, € B(,5’1) such that B,(z) ~g, 27, and define M : § — C as

M(z,w) = )(gp(w) Lp(w)), (zw)es.

Lemma 5.2 again yields M € B(S); say TA' (M) = {Hy, Lm }. Because of (4)
and of the coherence conditions for TA'(G), for n < p and z € §1 we have

D(D’”)M(z,w) _ gg)(w) — Lg)(w)
T = fp() lim Hmt O

Hu(z) = lim Y

w0 n!
weTs weTy

= p(2) lim (fal2) — Ha(2)) =0,

z&Ty
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whereas, from the choice of 3,, for m < p and w € Sz we have

Dm0 M (2, w)

Lon(w) = lim, m!
€Ty
()
= (Qp(w) - Lp(w)) :151_1_% £ T = (gp(w) - Lp(w))5-mp-
zeTy

The function F' = G+ M & B(S) is the solution we were looking for.
(i1) We again divide the proof in two steps.

STEP 1. Our aim is to show the existence of a sequence {F}, }rex C B(S)
converging to 0 such that if TA'(Fy) = {hnk, lme}, k € N, then hp g = fp ks
n = 0, 1,...,p, and lf},k = gdo,k-

For j = 0,1,...,p, consider o; € B(Ss) such that o;(w) ~s, wf, and
define G;r € B(S) by Gir{z,w) = fir(2)a;w), (z,w) € §. We claim
that {Gjk}ren converges to 0 in B(S) for j = 0,1,...,p: for every proper
subpolysector T'=T} x T of 5 and every multiindex = {7y, 72) € N?,

Qra{Gix) = swp |DVGia(z,w)| < sup |73 (2)] sup [a]? (w)]
z2€Ty weTy

Z,w

= C(T2, 5,¥2) Q13 7 (Fin)-

As {fjx}wen converges to 0 in B(S4), the conclusion is immediate.

For k € N, G, = Ef=1 Gi,k S B(S); say TA’(G;;) = {Hn,kyLm,k}- The
sequence {G }ren obviously converges to 0 in B(S). The continuity of the
map that sends each element of B(S) to the corresponding element of its
first order family now yields the convergence of {Lp s }ren to 0 in B(Ss).

Let 8y € B(S1) have 8p(2) ~g, 1, and define M;, € B(S}, ke N, by

Mi(z,w) = Bo(2)(gox(w) — Lop(w)), (2,w)€ 8.
‘We have

Qry(My) = sup [DYMi(zw)| < sup |63 (2)] sup |(go,x—Lo k)" (w)]
(zw)ET zeTy w&Ty

< C(Ty, N Q1,7 (G0,k) + Qe (Loi))-

As {goktren and { Loz }ren converge to 0 in B(S,), also { My hren converges
to 0 in B(S). So, the sequence {Fj}ren defined as Fyp = G + My, € B(9),
k € N, converges to 0 in B(S). The proof of the first step of (i) shows that
the rest of the statement holds.

STEP 2. We use an induction argument. Assume therefore that there
exists a sequence {Gi}ren of elements of B(S) that converges to 0 and,
if TA’(G;‘,) = {Hn,k;Lm,k} for & € N, then Hop = fag ifn < pand
Lo = gm,k if m < p— 1. Notice that {Lp}ren converges to 0 in B(Sz).
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Take 3, € B(S1) with 8,(z) ~g, 2P, and define My, € B(S), k € N, by
Mk(z:w) = ﬁp(z)(gp,k(w) - Lp,k(w))i (Z:(’J) SR
We have

Qry(Mi) = sup [D¥My(z,w)| < sup |87 (2)| sup |(gp,k—Lyp.) ™ (w)]
(z,w)ET zETy weT,

< (T, ) (@112 (gp.k) + Qi vz (Lipyi))-
Since {gpktren and {Lpp}rew converge to 0 in B(S:), we deduce that
{My}ren converges to 0 in B(S). Hence the sequence {Fj}ren, defined by

Fy = G+ My € B(S), k € N, converges to 0 in B(5), and the proof of the
second step in (1) leads to the desired result. m

Our last task consists in proving that *¢)(D’) is weakly closed in B(S)'.
We need the following three propositions; the proof of the first one resembles
that of Proposition 4.1, with A(S) replaced by B(S), and Ay by Bjm-

PROPOSITION 5.4. Let L be a continuous functional on B(S) that belongs
to the weak closure of *H(D'). Then

ﬂ Ker(tyjm) C Ker(L),
FEN, meN
i.e., L(f) =0 for every f € B(S) such that ¥jm(f}) = fim =0 forallj € N
and m & N.

The next lemma can be deduced from the coherence conditions for the
total family associated with an element of B(S).

LeMMA 5.5, Let f € B(S) and « € N*. Then App, (f) = 0 if and only
if fim =0 for every j € N and m € N such that o; # 0 and m < o; — 1.

PROPOSITION 5.6. Let LeB(S) have the following property: If feB(S)
is such that fjm =0 for all j € N and m € N, then L(f) = 0. Then there
ezists 1 € N, r > 1, such that L{f) = 0 for every f € B(S) satisfying
fim=0forje N and m &N withm <r. :

Proof Let g € B{S) be such that gjm, = 0 for j € N and m € N
with m < r. By the previous lemma, App,(g) = 0 for all &« € N* with
0 € |a| € r+ 1. Therefore, the assertion follows as in Proposition 4.2. m

ProrosiTiON 5.7. Let L € B(SY such that there exisis r € N, r > 1,
with the following property: If f € B(S) and fim =0 for every j € N and
every m € N with m < r, then L(f) = 0. Then therc exists a functional
H & D such that L = H c.

Proof. According to the proof of Proposition 5.3, for all ' = {g;m} € D
there exists a function G € B(S) with TA'(G)={Gjm} such that G}, =g;m
forjeNandmelN m<r.
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Define H : D — C by H(G") = L(@), G’ € D. H is well defined, as can
be easily dednced from the hypothesis imposed on L. For the same reason,
it is clear that L = H o %),

To prove the continuity of H, consider a sequence {Gj}rey C D con-
verging to 0, where Gj, = {gjm,x}, ¥ € N. This implies the convergence
of {gjm.k}ken to 0 in the corresponding spaces Bjy,. As shown in Propo-
sition 5.3, there exists a sequence {Gy}reny € B(S) converging to 0 such
that if TA'(G) = {CGyjmi}, ¥ € N, then Gjmp = gjmux for 7 € N and
m € N with m < r. So, H(G}) = L(Gr), k € N. Now, the continuity of
L implies limg o L{G) = 0, and so H is continnons. Its linearity results
immediately. m
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Simple systems are disjoint from Gaussian systems

by

ANDRES perL JUNCO (Toronto) and
MARIUSZ LEMANCZYK (Torus)

Abstract. We prove the theorem promised in the title. Gaussians can be distinguished
from simple maps by their property of divisibility. Roughly speaking, a system is divisible
if it has a rich supply of direct product splittings. Gaussians are divisible and weakly
mixing simple maps have no splittings at all so they cannot be isomorphic. The proof
that they are disjoint consists of an elaboration of this idea, which involves, among other
things, the notion of virtual divieibility, which ig, more or less, divisibility up to distal
extensions. The theory of Kronecker Gaussians also plays a crucial role.

1. Main result and overview of the proof. We deal throughout
with (dynamical) systems X=(X, B, u,T) and Y=(V,(,», 5), by which we
understand that (X, B, u) is'a Lebesgue probability space and T': X — X
is a measurable invertible u-preserving map. The purpose of this paper is to
prove:

THEOREM 1. If X is simple and Y is Gaussian then X and Y are
disjoint.

In the special case when Y has minimal self-joinings Theorem 1 was
established by Thouvenot in [Thi]. After learning of our result Thouvenot
has recently proved that the assumption that ¥ is Gaunssian can be weakened
to the assumption that Y is the time one map in a fow which is infinitely
divisible (see §3 for the notion of divisibility).

Thouvenot [Thl] has shown that every horocycle flow is a factor of a
simple flow, so Theorem 1 has the following corollary.

COROLLARY 2, The time one map of any horocyele flow is disjoint from
any Gaussian system.

By a result of [J,R], Theorem 1 is equivalent to showing:
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