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Define H : D — C by H(G") = L(@), G’ € D. H is well defined, as can
be easily dednced from the hypothesis imposed on L. For the same reason,
it is clear that L = H o %),

To prove the continuity of H, consider a sequence {Gj}rey C D con-
verging to 0, where Gj, = {gjm,x}, ¥ € N. This implies the convergence
of {gjm.k}ken to 0 in the corresponding spaces Bjy,. As shown in Propo-
sition 5.3, there exists a sequence {Gy}reny € B(S) converging to 0 such
that if TA'(G) = {CGyjmi}, ¥ € N, then Gjmp = gjmux for 7 € N and
m € N with m < r. So, H(G}) = L(Gr), k € N. Now, the continuity of
L implies limg o L{G) = 0, and so H is continnons. Its linearity results
immediately. m
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Simple systems are disjoint from Gaussian systems

by

ANDRES perL JUNCO (Toronto) and
MARIUSZ LEMANCZYK (Torus)

Abstract. We prove the theorem promised in the title. Gaussians can be distinguished
from simple maps by their property of divisibility. Roughly speaking, a system is divisible
if it has a rich supply of direct product splittings. Gaussians are divisible and weakly
mixing simple maps have no splittings at all so they cannot be isomorphic. The proof
that they are disjoint consists of an elaboration of this idea, which involves, among other
things, the notion of virtual divieibility, which ig, more or less, divisibility up to distal
extensions. The theory of Kronecker Gaussians also plays a crucial role.

1. Main result and overview of the proof. We deal throughout
with (dynamical) systems X=(X, B, u,T) and Y=(V,(,», 5), by which we
understand that (X, B, u) is'a Lebesgue probability space and T': X — X
is a measurable invertible u-preserving map. The purpose of this paper is to
prove:

THEOREM 1. If X is simple and Y is Gaussian then X and Y are
disjoint.

In the special case when Y has minimal self-joinings Theorem 1 was
established by Thouvenot in [Thi]. After learning of our result Thouvenot
has recently proved that the assumption that ¥ is Gaunssian can be weakened
to the assumption that Y is the time one map in a fow which is infinitely
divisible (see §3 for the notion of divisibility).

Thouvenot [Thl] has shown that every horocycle flow is a factor of a
simple flow, so Theorem 1 has the following corollary.

COROLLARY 2, The time one map of any horocyele flow is disjoint from
any Gaussian system.

By a result of [J,R], Theorem 1 is equivalent to showing:
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ProrosITiON 3. No factor of Y can be isomorphic to a symmetric
Cartesian power (X/K)"® of a factor X/ K of X.

Here K denotes a compact subgroup of the centralizer of X and X/K is
the factor system determined by the o-algebra of K-invariant sets.

To make use of Proposition 3 we need some handle on an arbitrary factor
of the Gaussian Y. The fact that Y is Gaussian is expressed by the existence
of an S-invariant Gaussian subspace H of Lﬁ(y) generating C, together with
a unitary operator U on H such that § = S(U) is the unique measure-
preserving automorphism of (¥,C,v) such that fo S = Uf for all f € H.
We will refer to U as the unitary underlying 5. We will always assurne that
U has continuous spectrum so that S is weakly mixing. If F is a U-invariant
subspace of X then the o-algebra 3(F) generated by E defines a factor of
Y which is again a Gaussian system. We denote this factor system by Yg
and we will refer to such factors as natural factors.

If V is any unitary commuting with U then the Gaussian automorphism
S(V) commutes with § = S(U). Thus if L is any compact group of uni-
taries commuting with U we may view it as a compact subgroup of the
centralizer of the system Y and so we can form the factor system Y /L. We
will refer to such factors as compact factors. Since any natural factor Yg
is again Gaussian we can combine these two constructions to form Yg/L
whenever L is a compact group of unitaries commuting with U|g. In this
way we get a large supply of factors of Y which we will refer to as classical
factors. In the special case when Y is a Kronecker Gaussian system (see §4
for the definition) Thouvenot has shown that every factor of Y is classical
(see [Th3], {Th2]). In the infinite entropy case there are many other factors.
[L,I.R,8] contains an example of a zero-entropy Gaussian with a nonclassical
factor but it seems to be a difficult problem to describe nonclassical factors
in the zero-entropy case. This problem and the problem of disjointness in
the clagss of Gaussian systems is studied in [L,P,Th].

We now use the observation that the centralizer of Y contains a Kro-
necker Gaussian (indeed, all Gaussians), which leads to the following result.

PROPOSITION 4. Any factor of Y has a countable self-joining which is

isomorphic to a classical factor of Y, and hence to o compact factor of a
Gaussion.

If we use Proposition 4 and the fact that, by simplicity, a countable
self-joining of (X/K)"® is isomorphic to a factor of XM, Proposition 3 may
now be recast in the following form.

PROPOSITION 5. No factor of X~ can be isomorphic to a compact factor
of & Gaussian.

We first consider the following special case of Proposition 5.
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PROPOSITION 6. XM cannot be isomorphic to a Gaussian.

Proposition 6 may be proved using the notion of (infinite) divisibility
which has been studied by Katok and Thouvenct. A system Y is divisible if
it splits as a direct product of two of its factors, each of which in turn splits,
and so on ad infinitum, in such a way that all the decreasing sequences of
o-algebras which arise in this way have trivial intersection. Using natural
factors it is easy to see that Gaussians are divisible. It is also easy to see
that X~ is not divisible.

However, a compact factor of a Gaussian will not be divisible so we intro-
duce the notion of virtual divisibility, which is, roughly speaking, divisibility
up to distal extension. We then show that any compact factor of a Gaussian
enjoys the property of virtual divisibility but that no factor of X" does. This
concludes our overview of the proof of Theorem 1.

2. Some notation and background material. If X = (X, B, ,T) isa
gystem we will sometimes specify it by the o-algebra B alone, or by the map
T alone, when the other data are clear from the context. Thus, for example,
it Ay D Ay are factor algebras of X, that is, T-invariant sub-c-algebras of B,
we may speak of the extension A; — Az by which we mean the extension
(X, A1, 11, T) = (X, Ag, 1, T). The centralizer of a system X, denoted by
C(X), consists of all automorphisms of (X, B, p) which commute with 7'
a.e. Whenever K is a compact subgroup of C'(X), then Z{K) will denote
the factor algebra of K-invariant sets.

We assume that the reader is familiar with the basic facts about joinings,
disjointness and simple systems (see for example [JR]). We will need the
following result about factors A of a countable Cartesian product X~ with
X simple. Tt is a special case of the theory of semisimplicity developed
in [J,L,M]. One can also prove it directly using Veech’s characterization of
group extensions ([J,R], Theorem 1.8.2). For any I C N we let B! denote the
factor algebra generated by the ith co-ordinate projections m; : (X¥, BY) —
(X,B), i € I. If A is any factor of X~ we let A denote the smallest Bf
containing .A.

PROPOSITION 2.1. If X is simple and A is o foctor algebra of XM then
A - .A is a group ertension. Moreover, for each § € C’(XN) we have

5(A) =

‘We will need some facts about extensions of various kinds. We assume
that the reader is familiar with the notions of isometric, distal and wealkly
mixing extensions. In the following proposition, A, B,C etc. denote factor
algebras of a given arbitrary system X.
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PrOPOSITION 2.2. (i) If A — C is weakly mizing and B C A then
B BNC is also weakly mizing.

(ii) If A — B — C and A — C is distel then A — B and B — C are
both distal.

(iii) If Co and C1 are independent and C; — A; are group extensions for
i=0,1 then Cy v €1 — Ay V Ay is also & group extension.

Proof. (i) can be found in [J,L,M], (ii) is standard and (iii) is easy. m

We will be dealing with a unitary operator U on a real Hilbert space H.
When H needs to be identified we write (U, H). We let C(U) denocte the
unitary centralizer of U, that is, it congists of all unitaries V : H — H such
that UV = VU. We say that U has continuous spectrum if its complexifica-
tion has no eigenvalues. We say that U has simple spectrum if it has a cyclic
vector.

We will need a formulation of the spectral theorem for real unitaries.
A finite measure o on the circle T is called symmetric if it is invariant
under conjugation, and a complex-valued function f is called (hermitian)
symmetric if f(z) = f(Z). We let L(c) denote the real subspace of L2(c)
consisting of symmetric functions. If f is a bounded symmetric function on
T then My denotes the operator of multiplication by f on Li(o).

PROPOSITION 2.3. Suppese U is a real unitary operator with simple spec-
trum. Then there exists o symmetric o such that U is unilarily equivolent to
(M., Li (). Moreover, any two bounded operators commuting with U must
commute with each other.

The following result actually holds without the assumption of simple
spectrum but this is all we shall need.

PROPOSITION 2.4, Suppose U and V are unitory operators with con-
tinuous spectrum on separable real Hilbert spaces and that V' has simple
spectrum. Then there i3 o V' € C(U) which is uniterily equivalent to V.

Proof. We may assume that V' is (M, LZ (7)) for some symmetric 7.
‘We first deal with the case when U has simple spectrum as well. Then U is
(M, L2 (o)) for some symmetric 0. Both ¢ and 7 must be nonatomic mea-
sures by the assumption of continuous spectrum. By changing e to an equiv-
alent symmetric measure we may assume that o(T) = 7(T). Then we can
find a measure-preserving isomorphism f between the nonatomic Lebesgue
spaces (T, o) and (T,7) such that f(z) = f(z). Clearly, (M;, L2(o)) and
(M., L(7)) are unitarily equivalent so My is the desired element in C/(U).

The general case follows easily by decomposing the space H on which I/
acts as an orthogonal direct sum of cyclic subspaces. m
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3. Divisibility. A splitting of an arbitrary system Y is a pair of factor
algebras (Co,C1) which are independent and together generate C. We say
that Y is (infinitely) divisible if it has a system of factor algebras

o)
{cs:6e o117}
n=0

(we adopt the convention that {0,1}° = {#} consists of the “empty se-
guence”) such that

Cyp=C, (Cs0,Cs1) is a splitting of Cj for all &,
and
ﬂC’ml,,_,,mn is trivial for all 2 € {0, 1}".
I

This notion has been studied by Katok and Thouvenot (private communica-
tion), who have constructed an example of a divisible system with discrete
spectrum and divisible rank-1 smooth systems which are weakly mixing.
The following result is well known. We include a proof for the reader’s con-
venience and to facilitate the proof of Theorem 3.2.

THEOQREM 3.1. Any Gaussian system is divisible.

Proof. Choose a system {45 : 6 € |J,{0,1}"} of Borel subsets of T
such that Ay = T, {Aso,Asz} is a partition of As for all 4, and for each
z € {0, 1}, N, Aug a1, i either empty or a singleton. Let Es denote the
spectral subspace of U corresponding to As and define C5 = Z(Es).

Since U has continuous spectrum each decreasing intersection of Ej's is
trivial. It follows easily (by the zero-one law) that each decreasing intersec-
tion of Cs’s is also trivial. Thus the Cs form a system of factors satisfying
the definition of divisibility. m

To handle corupact factors of a Gaussian we introduce the following
weaker notion, in which the two factors required for a splitting must still
be independent but need not generate, rather they must generate a factor
which is within a distal extension of the full o-algebra. Here is the formal
definition.

A virtual splitting of Y is a pair of factor algebras (Ap,.4;) such that

{i) Ap L Ag,

(i) the extension A — Ap V 4, is distal,

(iii) the extensions 4 — 4y and A — A; are weakly mixing.

(Note that the last condition is automatic in the case of a genuine splitting. )
We say that Y is virtuelly divisible if it has a system of factor algebras
{As: 8 €J,{0,1}"} just as in the definition of divisibility except that now
(Aso, As1) is only required to be a virtual splitting of A5 for each 4.
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THEOREM 3.2. Any compact factor of e Gaussian system Y is virtually
divisible.

Proof. Let L ¢ C(U) be the compact subgroup determining the factor,
so the factor algebra is A = I(L). Let C5 = I(F;) be factor algehras of
Y as defined in the proof of Theorem 3.1. Recall that the F; are spectral
subspaces of U and hence are invariant not only under U, but also under
each V € C(U).

Now let

As=C;NA={CeCs:IC=Cforall{e L}

Ifl e Land ! = S(V) with V € C(U), then V(E;s) = Ej;, which implies
that [{Cs) = Cs. Thus the restrictions of the s in L to Cs form a compact
subgroup L; of the centralizer of the factor system Cs and A is the fixed
algebra of Ls. This means Cs — A; is a group extension.

Fixing § we have C5y L C5; and Cso — Ags and Oy — Asy are both
group extensions. It follows that Cs — Azy V 4s is a group extension, so
As — Aso V Ajsy is distal {in fact isometric). Finally, Cs — Cj; is a weakly
mixing extension so A; = ANC; ~ ANCs = Agi is weakly mixing for
t=0,1. m

THEOREM 3.3. If X is sirnple then no factor A of the countable Cartesian
product XN is virtually divisible.

For the proof of Theorem 3.3 we will use the following lemma. Recall the
notation of Proposition 2.1.

LEMMA 3.4. Suppose that A = BN, so A = T(K) with K a compact
subgroup of C (XM). Suppose further that (Ag, A1) is o virtual splitting of A
such that A; = BY. Then {Iy, I} is a partition of N and k(B%) = B% for all
k € K.If K; denotes the restriction of K to BY then A; = T(K;) = ANBL.

Proof. Since Ay and A; are independent and Zi - A; are group ex-
tenstons, we can conclude that .Ag and A; are independent as well, by [J,R],
'Theorem 5.1. This means that I and I are disjoint. Since BY — A is a
group extension and A — Ag V A; is distal, BY — Ay V A; is again distal.
It follows that BY — B v Bt is also a distal extension, which certainly
implies that Ip UL; = N. Sirfe each k € K fixes the algebra 4; (in fact,
fixes it setwise), k also fixes .A; (but no longer setwise).

Finally, to see that B N A = A; note first that 4; ¢ B% N A. Since
BY% — A; is a group extension, B N A — A, is an isometric extension.
On the other hand, A — A; is a weakly mixing extension so B% A — A,

is also weakly mixing. Thus B% N4 — A; is both isometric and weakly
mixing, which forces it to be trivial. m
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Proof of Theorem 3.3. There is no harm in assuming, as in Lemma 3.4,
that A = BN. Suppose we had a system of factors A; as in the definition of
virtual divisibility. Applying Lemma 3.4 to the initial splitting (Ag,.41) we
obtain compact subgroups K; of C(B%) such that 4; = 7(K;). This means
that Lemma 3.4 can be applied again to the splittings of Ay and A;. Pro-
ceeding inductively we obtain subsets I5, § € |, {0, 1}", such that {Is0, 151}
is a partition of I5 for each §, K fixes each B% and A; = AN B,

Now choose an = € |J {0, 1}™ such that, if we set §, = (z1,...,%n), then

J =1, #0.

{In other words, some decreasing intersection of the /5’s must contain a
point of N.) Since each k € K fixes each B%n, it fixes BY as well and the
restriction Ko, of K to BY is thus a compact subgroup of C(B7). It follows
that the nontrivial factor T{K ) is contained in As, for all n, contradicting
triviality of the intersection of these algebras. w

4. Kronecker Gaussians and proof of Theorem 1. The Y is called
a Kronecker Gaussian if its underlying unitary U has simple spectrum and
its spectral type is a measure supported on a subset ¥ U E where F is a
Kronecker subset of the upper half-circle. We recall Thouvenot’s result that
every factor of a Kronecker Gaussian is classical. Although Kronecker Gaus-
sians are very special we can use Thouvenot’s result to obtain some weak
but nonetheless useful information about factors of an arbitrary Gaussian.

THEOREM 4.1. If Y is Goussian and 7 is o foctor of Y then Z has a
countable ergodic self-joining which is isomorphic to a classical factor of Y.

Proof. Let (U,H) denote the underlying unitary of Y. Suppose the
factor is given by a factor algebra A C C. By Proposition 2.4 we can find a
Kronecker Gaussian R = S(V) with V &€ C(U). Now let

A=\/ R'(A),
i€Z
a o-algebra which is both 9- and R-invariant. Since the action of S on each
Ri(A) is isomorphic to its action on A, the system
Z=(Y,AvS8)

is a countable self-joining of Z. Since Ais R-invariant, by Thouvenot’s result
Z must be of the form =
Z=Cg/L
for some V-invariant subspace E and some compact subgroup L of C(V|g).
Since V has simple spectrum and U commutes with V', B must be U-
invariant as well as V-invariant (Proposition 2.3). Since V| g again has simple
spectrum, a similar argument shows that L € C(U|s), so we are done. =
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We now have all the tools needed for the proof of Theorem 1. As observed
in §1, if X and Y are not disjoint then Y has some (X/K)"® as a factor. By
Theorem 4.1 it follows that (X/K)"® has a countable ergodic self-joining Z
which is & classical factor of Y. A classical factor of Y is a compact factor
of some Gaussian factor of Y, so it is virtually divisible by Theorem 3.2.

On the other hand, since (X/K)"C is a factor of X", a countable er-
godic self-joining of (X /K )™ lifts to a countable ergodic self-joining of X",
which must be isomorphic to X¥, by simplicity of X. This means that Z
is isomorphic to a factor of X¥ so Theorem 3.3 tells us that Z cannot be
virtually divisible. This contradiction completes the proof of Theorem 1. »
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A theorem on isotropic spaces
by
FELIX CABELLC SANCHEZ (Badajoz)

Abstract. Let X be a normed space and Gp{X) the group of all linear surjective
isometries of X that are finite-dimensional perturbations of the identity. We prove that if
Gp(X) acts transitively on the unit sphere then X must be an inner product space.

1. Introduction and statement of the result. During the thirties
some people studied isotropic spaces. These are normed spaces in which
the group of linear surjective isometries acts transitively on the unit sphere.
Clearly, inner product spaces are isotropic. That the converse is also true for
finite-dimensional spaces wag proved by S. Mazur [7] in 1938 (see also [2]):

THEOREM 1. Isofropic finite-dimensional normed spaces are euclideon
(in the sense that the norm comes induced by on inner product}.

There are, however, isotropic normed spaces that are not isomorphic to
inner product spaces (this was discovered in the sixties by A. Pelczynski and
S. Relewicz [8)): for instance, if u is a homogeneous non-o-finite measure, the
space L,(pu) is isotropic for every finite p (see also [6]). These examples are
necessarily non-separable. Also, isotropic separable normed (not complete)
non-euclidean spaces are known: for example, the subspace of all functions in
Lyp(—00, 00} having bounded support, In spite of these examples the Mazur
problem on the existence of a separable isotropic Banach space which is
not a Hilbert space remains open [3]. (A recent survey on this problem and
related topics is [4], which contains an extensive bibliography.) In this note,
we generalize Mazur’s result replacing the hypothesis on the dimension of
the space by a wealker one concerning the structure of the isometry group.

So, let X be a (real or complex) normed space with unit sphere S{X).
We denote by G(X) the group of all isometric automorphisms of X. An
operator T : X — X is said to be a finite-dimensional perturbation of
the identity if the difference 7" — Id is a finite rank operator. If we write
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