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Complexifications of real Banach spaces,
polynomials and multilinear maps

by

GUSTAVO A. MUNOZ (Madrid),
YANNIS SARANTOPOULOS (Athens)
and ANDREW TONGE (Kent, Ohio)

Abstract. We give a unified treatment of procedures for complexifying real Banach
spaces. These include several approaches used in the past. We obtain best possible results
for comparison of the norms of real polynomials and multilinear mappings with the norms
of their complex extensions. These estirmates provide generalizations and show sharpness
of previously obtained inequalities.

1. Introduction and notation. Many of the classical Banach func-
tion spaces exist in real- or complex-valued versions. This is the case, for
example, with the Lp(u)-spaces and the C(K)-spaces. These spaces are ac-
tually Banach lattices, and this extra structure makes it easy to construct
the complex version from the real version. If E is a real Banach lattice, the
product E x E can be made intc a complex Banach space in a natural way.
Addition is defined by

(,9) + (uw,v) = (z+u,y+v) Yo,yuveEE,
scalar multiplication is given by
(a + b}z, y) = (az — by, bz +ay) Ve,y € E, Ya,b e R,
and, thanks to the functional calculus, the norm can be specified by
1w = Il + 2l Yo,y € B
For more details, consult [11, p. 326].

It is straightforward to verify that, if E is a real-valued L,(u)-space
or C(K)-space, this complexification procedure yields the corresponding
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2 G. A. Mufioz et al

complex-vaiued space. It is also clear that the procedure is totally depen-
dent on having a lattice structure available. Now, it is sometimes desirable
to be able to construct a complexification of a general real Banach space.
Cne situation where this is useful is in the investigation of holomorphic
mappings, polynomials and multilinear mappings. Many results depend on
techniques special to the complex numbers, but if it is possible to find a way
to extend polynomials or multilinear mappings on a real Banach space to
a complexification without losing control of norm, then results for complex
Banach spaces can be interpreted in a real setting. Techniques such as these
have been used by several authors; see A. Alexiewicz and W. Orlicz [1],
C. Benftez, Y. Sarantopoulos and A. Tonge [6], J. Bochnak [8], J. Bochnak
and J. Siciak [9], and A. E. Taylor [31].

It is interesting to note that several different complexification proce-
dures were used in these papers, and that these in turn are different from
the procedures adopted by J. Lindenstrauss and L. Tzafriri [18] and J. Wen-
zel [35].

In this paper we give a unified treatment of complexification procedures.
The topic is trivial on the algebraic level, but it turns out that there is
no completely satisfactory analytic theory. We show, for instance, that al-
though a judicious choice of complexification procedure allows the extension
of continuous multilinear mappings on real Banach spaces to their complex-
ifications without change in norm, no such extension is generally possible
for homogeneous polynomials of degree greater than 3.

We obtain optimal results on the comparison of the norms of homoge-
neous polynomials on real Banach spaces and the norms of their complexifi-
cations. In this way we are able (in Proposition 16) to generalize a classical
polynomial inequality due to V. Markov [22}; see also C. Visser [34] and
H.-J. Rack [25], [26]. We also show how the classical results can be used
to make progress on a conjecture made by L. Harris in his commentary to
problem 74 in The Scottish Book [20]. This deals with optimal constants in
another extension of Markov's inequality; see Proposition 17.

We note that some of the results in this paper were obtained indepen-
dently by Padraig Kirwan in his Ph.D. thesis entitled “Complexification of
multilinear and polynomial mappings on normed spaces” (National Univer-
sity of Ireland, Galway, 1997). However, Kirwan’s focus was different from
ours.

For convenience we recall the basic definitions needed to discuss polyno-
mials from E into F, where B and F' are real or complex Banach spaces.
A map P : E -+ F is a (continuous) n-homogeneous polynomial if there
is a (continuous) symmetric n-linear mapping L : E® — F for which
P(z) = L{z,...,z) for all z € E. In this case it is convenient to write
P = L. We define
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1Pl = sup{{| P(z]]| : l|l=|| < 1}.
IfL: E™ — Fis a continuous n-linear mapping we define
2N = sup{[|L(z1, ... zn)ll : [lza]l < 1,00 lea]l < 13

We let P("E; F), L(™E; F) and L3("E; F') denote respectively the Banach
spaces of continuous n-homogeneous polynomials from £ into £, the con-
tinuous n-linear mappings from E into F' and the continuous symmetric
n-linear mappings from F into F. If K is the real or complex field we use
the notations P("E), L{(™E) and £5("E) in place of P("E; K), L("E; K} and
L£L5("E; K) respectively. More generally, a map P : B — F is a continuous
polynomial of degree < n if

P=PFPy+P+...+ 5,
where P, € P(*E; F) (1 <k <n), and Py : E — F is a constant function.

2. General results on complexifications of real Banach spaces.
To be able to build a coherent framework within which we can discuss com-
plexifications of real Banach spaces, we need to be very precise about what
we mean by a complexification. To start, we work at the algebraic level.

DEFINITION. A complex vector space Eisa complezification of a real
vector space I if the following two conditions hold:

(i) there is a one-to-one real-linear map jp: F — E, and

{ii} complex-span(jp(E)) = E.

When there is no possibility of confusion we write 7 instead of jg. It
is easy to see that, up to complex isomorphism, a real vector space has
just one complexification. There are, however, various alternative concrete

descriptions, and we will focus on three of these. The first is modeled on the
usual construction of the complex numbers from the reals.

Ordered pair description of a complezrification. If E is a real vector space,
we can make F x F into a complex vector space by defining

(oY) + (u,v) = (x+ u,y + v) Va,y,u,v € B,

(C}: 'F%ﬁ)(wmy) = (a-’ﬂ—ﬁy:ﬁm‘l‘ay) Vm,yEE, VC\!,,@ER.
The map § : E — E x E, ¢ v+ (z,0), clearly satisfies conditions (i) and
(ii) above, and so this complex vector space is a complexification of E. It is
convenient to denote it by
E=EgiE
and to suppress reference to § by writing z = z + dy for the element =z =
{z,y) = j(z) +45(y). It is natural to write z = Rez and y =Im z.
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Tensor product description of a complexification. Let {e1, e3} be the nat-
ural basis for R2. If E is a real vector space, a typical element of E ®R? can
be written in the form z @ e1 + v ® es with =,y € E. We can make £ @ [R2
intc a complex vector space by defining

(z@erty®e)+(u®Res +v®es) = (z+u)@e1+ (¥ +v) ®ey
Ve, y,u,v € E,
(a+if)z@e +y®e) = (az— fy) el + Bz + ay) @ en
Ve, y € B, Vo, 8 € R,

The map j : B — E®R?, v z @ ey, clearly satisfies the complexification
conditions (i) and (i), and so E ® &% can he viewed as a complexification
of F, which we also denote hy E.

It will often be convenient to write z = z + iy instead of 2 = 2 @ e; +

y ® ez = j{z) + ij(y). Naturally, this prompts the notation z = Re z and
y = Im z.

Linear operator description of o complexification. There is a natural iden-
tification between E ® R* and L£(R?; E), the real vector space of linear
operators from R? to E. This gives us one more way of looking at complexi-
fications, which we now describe explicitly. Again, let {e1,es} be the natural
basis for R*. For each z,y € E we define T}, € L{R?; E) by

Teyler) =2 and Th,les) =y.

Notice that all elements of £{IR?; E) arise in this way.
Now L£(R*; E) can be viewed as a complex vector space by defining

Loy + Tup = Togouyto Ve, y,u,v € B,

(a+ iﬁ)Tm,y =Tow—pygotay VOYEE, Vo,f &R

The map j : E — L(R* E), £ — T, clearly satisfies the complexifi-
cation conditions (i) and (ii), and so we have an explicit representation of
L(R?; E} as a complexification of E.

When convenient we write z = z -+ iy instead of z = Tepo +iTyg =
#(x) -+ ij(y). Naturally, the notation z = Rez, y = Im » will also be used.

Natural complezifications of real Banach spaces. The plot thickens when
we turn to the question of the complexification of real Banach spaces. Even

when we impose some natural conditions on the norm, there are infinitely
many possibilities.

DEFINITION. Let E be a real Banach space. We say that a norm on the
complexification F is reasonable if

(i) |5(=)] = ]| ¥z € B,

{iv) llz + dyll = [lo ~ iyl Yz,y € E.

icm
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When E is equipped with such a norm we call it a reasonable complexification
of F.

Conditions (iii) and (iv) are modeled on basic properties of complex
numbers, namely that for all real numbers z we have |z| = |z + ¢0{, and
that, if z is a complex number, its complex conjugate % satisfies |Z] = |z|.
Other simple properties of complex numbers reappear in this new set-up.

PROPOSITION 1. Let E be a reasonable complezification of the real Ba-
nach space E. For ony z,y € E we have
lzlls < llz+iyllz ond yle < lle+ilz
Proof. By property (i),
2zlle = (= +iy) + (z — )] 5 < llz + iyl + 2 — w5
An application of property (iv) gives |lz||z < |[z+iy]l 5. The other inequality
is just as easy to prove. =

PROPOSITION 2. Let E be a reasonable complexification of the real Ba-
nach space E. For any 2,y € E we have

sup |lwcost — ysint|g
0<i< 2

< flz+iyllz < i;l(fzﬂ(nm cost —ysint||g + ||zsint + ycost| z).

0g
Proof For each 0 <t < 2m,
iz + iyl z = le*(z + i)z = [|(zcost — ysint) +i(zsint + ycost)|| 5.
Using Proposition 1 on the left and the triangle inequality on the right, we
find
lzcost — ysint||g < ||z +iyl|z < |zcost — ysintj|p + || sint + ycost| z.
The result now follows immediately. m

PROPOSITION 3. Let E be a complegification of the real Banach space E.
Among all the reasonable complezification norms on E, the smallest is given
by

lz + iyl := sup |lzcost —ysint].
o<t <2

All other complexification norms || - | on E are equivalent to | - ||v. Indeed,
for any z,y € E,
|z +dyllr < o+ gl < 2w + iyl
We omit the simple proof. Verifying that || - || is a reasonable complex-
ification norm is straightforward, and the inequalities follow at once f'rc)r.n
Proposition 2. After Proposition 10, we will give an example to show it is
possible to have |z + iyl = 2|lz + iy|/.
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The norm | - || was first considered by A. E. Taylor [21] (see also [32])
and has since reappeared in several guises. We shall refer to (F, || - |lv) as
the Taylor complexification of E.

There is a useful alternative description of {|z + iyl

(1) iz + iyllz

i

sup |[zcost — ysint|
0<t< 2w

= sup sup |p(z)cost — wly)sint
0Lt<L2m ||| g~ <1

sup v/e(z)? + @(y)*
el g <1
Taylor’s norm also appears in a very natural way when we think in terms
of Banach lattices. Recall that a real Banach space F can be viewed as a
subspace of C(Bg+), the space of continuous real-valued functions on the
weak™-compact set Bp~, the closed unit ball of E*. BEach z € E is identified
with a function f, € Cr{Bg-~) given by

f=(0) = ¢(z) Y € Bg..

Now Cg(Bg-) is a Banach lattice and so we can complexify it using the
lattice complexification norm discussed in the introduction. This induces a
norm on E which is nothing other than Taylor’s norm:

HSU“P‘?;y“Oc(BE*) - ||.fa: + i.fy”C'c(B}‘g) = H(me|2 + lfy|2)1/2||ck(313*)
= sw_(If=(0)” + £, ()

ol m= <

= sup /(@) 4 ply)*
llel gn <1

In this context, it is worth remarking that Taylor’s complexification of a
C(K)-space coincides with the lattice complexification discussed in the in-
troduction. Other natural interpretations of || - |¢ will soon be described.
For now, we focus on another feature of the Taylor complexification, namely
that it is a general complexification procedure whose definition is not tied
to any specific characteristic of the real Banach space F which is being
complexified. Moreover, this procedure allows us to extend continuous lin-
ear maps between real Banach spaces to complex linear maps between their
complexifications without increasing the norm. On the algebraic level, there
is no choice about how to extend. If L : E — F is a linear map between
the real vector spaces E and F, there is a unique complex-linear extension
L:E — F given by

L(z +iy) = L(z) + iL(y).
PROPOSITION 4. Let E and F be real Banach spaces. If L € L(E;F),
then L € L{(Z, || - ||} (B, | ) and ||Z}| = | LJ.

icm

Complezifications of real Banach spaces 7

Proof. Since L extends L, we have ||L|| > || L]l. On the other hand, if
xz,y € K, then

IL(z + i)l = |L{z) +il()llx = sup ||L{z)cost— L{y)sint|r
0<t<L2n
= sup ||L(zcost— ysint)|p
0<t L2
< [IE| sup |z cost —~ ysint| &
0gt<
= || L} ||$+w||T,

and so ||I{] < ||L||. =

Taylor’s procedure is just one of infinitely many procedures with similar
properties.

DEFINITION. A notural complezification procedure v is a way of defining
a reasonable complexification norm || - ||, on the complexification E of any
real Banach space which has the property that

(v) if E, F are real Banach spafes and I € Z(E; F), then the complex-
linear extension L : (E,{|-,) — (F, || - ||») has the same norm as L.

We say that || - || 1s a natural complexification norm on E and that
(E,] - Il) is a natural complexification of E. Further, we write || L], for the
norm of L as an element of L((E, | |.);( (F, - 1))

There are many interesting examples of such procedures which have been
used in the literature.

Ezamples of natural complezification procedures

(a) The ordered pair approach. Let E be a real Banach space. It is tempt-
ing to try to define a natural complexification norm on E @ iE by setting

np(e +iy) = (|la]l” + yll*)?, 1 <p < oo,

with the usnal modification when p = co. This attempt is doomed because
the homogeneity condition fails: only in exceptional circumstances is it true
that n, (A(z +1y)) = |Alnp(z 4 4y) for each A € C. It is also tempting to try
to get round this problem by working with

fplo+i) = sup mp(e( A, 1<poo

Indeed, i, is a norm on F for each 1 < p < oo, but unless 2 € p < oo, it
does not satisfy the reasonable norm condition (111) One more adjustment

is necessary.
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DEFINITION. Let E be a real Banach space and let 1 < p < co. For each
xz,y € E define

|lz+iyll ) = omin(1/2-1/p0)  gup (||z cos £y sin t||P+||@ sin t-+y cos t][P)/P.
0<t<2n

In the case p = oo, we simply set

flz+iyll(oc) := sup max{||zcost —ysint|, ||zsint -+ ycost|}.
ogtL2r

Notice that for each 1 < p < oo, we have
|z + iyl ) = 222 POR (3 4 dy).

A simple calculus exercise reveals that

p P\ 1 (2519(00),
oggw(|COSt| + |sint[?) {21/;;—1/2 (1<p<2).

With this in hand it is simple to check that the next proposition is true.

PrROPOSITION 5. Let 1 < p < o0. If E is o real Banach space, then
(E@14E,| - |lpy) 18 a natural complezification of E.

Note that || - ||(cc) is just another manifestation of Taylor’s norm. It is
also interesting to observe that || - [l;2) is the norm used by Lindenstrauss
and Tzafriri [18, p. 81]. We shall often denote the Lindenstrauss—Tzafriri
norm by [ - ||lur. Moreover, modulo the correction factor 1/+/2, || - /(1) is the
norm chosen by Alexiewicz and Orlicz [1].

We have already commented that Tayler’s complexification of a C{K)-
space coincides with the Banach lattice complexification. For Lg(u)-spaces,
the Lindenstrauss—Tzafriri procedure gives the Banach lattice complexifi-
cation. However, the Alexiewicz—Orlicz procedure is not natural for I (u)-
spaces. Instead, a procedure due to Bochnak [8] must be used. We describe
this soon.

Later, it will be useful to have some elementary relationships involving
the norms || - [

PrOPOSITION 6. Let 1 < p < oo and let E be a real Banach space. For
every z = x -+ iy € E|

lell < llzllay < 2772717z .
Proof First, for p > 2, an application of Hélder’s inequality gives
E sup(|z cos t - ysintf|? + |l sint 4y cost]|?)1/?
< ol/2-1/p st;p(Hm cost — ysint||P -+ ||z sint + y cost||P)L/®

= 2M2717) 2| .
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Then, for p < 2, monotonicity of the I, norms gives

ll#]l(2y = sup(||z cost — ysint|? + ||z sint + ycost)?)/2
t
< sup(||z cost — ysin#|? + |zsint + ycos t]?)P = 2V/PL 32| .
t

The other inequality is proved similarly. =

(b) Tensor product approach. We denote R? with the Euclidean norm by
I2. When E is a real Banach space we shall work only with complexification

norms on E = E @ I2. Our first objective is to show that all reasonable
complexification norms are reasonable tengoer product norms on F @ I3 in
the sense of Schatten [29]. This means that we have to show that

lz®allz = |zl - la]l Yz € B, Va3,
¥ By = - @ ) 3) == ;.
o ®bll ey = el - 1Bl Vo € B, ¥be (1) i3

This requires some knowledge of the nature of (E)* when E is a natural

complexification of F. It is straightforward to verify that, on the vector
*

space level, (E)* is a complexification of B*. Accordingly we write (E)* =
{p + i1 : p, € E*}. The duality is given by
(o + i) (& + iy) i= (p(z) — () +i(e(y) + ¥(2)) Vo,y€B.
Prorogrrion 7. If B is a reasonable complezification of the real Banach
space E, then (E)* is a reasonable complexification of E*.

Proof We define j : B* — (E)* by j{¢) = » + i0. The algebraic
properties (i) and (i) required of j are evidently true, so we turn to the
reasonable norm conditions (iii) and (iv}. First, if ¢ € E* then

1702 )~ = sup{l(e +i0)(z + i)} : |z + vl < 1}

= sup{v/p(z)? + ¢(¥)* : llz +ivliz < 1}

Since we know from Proposition 3 that Taylor’s norm is the smallest of the
natural complexification norms, it follows that

I3t By < lielie-
On the other hand,
15l 5y 2 sup{lle + i)z + 10} : flells < 1)
= sup{|p(2)] : lzll & < 1} = ¢l

This proves that condition (jil) holds for the map j.
To check condition (iv) note that if ¢,4 € E* and z,y € F, then

(@ — i) (2 +iy)| = () + () +1(e(y) — ¥())]
= [(p(z) + (y)) — i(e(y) — p(@)} = (@ + i) (= — )],
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Since ||z + iyl{5 = ||z — iyl 5, it follows at once that
o+ it 5ye = o — Wl gy m

PROPOSITION 8. Let E be a real Banach space. All reasonable complexi-
fication norms on E = E ® 1% are reasonable tensor product norms.

Proof Let z € F and & = a1ey + azes € I3. Then

rRa=mr@e +o3Re = (a1 +ia3)(zRer)

Thus, by property (iii) of reasonable complexifications,

lz@alg = [[{a1 +iaz)(z ® e1)ll5 = loy +iasl|z @ e1] 5 = llafillzlls.
Similarly, since (E)* is a reasonable complexification of £*, we find that

bz Ve eE', vhels m

o ® bll gy = el

Grothendieck {14] introduced a class of “tensor norms” which are defined
on the tensor product of any pair of Banach spaces, not just the single pair
required for the discussion of reasonable norms. If £ and F' are Banach
spaces and « is a tensor norm, we write B @, F for the vector space E@ F
equipped with the norm <. The defining properties of a tensor norm «a are
the reasonableness conditions

(a) iz ® yllmg.r = |2l|zllvlls, Vo € B, Vy € F,

(B) [l ® ¥l (Bgory = el |, Yo € B*, Yoo € F
together with the requirement that

(e} ifu: By — Ey and v: F} — Fh are continuous linear maps between
Banach spaces, then

(@ v 2(B1@aFy BawaFy) = U)o m) 1Vl oy )

PROPOSITION 9. Let F be a real Banach space. If B = E @, 12 where a
is a tensor norm, then it is a natural complexification of .

Proof. We need to stop to check that E ®, 12 is a complex Banach
space. The only point which requires care is the verification that

Mz + i)l zg.z = Al - |2 + iyl zg.z

whenever z,y € F and A € C. It is certainly enough to do this when A = eft
with £ € R. But if we write u : 13 — I3 for the linear map with matrix

cost -—sgint
sint cost /'’

icm
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then ||u|| = 1 and so
le( + i)l gz
= ||(z cost — ysint) + i(zsint + y cost)|| gg iz
= ||z ® (e1cost + ezsint) +y ® (—ersint + ez cost)| ge,.1z
=[(lde ®u)(z®e1 +y @ e2)llmg.iz
< ide @ ullzzeazse.n e @ el + ¥ ® eallzga
= [z +iyllze.m-

Since this holds for any real ¢, we can infer that
e (@ + )| poaz = 12 + Wl po.s-

Let j : E — E®q 13, x — z® ey, be the usual map. Condition (iii) is simple
to verify: if # € F, then

l5(@) | oo = |2 @ e1llzgag = [zllliells = |=lie-

For condition (iv), we need to recognize that the linear map v : 13 — I3
defined by v(e1) = e1, v{ep) = —ep has norm 1. Then, if z,y € E, we have

lz = yllzguz = [z ®@e1 —y ®ezllrg, iz
= |idp@v)(z®e1+y @ e2)llng,z
< lide ® vl g(ppaziEe.m |2 ® 61+ ¥ @ e2llpe,iz
= |z + iyl ze.z-

It follows at once that [l& + iy xg, = |z~ Wl|pe,u-

Finally, if L € £(BE;F), then L : E ®, 13 — F ®, I3 is given bwa =
L ®idy3. It follows at once from property (c) of tensor norms that | Ll =
124 -

‘Within the framework of tensor norms, Taylor’s norm appears in a very
prominent position. It is the smallest of all tensor norms, the injective tensor
norm &, which we now define. Let B, F be real Banach spaces and let
t= 3"z, ®yp be an element of ¥ ® F. Then

Itma,r = sup {| - elen)b e « lellz <1, el e <1}

PROPOSITION 10. Let E be o real Banach space. The natural complexifi-
cation E = E ®, 12 is Taylor’s complexification.
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Proof Let z,y € E. Then
|z ®e1+v®ezllzg.uz
— sup{lp(@)a: + w(w)as]: ez <1, ll(as,az)llg < 1}

= sup{+/p(z)* + ¢(¥)? : |lelip- < 1} =

At the other end of the scale is the largest tensor norm, the projective
norm 7. If E, F' are real Banach spaces and ¢t € E ® F, then

e = inf { 3wl - lall £ = D ox © v}

The complexification E = E ®, 12 was used by Bochnak [8]. As (B®:I2)* =
E* @, 12 and (E ®, [3)* = E* ®. 12, a duality argument shows that this is
the largest possible natural complexification norm. We will often denote the
Bochnak norm by || - ||g. It is Bochnak’s procedure which gives the Banach
lattice complexification of Ly (p)-spaces.

Bochnak’s norm allows us to give an example where ||z+iy| = 2||z+iy|».
For this we work with B = I3, Consider e; + ez Clearly, |les + des||r = 1,
while |le; + de2||p is just the norm of

(5 3)

in I3®,13 —in other words, the trace class norm [14]. Thus |le; + des||p = 2.

{c) Linear operator approach. We again use the Euclidean norm on R2,
and work with natural complexification norms on £(I2; E). Ideal norms in
the sense of Pietsch [23] are natural in this context. Recall that if @ € 12 and
x € B, the operator a ® z € L£{I3; E) is given by

(a®z)(d) = (a,b)x VYbel3,
where (a,b) denotes the inner product of a,b. If & is an ideal norm then

(a) for every a € I, z € E we have a(a ®z) = ||a - ||=||, and

(b) for every real Banach space F and w € L{IZ;12), T € L(3; E), v €
L{E; F) we have

a(vTu) < [wfe(T)ul.

PROPOSITION 11, Let E be a real Banach space. If B = L(12;E) is
equipped with an ideal norm o, then it is o natural complezification of E.

Proof. The only point which requires thought in checking that (E, o)
is a complex Banach space is the verification that

a(Me +iy)) = [Mo(z + iy)
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whenever z,y € E and A € C. It is enough to check this when X = e with
t € R. But the linear map u : 13 — I2 with matrix

cost sint
—sint cost

a(eit(m + %y)) = a(Tz cost—ysint, = sin t-+y cos t)
= a(Toyu) € oTo,y)llu] = alz + ).

has norm 1, and

It follows that a(e®*(z + iy)) = afz + iy), as required.
Now if §: B — L(IZ;E), z T%.0, is the usual map, it is easy to verify
the natural complexification norm condition (iii):

a(j(z)) = a((1,0) ® z) = [|(1, 0}z [|=]| = |1=].

For condition (iv), just observe that since v : 2 — 2, defined by v(e1} = ey,
v(ez) = —ea, has norm 1, we have

a(e —iy) = T, —y) = a(Tayv) < A(Tey)llvl = alz + i),

for every z,y € B. Hence oz + #y) = ez — iy).

Finally, if L € £({E; F) then L : (L(3; E), ) ~ (L(13; F), ) is given by
L(T) = LT for each T' € L{3; E). Since

o(L(T)) = a(LT) < | L]je(T)
we find that
(L] < [1Z)-

Since L extends L, there is equality of norms, and condition (v} is true. w

There are many examples of complexifications arising from ideal norms.
Taylor’s complexification corresponds to the usual operator norm which was
used by G. Pisier [24], while Bochnak’s complexification is given by the
integral norm. In addition, the p-summing norms m, may be used [11].

The equality of the 2-summing norm mp and the Hilbert—Schmidt norm
on L(IZ; H) when H is a Hilbert space tells us that the canonical lattice

complexification of a Hilbert space is obtained using the 2-summing norm.
This is also obtained with the Lindenstrauss—Tzafriri norm, so for Hilbert

spaces
Vizl2+ vl = [z + dyllue = w2 (@ + ).

On general Banach spaces it is simple to check that

V|2 + [y]? < llz + dyllr € w2z + i),
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and hence that for 1 < p < 2,

Vel + [[yl? < mp(z +iy).

In fact, there is a more general relationship.

PrOPOSITION 12. Let E be a real Banach space and let 1 < p < 0.
Then, for each z,y € B, we have

mp(z +iy) (2 < p < oo,

Proof Let : € R. Then
|z cost — ysint|)? + ||zsint + y cos £||?
= || Ty y(cost, — sint}||P + |[Ty,y (sint, cost)||F

<nb(z+iy) sup (Jacost— bsint? + |asint -+ bcos P}
a?+h?=1

= 78 (x + iy) SL:p(icos(s + )P 4 [sin(s + t)[P).
Since this is true for any ¢, and

sup([cosul? + [sinulP)P =1  (2< p < o0),
u

the result follows at once for 2 < p < co. To establish the remaining case,
note that by Proposition 6 we have |z + 1y ) < ||z +dyl|(2) for 1 < p < 2,
and apply what was just proved. =

Inherent problems with complezification procedures. It is unfortunate that
no one complexification is completely suited to all situations. For instance,
if F is a subspace of the real Banach space L, then there are some natural
complexification procedures for which I is isometrically a subspace of E,
and some for which this is not the case. Specifically, it is immediate from
the definition that (F\|| - ||v) is isometrically a subspace of (E, Il - i), and,
more generally, for any 1 < p < oo, (F, ]| - limy) is isometrically a subspace
of (B, |- |l(p)). On the other hand, this does not work for the Bochnak
complexification.

Problems also arise with quotient spaces. If F is a quotient space of the
real Banach space F, then because of the general properties of the projective
tensor product, (F, || - |g) will be isometrically a quotient of (B, |l |[»).
However, this isometry will in general be lost with other complexification
procedures, such as Taylor's.

Finally, even though we have already observed that if » is a natural
complexification procedure and E is a real Banach space, then (E,| - [l )*
is a reasonable complexification of E*, it will not generally be isometric to
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((B*)~, |l - |} under the natural isomorphism. To prove this we first state
without proof a simple identity.

LeMMmA 13. Let E be o real Banach space. For any f and g in E*, we
have

2) sup (laf +bgl® + |[Bf — agl®) /.

|(f +ig)(z +iy)| =
]|+ lylP=1 a

S
24h2=1

PROPOSITION 14. Let v be a natural complexification procedure. Assume
that either

(a) for any real Banach space E, ||z +iyll. < /= + [[yl* Vz,u € B,

or

(b) for any real Banach space B, ||z + iyl 2 /lz[? + |yl Vz,y € E.

Then the notural isomorphism between ((E*)™, || |lv} and ((E)*,|-].) cannot
be an isometry unless E is a Hilbert space. Further, if E is o Hilbert space
and ((E*)~, |I-||.) is naturally isometrically isomorphic to ((E)*, || -{l.), then
|| - ., must be the Lindenstrauss—Tzafriri norm.

REMARK. The comments before Proposition 12 show that condition (b)
holds for the Lindenstrauss-Tzafriri, p-summing (1 < p < 2) and Bochnak
norms. Fvidently, (a) holds for the Taylor norm.

Proof (of Proposition 14). Suppose that (E*)™~ and (E)* are na.‘turally
isometrically isomorphic and that (a) holds. Let »,¢ € E*. Applying (a)
and Lemma 13 we find

Toll? + 12 = o + vl Famy = e + 17,
= sap |(p+ i)z +iy)?

fle+iy|F=1

> sup (g +i)z+iy)l®
flzil2+]yli*=1

= sup (Jlaw + b|% + |[be — avoli®).
62 b2=1

By taking a = b = 1/+/2, these inequalities imply
2
gl + Nl = 3l + %1% =+ lle = 2I1%).

Observe that if (b) is satisfied, then a similar argument yields. the reverse
inequality. In both cases we have a characteristic pr_ope.rty of Hilbert spaces
(see [10, p. 117]), so F is a Hilbert space. Our aim is now to show that
|z-iylly = |lz+iylier = /2] + [[y]|? for every z,y in the Hilbert space E.
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Assume that this is not so. Let x,y € F. Then, still assuming (a) holds,

lz+ayll.=  sup  |[(p+i)zt+iy) = sup  lp(x)~ ()]
lo+iwll gy <1 fioti | gyw S1
> sup  le(a) — )] = (=’ + i)Y 2 e + iy,
bell2+lwl2 <1

Thus ||z + iyll., = +/[|2]|>+ [|y[|*>. A similar argament applies when (b)
holds. m

3. Complex extension of real-valued polynomials and multilin-
ear forms on real Banach spaces. J. Bochnak and J. Siciak (see Theo-
rem 3 in [9]) observed that when F and F are real Banach spaces, then each
L € L("E; F) has a unique complex extension I € L(*E; F), defined by

Feol 4 ool 0 sl S g
D(ef +inh,...,a0 +iak) = 3 iSO L, .. afr),

where 20, z} are vectors in F, and the summation is extended over the 2"
independent choices of e, = 0,1 (1 < & < n). The norm of L depends on
the norms used on E and ﬁ, but continuity is always assured.

In the context of polynomialsN(see also [?Ll’ p. 313]), any P € P("E; F)
has a unique complex extension P € P("E; F), given by

_ /2] .
() Pla+iy)= Z(—n’“( )L(mn"%y%)

k=0 21{2

[(n—1)/2] n
; —1\k n—(2k+1), 2k-+1
+1i ,;) (-1} (2k+1)L(m Yy )

for , y in B, where P = L for some L € L5("E; FY), Here, for { +m = n,

Lizly™ = L(z,...,z,y,...,y)-
{(z'y™) = L Y- ¥)
I tirmes  m times

In general, any continuous polynomial P : E — F of degree n has
a unique complex extension P : E — F.If P(z) = Y.p_, Py(z), then
P(z-+iy) = 35 Pe(z+iy). In the special case of a finite-dimensional space
(RN, {| -]}, the complexification of a polynomial P on RY is the polynomial
P in N complex variables defined by

—

Pz +iyy = Py + s, ..., on +-tyn),
forz=(z:...,2y) and y = (y1...,yn) in RV,

It would be good to be able to say that || L|| = || L|| and ||P|| = ||P. Un-
fortunately, this is rarely the case. In this part of the paper we investigate
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the relationship between || L||, || L] and ||P|}, || P|| for various natural com-
plexification norms. Where it is important to distinguish different norms on
T we will use the notation ||Lfl,,—., to denote the norm of L as a mapping
from (E, | - ji..) to (F,|| - |lo)- When vy = vy = v, we shall simply write
I Z||- Analogous notation will be used for polynomials.

The scalar-valued case is the easiest to handle. Indeed, to compare the
norms of L and L where I € £("E), it is enough to work with the real,
continnous n-linear forms Re f;, ImZon E.

PROPOSITION 15. Let E be a real Banach space. For any L € L(™E),
P e P(*E) and any natural complexification procedure v, we have

1Tl = [[Re fly = [mIll, and [Pl = |ReP|, = [Tm ..
Proof. For zg +iyg € E {1 <k<n), wecan find a real number ¢ such
that
e {1 4 iy, . .., T+ i) = |L(z + 641, .y Tn + 0 ) |
Then
|E(a:1 LYy T+ 1Y)
= L™z + i), - . -, € (20 + iyn))

= Re L(e®/™(zy +iy1), ..., e ™ &y + i)
< [Re Ll lle™™ (w1 + i) o - .- €%/ ™ (@n + dyn)
= IIRe Zllvjr + iyl - [ + il

In other words, |||, < ||ReL||,. Since the converse inequality is obvious,
we conclude that ||L||, = {[ReL|,. Similarly ||L|, = ||Im L|j,. The same
argument works for homogeneous polynomials. =

It is obvious that |L) € || L., | PIl € | Pl for any L € L("E), P €
P("E) respectively and any natural complexification procedure v. We now
discuss the problem of finding constants My, My, depending only on n, such
that || L], < M| L], | Pl < Ma||P)|. In fact, for any continuous polynomial

P(z) = Sr_; Pi() of degree n on B, we find the best possible constant M
in the more general inequality

(3) [1Palli < MIP].

For polynomials in one variable, inequality (3) is a well-known theorem due
to Chebyshev. If P(z) = Y p_g axz" is a polynomial with real coefficients
and || P|| = max_1<a<1 [P(z)|, Chebyshev’s inequality states that

(4) |an| < 2°7HIP.
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V. Markov obtained estimates for the other coefficients of P (see [22, p. 56)).
In particular, for n > 2,

(5) |an—2] < 2"72||P].
There is equality in (4) and (5) if P = T, or T,,_1, respectively, where

Tn(x) = cos{n arccos z) is the nth Chebyshev polynomial of the first kind.
The Chebyshev—Markov inequalities have been generalized for polyno-

mials in many variables. If P(z1,...,2m) = 3 1y Pe(21,...,%m) is a poly-
nomial of degree < n in m variables,
(4) [ Palloc,c £ 2" |Ploo,gs
(5" [ Pretlloo,c € 2772 Pllco g,
where, for j =n,n -1,
P — i0 B,
“PJHDO,C = DSI?E‘SXZW !Pj(el e 'ie'L )|:
<kZm
“PHOO;]R = »—1%“2?51 |P(E1: B smm)l'
1€k<m

Inequality (4') is due to C. Visser [34]. H.-J. Rack [25], using a modifica-
tion of the argument in [34], proved (5') (see also [26] and [27]). There is
equality in (4') or (8') if P(z1...,2m) = Yo, Talws) or Sopey Thoa(n),
respectively. -

Qur main result is a generalization of the previous inequalities for poly-
nomials on any real Banach space. For the proof we adapt the technique
given in [34].

PROPOSITION 16. Let E be a real Banach space and let P - F — R,
P(:z:) = Yoheo Pr(2); be o scolar-valued polynomial of degree < n (n > 1). If
v w8 any notural complezification procedure, then

(6) [1Pa]l < 274 P,
(7) 1Poslly <2°2HP|  (n22).
The constents cannot generally be improved.

Proof Let z=2+1iy e (&, | - ) have norm 1. If we define

8  f{t):= ﬁ(ﬁfgz_ﬂ) = P(zcost — ysint) = i axe™®t,
then f(t) is a trigonometric polynomial of degree < n. l\;c;:; that
©) b= i Fala) 0w = = =By (2),

(10)  ors= g Parils), Guny=Fuct = s Faa(3)
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Since sup, ||z cost — ysint| = ||z||r < [jz]l, = 1, we have
(11) eI <Pl vteR
Now, using (8), (9) and the easily verified formula
2n-1
1 ; 1 if k¥ =n {mod2n)
el _\Pikpr/n — 3
(12) 2n, Zo( 1)¥e {0 otherwise,
p:
we deduce that
1 2n—1 T
— —1y? t —
L3 w(+%)
p=0
1 2n~—1 n .
=5 (~1)P Z aketk(t"%pf/ﬂ)
p=0 k=-mn
2 1 2n—1
_ ikt | _— . ikpmw/n
= Z Gpe [21’& Z( 1)Pe }
h=-n p=0

i . 1 ~ . 1 = »
— ane'mt + a_ne—'mt — E;:Pn(z)eznt + ﬁl;.n(z)'g :-,nt.

Bringing (11) into play, we find that
sup |Fa ()™ + Pu(2)e™"™| < 2Pl
t

and since
sup !ﬁn(z)emt + ﬁn(z)e_intl
t

== sup [ﬁn(z)eim + ﬁn(z)e_iml
t
= 2sup |Re ﬁn(z) cosnt —Im ﬁn(z) sinnt| = 2|ﬁn(z)l,
t

inequality (6) is true.
For the proof of (7) we argue as in the case of (6), but use (8), (10) and

formula (12) with » — 1 in place of n.
The assertion that the constants are optimal is true because of the clas-

sical Chebyshev-Markov results. =
It follows from this proposition that
(13) |Pall <2 3PY and |[Paosll <2772|IPY.
But these results are consequences of V. Markov’s estimates for the coef-

ficients of a polynomial in one real variable (see [22, p. 56]). In fact, we
can find sharp estimates for the norm of every Fi (1 < k € n). Indeed, if
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P:E—R, P(z)=3 . Pe(z), then for every z in the unit ball of B,
p(t) = Piz) ==Y Pe(m)t*
k=0

is a polynomial in one real variable for which ||p|| < ||P}]. Then, by applying
the classical result to the coefficients of p, we immediately get estimates for
the norms of the Py’s.

Using the first inequality of (13}, we can prove a generalization of Mar-
kov's inequality for the nth derivative of a polynomial of degree n. This
result gives a positive answer to part of a question posed by L. A. Harris in
his commentary on problem 74 in The Scottish Book [20].

PrOPOSITION 17. Let E and F be real Banach spaces and let P : E — F,
P(z) = Y hoo Pe(), be a polynomial of degree < n. Then

|BP| < 7 (1)) £,

Proof. It is elementary to see that D™ P(z)y = n!P,{y), where D" P(z)
is the nth Fréchet derivative of P at z, and ﬁ”P(m) is the nth homogeneous
polynomial associated with D™ P(z). Hence, it follows immediately from {13)
that | D"P|| < 27~ nl| P = T (D)]|P||. =

Since Markov's inequality for the first derivative holds on any real Banach
space (see [28]), it would be interesting to know if | DFP| < ngk}(l)”PH
{1 « k < n) for polynomials on any real Banach space. For more details we
refer to The Scottish Book [20, problem 74].

So far we have focused on extensions of general polynomials. In fact, we
have analogous results for any P, € P("E) and L € L("E).

PROPOSITION 18. Let E be a real Banach space and let P € P("E), ond
L &€ L{"E). Then, for any natural complexification procedure v,

(14) 1P, < 274P| and ||l <201

Proof. The statement about L can be proved by repeating the proof of
Proposition 16, replacing (8) by
_ it g it it m it
I ::L(zle +2zle ,”.’zne -gzne )

i)
= L{zycost ~ yy sint,..., o, oSt — y, sint) = Z apet®t

k=—n

for~zk = 2 + iy € E, 2% le (1 < k < n), noting that a, =
Q_IT?L(Z']_, coy2n) and a_p, =G, = %L(Z]_, ey Zp). M
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Interestingly, the constant 2"~ which occurs in inequality (14) is neces-
sary. In addition, the constant 2”2 in inequality (7) is needed even when
we restrict attention to polynomials of degree exactly n.

EXAMPLE 1. Let 1 < m < n. Define P,, € P(™12) by
Pn{z) = Re(z1 +iz2)™  Va = (z1,2) € R?,

and write L, for the associated symmetric m-linear form. Then, if we use
the Taylor complexification,

(8) [1Pollz = 271 Ball,

(B) | Lnllr = %HMIHLn”a

(¢) limyor (| Pamtllm/l|6Pn + Paoaff =272

Proof Obviously, || Pl = L (1,0} = 1, and by an old result (see, for
instance, Theorem 4 in [15]), | Lyn|| = | Bl == 1. Since, for z = (21, 23) € R?,
Y = (y1,72) € B?, we have L (¢™%4?%) = Re(w1 + i) "> (y1 + 1y2)?*,
formula (%) implies that

frn/2]

Re P (2 + iy)) = Re{ 3 (—1)’ﬂ(;"‘k) (1 -+ iz2)™ {1 +iyg)2k}.
k=0

Choose z = (1,0), ¥ = (0,1). Then |z + iy|r = supg ||(cos #,sinb)i;z = 1,
and

[m/2]
) : MY _ am—1
Re P ((1,0) +4(0,1)) = ;D (Zk) =m1
Therefore HﬁmHT = ||Re ﬁm“T > 2™=1 1Ipn other words,
Ll = |Pmllr 2 2™ H|Prll = 27| Lo

Since, by (14), all the above inequalities must in fact be equalities, we infer
that '

|m|r =2 Ln] and [[Bllz =277 Bl
Taking m = 1 we get (a) and (b). To obtain (c), we just show that for z > 0,
ItPn + Poal| = 1+1.

Since (£P, -+ Pr_1)(1,0) = 1 +1, the norm is certainly at least 1 +2. On the
other hand, if jzy + dza| < 1,

Re(t(zy + iwa)™ + (m1 +im)™ Y| < |61 + i)™ + (31 +iza)" " S L+ 8,
8o the norm cannot exceed L +£. w

We give one more example, using polynomials on finite-dimensional I.o’s,
where the constant 271 in inequality (6) is achieved.
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EXAMPLE 2. Define polynomials Py & ?(ﬁkzﬁj) inductively by

Py(z1,25) = 22 — 22,
Prgalzy, ..., xoptr) = Pz, .. .,(172k)2 - Pk(mgk_l_l, - ,mzh.m)z (k >1).

Then || Pyl = 1, but |Pylr = 22" 2.

Proof. By induction, it is easy to see that || Py]| = 1. Another induction
argument shows how to produce z = {z1,...,2) in the unit ball of the
Taylor complexification of [2; so that Py(z) = 22°~1,

k=01 st 2 =1, zg =i Then ﬁl(zl,zz) = 2. If z1,..., 200 of
modulus one have been defined so that ﬁk(zl, R = 22k“1, we put
gk sy = 2;6%/2" (1 < § < 2%), and then

D 3] 2 _ 5 2
Pea(21, . 20042) = Pla, .o 200 ) — Pil(2ae 1, .., Zgern)
_ 22(2*“—1) _ 22(2’“-1)8m — 22’“*1-1| .

ReEMARK. The proof of Proposition 16 does not provide good estimates
for the norms of Py, k > 2. For instance, if & = 2, then an,_g in equa-
tion (8) cannot be expressed just in terms of P,_s(z). We have an_s =
e Lo (27712) + Z—,ETZang(z), where P, = L, for some L, € L*("E). Be-
cause of the extra term

n = -1
ﬁan(z“ 13),

we cannot obtain a good inequality analogous to (6) and (7) for the norm
of an_z.

The upper bounds in Propositions 16 and 18 are valid for any natural
complexification procedure, and we just saw that they cannot be improved
for Taylor's procedure. However, Taylor’s norm is the smallest natural com-
plexification norm, so it is reasonable to ask whether improved upper bounds
can be obtained by using different procedures. In the case of multilinear
maps, dramatic improvements can be achieved. The biggest improvement
naturally comes from using the Bochnak norm, and Bochnak proved [8,
p- 276] that for.any L € L("E) we have [|Ll[g = IlL]|. Substantial improve-
ments on Proposition 18 are also available for other natural complexification
procedures.

PROPOSITION 19. Let F be a real Banach space and let 1 <p < oo. For
anyn > 2 and any L € L("E),

N MELRL i 1 <p <43,
1Ly < § 2*/>2/" )Lk if 4/3<p <2,
2"PEl i 2<p <.
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Proof. We first investigate the case n = 2. For zy, 22, y1,42 € E, we
have _
‘Re L(xy + iy1, 22 + iya)| = |L(z1, ma) — L(y1, ya)|

SN Ceall - Nl + fualt - Nl
Now, for 1 < p < 4/3, Proposition 1 shows that
el - llm2ll + Hznll - Hly2ll < (lzall + llya D llz2 + dvellm)
and so, using Holder’s inequality,
sl - [lsll + foall - flwall < 2% (20 l? + lwalP)/* |2 + w2l py
< 22 loy + iy ||y |72 + 2 |-
Thus, for 1 < p < 4/3, Proposition 15 gives || L]|¢) < 2/2|/L]].
Next, for 4/3 < p < 2, Hélder’s inequality and the monotonicity of the
I, norms give
1 I 1 s
sl - Mol + gl - lwall < (el + lwal2)P(2lP + g2l )P
< (ol -+ [P)* P allP + llgelP)
< 22271 |y | gy |02 + el -
Thus, for such p, we have, by Proposition 15, ||EH(P) < 21-2/7| ).

Finally, we consider 2 < p < co. Here, since 1/p+1/p < 1, the generalized
form of Hélder’s inequality gives

- llalt + ol - el < 227222+ lya IP) 2 2l + llwel®)
< 22F Mgy + iy gy llze + il )
and another use of Proposition 15 yields || L]z < 22/%'~*||L|.
For higher values of n, we proceed by induction. Write

on/2-1/2  if | < p < 4/3,
K® = ¢ on/2-2/" jf4/3<p<2,
on/P'-1  if 2 < p < oo

If L € £L("E), then for fixed © € B, Fy(z1,...,Tn-1) = L(scl,...,c.onw_l, z)
defines a continuous (n — 1)-linear form F on E. Now, for o +iyy € E
(1 € k £ n), the induction hypothesis and Proposition 15 give

[Re L(z1 4+ i1, . » Ty + Wn)|
= |Re Fy (21 + 5,y Bo + iYn—1)
— Imﬁy" (w1 i1, Tum1 + TUn1)]
< (I1Re o, ||y + T B, o)l + il o) - - - fizm—1 + n-1llip)

< K2 LI (l|2n]l + gD 21 + i1l ) - - - |01 + #n-1l -
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Hence, by Holder’s inequality,
1 2 . .
o+l < 27 o Pl {5y 0 el 0 S22
2V |z, + iyn ] H2 < p < oo

The induction step is now immediate. =

The constant given in Proposition 19 is sharp when p > 2. Indeed, let
P, : 1§ — R be the polynomial defined in Example 1, and set z = (271/%, (),
y = (0,27*/?) for a given p > 2. Then ||z + WYy = 1 and

~ 2,
Re B, (z + iy) = 2=n/p = gn=lg=n/p - gnir'~1
(z +1iy) ,; (2k) 272 2 .

Hence ||, )l = |Re Byl = 2771, and so
Ll = [ Pallgny 2 277 = 27 =3Py || = 203 L, ||,

Since the reverse inequality is true by Proposition 19, we get equality.

For p < 2, essentially this example shows that the constant must be at
least 27/2-1,

The techniques we have just used for multilinear forms do not adapt to
homogeneous polynomials of degree greater than 2. In fact, loss of norm is
in general inevitable when extending homogeneous polynomials of degree at
least 4, even if Bochnak’s complexification procedure is used.

EXAMPLE 3. Let Py, : I3, — R be given by
Pin(z) = [(2? — 22)? - (z3 — il (1, @0, 73, 24) € 12,.
Then || Pu,|| = 1 for oll n, while limy,— 0 ||134n||3 = 0.

Proof Since |a® — b%| < 1 whenever a,b € [—1,1], it is clear that
[[Pan|| = 1 for all n € N. Now consider 2o = (1,3, %ei”/‘*, :}363”/4) e 4.

Since zp = (1,0, %, —3) +i(0,1,1,1) = 2g + iy, Proposition 2 gives

lzollz < irgf{”mg cost — yosing||eo + ||lzosint + yg cost| o}

< %(cho — lloo + 170 + 50| c)
< %(H(la“laoa—l)ﬁm = 0, 5,1,0) a0 = VE.
Then,
5 Pin(zo)| [0 =2~ 3G+0)2]"  /p\"
FPurnlls =17
H H 2 Hzﬁﬂﬁn Z 4?1.4 —(4> :

and 50 limp—co [ Panln = co. w
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This example can be modified to obtain faster divergence to infinity, but
the modification we are able to make seems far from optimal. To obtain a
similar result for polynomials of degree greater than, but not a multiple of 4,
it is enough to consider

Py 15 =R givenby Papo1(z) = [(z? — 23)? — (23 — )
1

6 2
100

2]”335,

Pimia: 15 = R givenby Pania(z) = [(z} — 23)? — (23 — 23)?] 2526,

Pinys iU, > R givenby Punys(a) = [(#f — 23)* — (23 — 21)*) w267

Although the general situation is unsatisfactory for pelynomials, some
improvements on Proposition 18 are possible when natural complexification
procedures cther than Taylor’s are used.

ProrosITION 20. Let E be o real Banach spoace and let n be an even
number. If P € P("E), then

IPl¢ay < 2°72|| P

Proof This is a simple medification of the proof of Proposition 16.
Notice that cos(t + ) = —sin¢, sin(t + ) = cost. In the notation of the
proof of Proposition 16,

f(t+%) f(t+ (p+z/2)7f)
:IP(:ECOS (t+1—’nf) _ysin (tﬁ;—w))l
—\—‘P(msin (t+%§) +ycos (t+‘%)>

< ||P|lsup(||z cos s — ysin s||™ + ||z sin s + y cos 5[|™)
3

+

< IPY- |z + wlFs)-
Now follow the proof of Proposition 16 to obtain, for [[z]|¢z) = 1,

sup | P(2)e™ + P(z)e™™| < 2" 1|1P),
t

and then
|P(z)l <2"7%| P m

The same estimate holds for any natural complexification norm which
dominates |- [|(z). In particular, it holds for Bochnak’s norm. Notice that for
such norms, homogeneous polynomials of degree 2 can be complexified with-
out increasing their norms. However, we now show that if ‘Taylor’s complex-
ification is used there is no real Banach space for which all 2-homogeneous
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polynomials can be complexified without increase of norm. We need a pre-
liminary result.

LemMa 21. Let E be a real Banach space, end let n € N. For any
P cP(™E),
IDP| < n|P|lr.
In particular, if P € P(3E), then |L|| < ||P|r, where L € L5(2E) with
L="FP.

~

Proof. Let ¢,(f) 1= P(zcos @ + iysind), where x, y are unit vectors in
E. Then t,(6) is a complex trigonometric polynomial of degree < n. Since

iz cos € + iy sin 8|7 = sup ||z cos B cos ¢ + ysin G sin @] < 1,
¢

we have [t, ()| < || Pl for all real 6. Now, using Bernstein’s inequality for
trigonometric polynomials, we deduce that

inL(z" )| = [t (0)] < nsup [tn{0)] < n]|Plz,

where L € £5("E) with L = P. Hence |L(z™ y)| < ||P||1 for ||| = ||y|| = 1,
and the result follows.

_ProrosrTioN 22. There is no real Banach space E for which || Pf| =
Pz for every P € P(2E).

Proof Suppose that ||P|| = |Pliz for every P € P(2E). Then, by
Lernma 21,

IPl=1Z]=|Blx vPePCE),

where [, € £3(*E) with L == P, and this implies that B is a real Hilbert
space (see [5]}. But when E is a real Hilbert space, Example 1 shows that

there is a P € P(2E) with | P|r = 2||P||. This contradiction completes the
proof.

At least for 2-dimensional spaces, there is an analogous result for bilinear
forms. To reach this, it is useful to have some notation. Let E be a real
Banach space and write

£(n; By =nf{K > 0: | Ll < K|IL| VL € L("B)},
P(n; E) = inf{K > 0: |P|lx < K||P| VP € P("E)}.
The following result can easily be verified. We spare the reader the details.
Lemma 23. If E ond F' are isomorphic real Bunach spaces, then
K(n; F) < (d(E, F))"K(n; E),
where d(E, F) denotes the Banach-Mazur distance, and K = £ or P.
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PROPOSITION 24. There is no two-dimensional real Banach space E for
which || L||z = {|L||, for every L € L{2E).

The proof hinges on another example.
ExXAMPLE 4. Let L € £5(*13) be defined by
Lz, y) = zuy1 + 21y + 2291 — 220
for & = (z1,21), ¥ = (y1,42) in B2, Then ||Lilp > [|Z].

Proof. As usual, we write P = L. Obviously, |L| = | P|| = L. On the
other hand,

Pl +iy) = (z1 +iy1)? + 20z + in )2 + i) — (22 + i),

For z = (1/v/2,0), y = (OLI/\/ﬁ) we have ||z + iy|r = 1, and |P(z +iy)| =
|1+ 4] = V2. Therefore || L|x > ||L]|. =

Proof of Proposition 24. Let E be a 2-dimensional real Banach space.
Suppose [|L]] = ||L||t for every L € L(®F). Let F = I2 in Lemma 23 and
refer to Example 1 to see that

2=L(25) < (A(E, )"

Therefore d(E,13) = /2, and this implies that E = I} (see Proposition 37.4
in [33]). Hence, we can only have |L|| = || L[|z for all L € L(?E) if E =1}
However, Example 4 provides an L € £5(312) with |[L|z > ||Z]. =

4. Complex extension of vector-valued homogeneous polyno-
mials and multilinear maps. Let E be a real Banach space and let
L:Ex...x F-— E* be a continuous n-linear map. This can be viewed as
a continuous (n + 1)-linear map

M: Ex. ... xFKE -->R, M(ml,...,fﬂn+1) = L(ml,...,mn)(mn+1)

VIE]V, ie, Bl € .
In view of this, it is not surprising that the change in norm for complexifi-

cations of vector-valued multilinear maps should potentially be worse than
what we find in the scalar-valued case.

ProprosITION 25. Let E and F be real Banach spaces and let v be a
natural complexification procedure.

(a) Let P: E — F, P(z) = 5 p_o Pu(z), be a vector-valued polynomial
of degree < n. Then
(15) 1 Ball < 27|P||,
(16) | Pl < 2771 P.
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(b) Let L € L("E; F). Then ||L|,, < 2| L]

In the case of the Taylor complexification, the constants can be reduced by
a factor of 2.

Proof. The proof of these inequalities is very similar to that of Propo-
sition 16. The only difference is that in the last step we just have to notice
that

sup || P (2)e™ + Pu(2)e ™| = 21 Pa(2)lIr 2 [ Pa(2)],- w
We do not know if the constants in Proposition 25 are best possible,

However, it is possible to arrange for equality if different complexification
procedures are used for E and F.

EXAMPLE 5. If E=F =13, let P € P("E; F) be defined by
P(z) = (Re(z1 +iz2)", Im{my +dm2)"™) Vo = (21, 22) € I2.

Then, writing L for the symmetric n-linear map associated with P,
1Llim—p = sup{|Z(z1, ., z0)lls : [lenflr < 1, |zl < 1} = 27 L],
1Bllz-z = sup{||P(z)[ls : [i2]lr < 1} = 27| P|.

Proof. It is easily seen that || L|| = ||P|| = 1. Since

Lz} = (Re(e1 +125) " (y1 +1y2)2*, Im (@ +ig)" 2 (g + i) ),

formula (%) implies that

Re P(z +iy)

[n/2]
= 20 ({5, ) elosioa)™ i)™, Izl a9,

for z = (z1,22) €13, y = (31,72) € 3. Choose = ey, yy = e5. Then
|z + 4y|/r = sup||(cos @, sin Nz =1,
8

and

B /2
RePer +iep) = Z (2:’;(:)81 =27 lg,,
ke=Q)

Similarly, we can prove that
[(n—1)/2]

Imﬁ[el + i€2) = Z ( n )32 = 2’”’_152'
i \2k+1

Therefore || Plp_g > |P(es + iez)|B = 2" Yles + ies|s = 2". In other
words,

IZlz—p > || P|lzws > 27| P|| = 271
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But, as in the proof of Proposition 25, we can show that

1Plr-p <27| Pl |Lljz—n < 2"L]-

Hence
|Zllr—5 = | Plr—p = 2°||P|| = 2"| L. =

When specific natural complexification norms, other than the Taylor
norm, are used, we can obtain other results similar to the scalar-valued
case, but with slightly worse constants. We single out one special case which
has been investigated in the past.

PROPOSITION 26. Let Hy, Hy be real Hilbert spaces. If L € £L("H;; Hs),
then

(17) IZlly < 20 D72 L))
In addition, if P € P("Hy; Ha), then
(18) 1Bl < 2-072|1P)).
The constant 2(*=1/2 45 best possible.

Proof. It is enough to observe that £(™Hy; He) and L(" 1 HT x Hy; R)
are isometric . Since the ||+||;z) norm on the complexification of Hy, Hy gives
the natural lattice complexification, the result follows from the techniques
used to prove Proposition 19. =

REMARKS. (i} Inequality (17), and therefore (18), for L € £*("Hy; H>)
and P € P("Hy; Ha) was found by A. E. Taylor {31, pp. 313-314] using a
different technique. Observe, however, that our inequality (17} is true for
any n-linear mapping L : H' — Hy; symmetry is not required.

(ii) D. H. Hyers, in his expository article on polynomlal operators (see
[16, p. 435]), states incorrectly that the extension L : Hl —r Hp of any
n-linear operator L : H* — Hj preserves its norm, i.e. ||L|| @ = |ILl. In
fact, this is only possible in general for bounded bilinear forms.

5. An application. In Proposition 16 we found lower bounds for the
norm of a polynomial of degree at most » on a real Banach space in terms
of the norm of its n- or (n - 1)-homogeneous part; see also inequalities (4')
and {5'). In [2] lower bounds for the sup-norm of a polynomial of degree
at most n in many variables were obtained in terms of coefficients of its
n-homogeneouns part. Using our result we can improve one of the estimates

in [2].
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A polynomial P{z1,...,%m) = Y pq Pe{®1,- ., 2m) in m variables can
be written in the form
ki)
(19 P(zy,.. Bm) = Zajm;-‘ + Z apztt L xbm,
=1 [k|<n

with k = (k1,...,km), [k| = ki + ... + km, where in the last terms all ks
with |k| = n have at least two non-zero components. It was shown in [3] (see
also [4] and Theorem 1.1 in [2]) that

m —

>l < [Pallsoe

i=1
In other words, the complex sup-norm of the nth homogeneous polynomial
P, is bounded below by the sum of the absolute values of its leading coeffi-
cients. In [2, Theorem 1.6], a similar, but worse, lower bound was established
for the real sup-norm of P. Our next result is an improvement on this.

PRrOPOSITION 27. Let P be a polynomial of degree n, in m variables, with
real coefficients, written in the form (19}. Then
m
D las] <277 Plloo ms
J=1
and the constont is best possible.
Proof. By inequality (4'), we have
”Pn”m,ﬂ: < Qn——iHP”oo,[R-

If we combine this with the lower bound given above for || B, |co,c, We find
m

> lagl <27 Plloo,z.

F=1

This inequality is sharp for the polynomial P(z1,... ,&m) = Y pr i Tolzk),
where T, is the nth Chebyshev palynomial of the first kind.

6. Complex extensions of non-homogeneous polynomials. Fi-
nally, we discuss the problem of comparing the norms of a not necessarily
homogeneous polynomial and its complex extension. For polynomials in one
variable, a classical result due to S. Bernstein [7] (see also {19, p. 42]) states
that

20 P < &

(20) P(2)] < (a+b)" _max |Pe)l,

where @ and b are the semi-axes of an ellipse passing through the point z
with foci at the points 1 and —1. If we consider the ellipse with a = /2

H
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b= 1, and apply the maximum modulus principle, inequality (20) implies
(21) 1Plloog < (1+ V2™ Ploo -

J. Siciak [30] generalized inequality (21) for any complex polynomial of de-
gree at most n on CV. His result improves Theorem 2.1 in [2]. In the more
general case of polynomials on Banach lattices, an analogous inequality was
found by M. Lacruz (see Theorem 5.7.7 in [17]).

If P is a polynomial of degree n in one variable with real coeflicients, a
result of P. Erdés [13] gives an improvement of (21):

(22) 1Pllo,e < [Tn(i)] - [1Pllco.ms

and the constant |7} ()] is best possible. R. Duffin and A. C. Schaeffer [12]
also gave an improvement of (20) in the case where P has real coefficients.
If we argue as in the proof of (21}, we obtain a result which implies (22)
when n is even.

Qur final result is a generalization of (22) for polynomials on any real
Banach space. For the proof, which is similar to that of Theorem 5.7.7 in [17],
we use inequality (22) and the following easy extension of a well-known
polynomial inequality (see Lemma 5.7.3 in {17]).

LEMMA 28. Let E be o complez Banach space and let P 1 E — C be o

polynomial of degree n. Then
1
1Pl < = max{|P(z)] : |iz]| <r}-

PROPOSITION 29. Let P be a polynomial of degree n on a real Banach
space . Then
(23) 1Pl < 2% Tu ()] - | Pl

Proof. Fix € > 0. By Lemma 28, there exists z = z +iy € E with
lzlle < 1//2 and

|B(2)] = |Pla+ )| = (1~ e)(1/v2)" | Pllz.

Since the polynomial g(t) := P{z + ty) has real coefficients, inequality (22)
gives

max |q(2)| < |Tx(3)] jlr}saéllq(t)i-

=l

But, for —1 <t < 1 and @ € E* we have
llz-+tyll = sup [ple) + to(y)
lell=1

<1+ sup /@2 (@) + @2 () < V2|z +iyfr < 1,
|

lel=1
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and this shows that max_j<;<i |g(t)| < ||P||. Therefore
(1= )WV IPllx < [Plo+iy)| = |a(i)| < max|a(z)]
SITa(@)] _max la(t)] < [T(@)]- [P

So, for every £ > 0 we have
I1Plle < (1 — &)™ 2™ 2T (@)] - | P]|. m

Observe that our constant 2%/2|T, (z)l is less than or equal to
L[(24v2)" + (2~ v/2)"]. It would be interesting to know if the constant in
(23) can be replaced by |1, (7). Notice that in the case of n-homogeneous
polynomials the best constant 277! is smaller than |T,,()].
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