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Order bounded composition operators on the Hardy spaces
and the Nevanlinna class

hy
NIZAR JAQUA (Lille)

Abstract. We study the order boundedness of composition operators induced by
holomorphic self-maps of the open unit disc . We consider these operators first on the
Hardy spaces H? (0 < p < o) and then on the Nevanlinna class N. Given a non-negative
increasing function & on [0, oo[, a composition operator is said to be (X, Ly )-order bounded
(we write (X, Ly)-ob) with X = H? or X = A if its composition with the map f — f*,
where f* denotes the radial limit of f, is order bounded from X into Lp. We give a
complete characterization and a family of examples in both cases. On the other hand, we
show that the (N, log™ L)-ob composition operators are exactly those which are Hilbert—
Schrnidt on H?. We also prove that the (A, L7)-ob composition operators are exactly
those which are compact from N into HY.

1. Introduction. Throughout this paper, we dencte by D the open unit
disc in the complex plane, by H(D) the space of holomorphic functions on
D and by H(D, D) the subset of H(D) consisting of all self-maps of D.

Let @ be in H(D, D). On appropriate subspaces of H (D), the composi-
tion operator C,, is defined by

Cof == fop.

We recall that the Hardy space H? (0 < p < o) is the subspace of H(D)
consisting of all functions satisfying

1 2w 1/p
—— i8
£l = (oi‘iﬂl““zw (S) F(re®) P d@) < 0.

We also recall that the Nevenlinna class A is the subalgebra of H(D) con-
sisting of all functions such that
2

1 .
sup = | log" |f(re®)|d6 < oo.
0<r<l 2T ¢
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If f € NV, the radial limit
F(e) = 1im f(re)

r<l
exists almost everywhere on the unit circle 8D (see [2]).
The Smirnov class N'* is the subspace of A consisting of all functions
f such that

2 2m
1 -+ _ 1 LT PR
P g 5 log™ | f (re*®)|df = - 5 log™ | f*(¢¥}) df.
The class F't is the subspace of H(D) consisting of all functions f(z) =
Ym0 @n2™ such that |a,| < c.e®V™ for all & > 0.
The following proper inclusions are well known:

HPCHICNTCN forall0<g<yp< oo

Let A2 [0, 00[— [0, 00[ be an increasing function and (X,d) be a metric
additive topological group contained in H (D) such that every f € X has a
radial limit f* almost everywhere on the unit circle and that C, is a self-
map of X. The operator C,, is said to be (X, Ly,)-order bounded written
(X, Lp)-ob, if its composition with the map j : f +— f* is order bounded
from X into Lp where Ly denotes the set of all measurable functions fon
0D such that

a

[ mll7e®)) d < co.

0
This amounts to saying that the operator C(P == joC, sends every bounded
subset of X onto an order bounded subset of I,

It is well known that C, is a continuous self-map of A or H? (this
follows from the Littlewood subordination principle: see [2], [8] and [10]} and
a lot of work has been devoted to operators Cp “hetter than continucus™:
either compact, or order bounded for some A, or sending the initial spacc
into a smaller subspace. For example, J. H. Shapiro [11] has characterized
those C, : H?® — H? which are compact and, recently, J. $. Choa and
H. O. K1m (1] have shown that they are the same as those C,, : A — A/
which are compact. . Jarchow and H. Hunziker [5] have shown that the C,,
which are (H?, L*)-ob are exactly those which are Hilbert-Schmidt on H2. z
J. W. Roberts and M. Stoll [9] have characterized those C, which send F'*
into H? for some and hence all ¢ > 0. All these charactemza.tlons are given
in terms of the behavior of the “analytic moment” sequence

1 27 :
mn . *¢ iy |m
Il = g |l as
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whose smallness is a quantitative way to express that |p*(e®)| is most of
the time far from 1. These results naturally lead to the following questions.

1) Does the coincidence of compact maps C,, : H? -» H? and C,, : N —
N still hold if we replace compactness by order boundedness? In Section 4,
we give an affirmative answer to this question.

2) The (H?, L9)-ob C,'s were characterized in [5]. Can one characterize
the (H?,log™ L)-ob and (N, L9)-ob ones? In both cases, we give a complete
characterization (see Theorems 3.1 and 4.4).

3) Does the (N, L9)-order boundedness improve the compactness of C,,
as for example the (H?, L?)-order boundedness does? Rather surprisingly,
we shall see that the answer is negative: the C,’s which are (A, L)-ob are
exactly those which send A into H9 compactly. Compared to Roberts—Stoll’s
result, this latter fact (namely that sending A into HY compactly implies
(N, L9)-order boundedness) seems to be due to the huge size of A with
respect to F'T: sending compactly A imto HY is so restrictive that it forces
the (N, L9)-order boundedness.

The paper is organized as follows. In Section 2, we recall some facts on
the class A/, the notion of order boundedness and some results on “moment”
sequences, taken from [6], which provide a convenient tool to establish the
existence of functions ¢ € H(D, D) relative to prescribed properties of the
operators Cl,.

Section 3 is devoted to the study of (H?, Ly )-ob composition operators
and to families of examples.

In Section 4, we deal with the operators C,, which start from A/: either
(A, L7)-0b or compact from A into H?. OQur main results are Theorems 4.4
and 4.7, where we show that the operators we obtain are among those ob-
tained by J. W. Roberts and M. Stoll [9}; that is, those such that

lle™ls = O(e™*¥™)  for some A > 0.

2, Preliminaries

2.1. The Nevanlinna closs. We recall that f € N if f € H(D) and if
2w

sup L S log™ | f(re*®)| d8 < oo.
0<r<l 12w

It follows from the 1nequa11ties
logT o <log(l4+z)<1l-+logtz (z=>0)

that f € A if and only if
2

1l = sup, = | logl1 +11(re)) df < co.
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This pseudo-norm allows us to define the following translation invariant
metric d:

d(f.g) =|f—gllxy foral figeN.

Endowed with this metric and the induced topology (stronger than that of
uniform convergence on compact subsets of D), N’ becomes a complete met-
ric space, but surprisingly not a topological vector space: there are functions
f in NV such that d{cf,0) does not tend to zero as £ tends to zero (see [13]).
For other properties of (A, d), see [2] and [4].

However, the Smirnov class (N1, d) is a topological vector space but not
a locally convex vector space (see [16]). The class F'*, equipped with the
family of seminorms

I£lle =" lanle™™  (¢>0),
n=0

is a locally convex vector space containing Nt as a dense subspace (see [18]).

LEvMa 2.1.1. (1) Let v : D — [0,00[ be a continuous subharmonic
function and z € D. Then

1+ |2 (12“ . )
< — | w(Re)dt ).
ve) < T o gy gv( ¢”)

(2) Let f e N andz £ D. Then

7] < e (S0 0.

(3) Let f(2) = Yooy anz™ € N. Then |an| < ae®™ for some a,b > 0.

_ Proof. (1) Let 0 < r < 1. The function v, : z — v(rz) is continuous on
D, subharmonic in I? and therefore majorized by its Poisson integral in this
disc. In particular, we have

2

() € 5 | un() P

0
where P, denotes the Poisson kernel at z € D:

1-|z? < L+l

Pz ity : .
)= = T
It follows that
virz) < Ltz 4 2Swv(reﬁ)alt-< 1+ 2| su 1 T (Re™) dt
< — < — \ v(Re .
1—|elar ) T 2] ogher 27

Letting r tend to 1 gives the desired inequality.
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(2) Apply (1) to the positive, continucus and subharmonic function
v(z) = log(1 + | f{2)]) to obtain
2
log(1+ /(2D < 7=l
frora which the result follows.
(3) Set A = || flla- (2) and Cauchy’s inequalities give, for all 0 <r < 1,

22 1 22 1—7r
< = i =
|G —EXP(l—r+n10gr) _e:»cp(l_’r +n " )
Optimizing in r (1 —r = 4/2A/n) gives
lan] < exp(2v/23n + O(1),

which is the desired result with b = 2+/2X. =

As is well known, (3) can be replaced by |a,| < c.esV™ for all € > 0 if
f € N7* (see [17]), and so N* C F't. But a reverse inclusion F* ¢ A does
not hold as confirmed by the following proposition (see {3]).

PROPOSITION 2.1.2. If 3°%° | |au|? = oo, then, for almost all choices of
signs, Y oy £a, 2™ does not belong to N.

For example, there exist signs such that if f(z) = 3 .o, £(1//n)z",
then f & M. Of course, f € Ft.
2.2, Order bounded maps. Let h be a non-negative increasing function

on [0,c0[. We denote by Ly the set of all measurable functions f on 8D
such that

27
§ n(l#(e*))db < oo.
a
‘We consider a topological additive group X endowed with a metric d.
‘We recall that a subset E of X is bounded if there exists a finite constant s
such that d(z,0) < sfor all zx € E. A map T : X — Ly is said to be order
bounded if the image under T' of every bounded set is order bounded. That
is, the maximal function
M(T,s):= sup [Tzl
zEBx(0,5)
belongs to Ly for all s > 0. Here Bx{(0, s) denotes the closed ball in X
centred at 0 with radius s.
In the case of composition operators we take X = HP (0 < p < oc) or
X = N and C, is a self-map of X for every ¢ € H(D, D). On the other
hand, we take h(z) = log™ z := max(logz,0) or Afz) = 2? (0 < ¢ < 00).
We shall allways restrict ourselves to those cases, for which L is a vector
space.
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Given a function ¢ € H(D,D) such that [¢*(e¥)] < 1 almost ev-
erywhere, we shall say C, is (X, Li)-order bounded (ob) if the operator
ap = joC, : X — Ly is order bounded. According to this definition, the
(X, Lp)-ob composition operators are closely related to the point evaluations
induced by the points of D n*(8D).

For X = HP, there are two cases: first, for 1 < p < co, the space HF
endowed with the norm || - ||, (defined in Sec. 1) is a Banach space. So the
metric we shall consider is d(f,g) = |f — g|lp. Then, for 0 <p <1, || |5
fails to be a norm and d(f,g) := ||f — g||5 defines a metric for which H?
becomes a complete space. In both cases the homogeneity of the metric d

implies that, for all s > 0,
sM(C,,1) 1< p < oo,

M(C ,8) = ~
(Cer ) {sl/PM(C’,P,l) ifo<p<i,
and then C, is {HP, Ly)-ob if and only if
Mé.p = M(G"P, 1) € Ly,
The following theorem about point evaluations on HP is well known
{see [19]).
THEOREM 2.2.1, For all 0 < p < oo and z € D, we have
sup  [f2)] = (1|27
FEBH»(0,1)
2.3. Moment secquences. We denote by A the difference operator defined
on the space of sequences F = (F(n))nen by
AF(n) = F(n) — F(n+1).
Its iterates are defined by
A'F=F A" F = A(A"F) forallneN.

The following binomial formula clearly holds:
AF(k) = Z (?) (-1)F(j +k) forallk,neN.
=0

A version of the Hausdorff moment theorem (see [15], p. 9) suitable for our
purposes can be stated as follows.

THEOREM 2.3.1. Let F be o sequence of real numbers. There is a Borel
measurable function f :{0,1] — [0, 1] such that
: 1

Fin)=\f&)"dt forallneN
0

icm

Composition operators on Hardy spaces 41

if and only if
FO)=1 and A"F(k)>0 forallkmneN

From now on, every sequence of real numbers satisfying the conditions
of Theorem 2.3.1 will be called a moment sequence. For example, for any
w € H(D, D) the sequence (||¢™||1)nen which coincides with the sequence
{le*" | z2)nen (see [2]) is a moment sequence. More precisely, owing to the
analyticity of ¢, we shall call this sequence an analytic moment sequence.

The condition A™F(k) > 0 is not always easy to check; we can sometimes
use the following proposition in which F(®) denotes the nth derivative of F.

PROPOSITION 2.3.2. Suppose that F : [0, 00 — R s a C°°-function such
that F(0) = 1 and sign F(™ = (—1)* for each n € N. Then (F(n))nex is o
moment Sequence,

This proposition is a consequence of Theorem 2.3.1 and of the following
formula which one can prove by induction:

1 1
A"F(k) = (-1)" S S FO k4 ty 4 .o+ 1) diy .. diy,.

] 0
——

(n times)

The analytic moment sequences were characterized among moment se-
quences {see [6]) by the condition

=1
> —A"F(0) < co.
n=1 n

In general, this condition is difficult to check. However, an appeal to the
following theorem (see [6]) enables us to avoid this problem. It provides an
analytic moment sequence close to a given moment sequence.

THEOREM 2.3.3. Given any moment sequence (F(n))nen, there is ¢ fune-
tion p € H(D, D) such that

LF(n) — |lo™]l1] €1/2™  for each n e N.
This theorem has the following corollary.
COROLLARY 2.3.4. If (F(n))new s @ moment sequence such that
Jim, F(n)=0 and 2"F(n)> M >1, asn— o,

- then there is a function ¢ € H(D, D) such that ||p™|l1 ~ F(n).

Note that in the conclusion of the last corollary we necessarily have

le*(e®)] < 1 almost everywhere.
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In the rest of this paper ¢ denotes any function of H(D, D) satisfying this
condition.

3. (H?, Lp)-ob composition operators

THEOREM 3.1. The following are equivalent.
(1) C, is {HP, Ly)-ob.

in"””’“lllw“lll <oo if hz) = a9
(2) ¢

Ylerla/n<oo  if hiz) =log" e
n=}
Proof. Since |g*(e*?)| < I almost everywhere, it follows from Theo-
rem 2.2.1 that
M@w (€Y= sup |[(fou)*(e)= sup £ (" ()]

fEEHP(Ull) fEEHF [071)
L= [e*(®)P)1/e.
If h(z) = 29, the result is shown in [5]. In the case h(z) = log™ z, we have
i 1 i
h(Mz, (7)) = ——log(1 - " () ")

This equality, together with the estimates 1 < 1+ |p*| < 2, implies that
Mg € Ly if and only if log(1 ~ |¢*|) € L*. Using the Taylor series of the
function z — —log(1 — x), we get

Z|‘P (6

Finally, by Beppo Levi’s theorem and the equality ||, = ||f]l» for all
[ € HP (see [2]), we conclude that (1) and (2) are equivalent. »

—log(l — |¢* (e¥)]) = for almost all ¢*¢.

We easily see from the definition and the inclusion L? C log™ L that the
(H?, L)-ob corposition operators are necessarily (H?, log* L)-ob. But the
couverse is not true, as confirmed by the following proposition.

PROPOSITION 3.2. There is a one-parameter family of composition oper-

ators which are (HP,log* L)-0b for all 0 < p < co and (H?, 19)-0b for no
0 <pg<oo.

Proof In order to show the existence of such a family, it is sufficient
to apply Corollary 2.3.4 to a one-parameter set of appropriate moment se-
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quences {Fz(n)Inen satisfying

(o) ZFB()<OO and ZFﬁ(n =00 Tforal0<a<l.

n=1

Then an appeal to Theorem 3.1 will complete the proof.
For example, any sequence similar to (logn)™# with 8 > 1 satisfies (¢).
For each 3 > 1 the sequence (F{n))nen defined by

Fs(n) = (1 +log(n + 1)) 7P

satisfies (¢) and is a moment sequence {apply Proposition 2.3.2 and Faa di
Bruno’s formula recalled in [6] and used in the proof of Proposition 4.6).

By Corollary 2.3.4, there exists g € H{D, D) such that |[¢§l1 ~ Fs(n)-
Clearly then, (Hﬂpgﬂl)neN satisfies (¢). Finally, the conclusion follows from
Theorem 3.1. n

Here is an explicit construction of many (H?, L2}-ob composition oper-
ators induced by functions ¢ € H(D, D) such that |[¢]|eo := supj,<1 [#(2)]
=1, for all 0 < p,g < co.

Fix a > 0. Take a measurable partition (A4;);en- of the unit circle such
that (m denoting the normalized Haar measure)

m{A4;) = e*(e” VT — gmoVTFY),
Consider the function g, defined on 81 by

ga(eit) = Z e—cx/\/j-_'xj (6“‘),
3=1
where x; denotes the indicator function of A;. We have the following propo-
sition.
PROFPOSITION 3.3. The outer function p, defined on D by
1 ¥ it ,

[

it
0alz) = exp (% (S) P logga( )dt)

induces an (HP, L?)-ob composition operator for all 0 < p,gq < co.

Proof. Since
[=.4]

—log ga(e Z i),

1
by integration we get

Ly > & S mi4y)
— \ =1 —m(4;)) <o m(A;) = o
27T§J Oggcx ;\/" o 7
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So log g, is integrable on 8D and we can take the related outer function ¢,
(defined as in the statement). We have

()| = exp(u(2)),
where u(z) is the Poisson integral of the non-positive function log g (0 <
ga < 1). Therefore ¢ € H(D, D). Recall (cf. [2], p. 5) that
u*(e?) = log go(e?)  for almost all ¢,
Consequently, we find that
lon(e®)] = ga(e®) <1 for almost all ®.

In particular, we have ||¢a]lcec = 1. (Obviously, the case ||¢[e < 1 pro-
vides an (H?, L9)-0b compaosition operator for all 0 < p,g < oo, Indeed
in this case, the maximal function Mf‘w is bounded and hence g-integrable
on 8D.)
For the rest of the proof, observe that
2n

R P ACHL

n

o0
=Y e Vi) + Y e Vim(Ay)

J=1 de=ntl
n oo
<eTVRS Tm(4) + Y. mldy)
J=1 F=n+1

e S P
This implies that

ZnQ/P—lulpnﬁl < oo forall 0<p,q< oo

=
An appeal to Theorem 3.1 completes the procf. m
REMARK. In the proof of the last proposition, we only need a majoriza-

tion of the analytic moments. To find a minorant of the same form, we
proceed as follows:

. 1 2 o 2n~1 —an/ ]
leall = 5= fon(enydt> Y e m(A;)
0 i=n
2n—1

>e™*VE N " m(dy)
Jj=n

=@ nea(e—a\/ﬁ_e—aﬂﬁ} ~ gRpT 20T
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4. (N, Lp)-ob composition operators
LeMMA 4.1. (1) For every s > 0, there are by, s > 0 such that
Cs 2s
b, exp (—) < sup  |f(2)] <exp (—) foroll z € D.
12| FEBN(0,8) 1— ||
(2) For every p > 0, there is s, > 0 such that

sup  |f(2)| > exp (L) forall s > s, and 2z € D.
FEBN(0,) 1 |z]

Proof. (1) Let f € By(0,s). By Lemma 2.2.1(2), we have
2s 2s
< — | -1 RSN —

which yields the right-hand inequality.
To show the left-hand one, set # = 1/(1 4 2/7) and, for each s > 0, take
a small number £ = ¢, € 0, sn[. There exists § = d; > 0 such that

(%) - e —1j<e for all w with |w| < 4.
Set now ¢ = ¢, = min {s —&/n, 3(1 - cose)é}. The function f, defined by
folw) 1= exp (%ﬂ) -1

belongs to Br(0, s). Indeed, for any 0 < r < 1, we have

3 § Bl + (e ) = 5 | g1 e

1 .
+ o { log(1+|fa(re)) df.
i [8]<e
On the arc {&* : 8] > ¢}, we have
i1 —~re??|>1-~rcosf>1—cosf > 1—cose.
Therefore, we get
c(1 + retd)
1—ret
Hence, we deduce by (*) that
|fs(ret®)| < e for all & with 8] > .
On the complementary arc {e** : |8] < £}, we use the relation

log(l+2)<l+logfa (z>0)

2¢ <.
— 1-cose
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to obtain
log(1+ | fs(re)]) < 2 + cPr(e").
Consequently,

2
S log(1 -+ | fs(re®)|) df < 1og(1+a)+ +e

—m

—I—C‘SS.

ARy

Thus, fs € By (0,s).
Now, for all = =_Jz|e”'"°" € D, the function g, defined by g,(w) =
fs(e™*w) is also in Bar(0,s), since ||gs|lxv = [|fsllar- On the other hand,

we have
0s(2)] = exp ({L}T@) S 13> exp (TT) o

> (1— e exp (1—:‘?—|z—|>

Hence, for all z € D,

e ()] 2 lan(@)] 2 besw (=),

fEEN (0:5)

where b = b, :=1—e°.
(2) For all p > 0, let k; be the function defined on D by
p(1 -+ w)
kp(w) = eXp (—']T—_"";;"“) .
Since _
log(1 + |kp(re®®)]) < 1+ pP,(e'),

integrating and letting r tend to 1 ensures that {|kylin < 14 p =: sp. Now

as in the proof of (1), for all z = [z|e"* € D, the function l : w - kp(e ™ w)
belongs to Bas(0, s,) and satisfies

[{p(2}} = exp (W) = exp (—fm?fz—l)

Hence, for all s > s, and z € D, we have

()2 (o) > e ()

fEEN(O,S)
This completes the proof. =

REMARK. We can show that the constants b, and ¢, given in Lem-
ma 4.1(1) satisfy

by ~ cg = O(s5/2),
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THEOREM 4.2. The following are equivalent.

(1) Cy, 4s (M, log™ L}-ob.

(2) Cyp is (H?, LP)-0b for some and hence all 0 < p < 0.

(3) Cp : H* — H? is Hilbert-Schmids.

(4) Xonio ™l < 0.

Proof. Werecall that (2) and (3) are equivalent to (4) (see [5] and [14]).

(1) is nothing else but the integrability of all functions log™ (M (C,, 5))
where s > 0. For almost all e, we have

M(Cpys)(e’) == sup  [F(e"(e?))].

FEBA(0,9)
By Lemma 4.1 there exist by, ¢s > 0 such that
2s
1- pr*(ei")l)

be exp (I—_I;Tgﬁ) < M(C,,s)(e¥%) < exp (

almost everywhere on 8D. On the other hand, since

c ¢
logt (b exp (—S——m)) = lo (1+bs exp (—8)> -1
TP Tl ()] * 1=~ (&)]
I
> 4 logh, — 1,
1= ()|

we conclude that

Cs 2s
————~+logb 1< log" MGy, 8)(e) €
T o~ (&) (Cor9)(e) < Ty amy)

almost everywhere on dD. Now expand ; T(e‘r and apply Beppo Levi’s
theorem to conclude that

o0
M(C,,s) €logt L if and only if Z [le*™ |z < o
n=0
Finally, we deduce Theorem 4.2 by using the well known equality [¢™|1 =
lle* ™|z =

The next lemma will play a crucial role in getting a necessary and suf-
ficient condition, in terms of the analytic moments, for the operator C, to
be (N, L9)-0b.

LeMMA 4.3. For all p > 0, there are constants c1(p),ca(p) > 0 such that

exp (1 z) = gan(p)zn

e1(pIn "3 4e3VP < a,(p) < ea(p)n 3/ 4>V for all n € N,

for all z€ D,

with
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Proof For all z € I, we have

r = 1—2)7F
EXp(l—z) =103 m)

k=1
3 1= L (nd k-1
w1+20;1—!];p NS

N N +k)
z::}?; Hk'n CES 2

_ 1 ipk-i—l (n - k)!
El(k -+ 1)!

Z prin+1)(n+2). . (n+k)

kU E+ 1)
2. phtlpk D 1/2
= Zkr (k+ 1)! (;) I, (24/np).

Here I; is the modified Bessel function J;, defined by
0 (/) 142k
Ii(z) = :«Z:o %’(/k—)-knl_)'
Now, it is known (cf. [7], p. 123) that
Ii(z) ~ e*(2m2) 72 as |z] — co.
Consequently, we find a minorization of the form
an(p) Z c1(p)n /4272,
Moreover, if we set

uk:pk+1(”‘|‘1)(n+2)..,(n+k)

we can find A, > 0 such that

Ukt p(n+k+1) <p(n+k+1)
ug  (k+1)(k+2) = k2

l\.'J|l-‘

IR for all k & N,

for all k > Ay\/n.
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So the rest of order Ap/n of the series 3, - ur satisfies

Z 'u.;c=o( Z uk) as n — oo.

kzApn <Ay
On the other hand, for all £ € N, we have
k41, k ktt gk
g = pTn 1+l l-l—k < p ekz/'n_
El(k+ 1) n k'(k+ 1)
Hence, we get

an(p) = Z uy + Z Up

k<Ap/n k> Ay
<2 Z u,,  (for n large enough)

k-l—l k
Z W (fOI‘ a constant ¢ > O)
k< Ap v/

o pk-l-lnk

1/2
r
< e = L{2 .
e T {(2) neem
This and the property of the function I; lead to a majorization of the form
an(p) < ca(pin~3/*e*V"P u
REMARK. We can show that the constants ¢; (p) and ea(p) in Lemma 4.3
satisfy
ci(p) =61 ifp=pr >0,
e2(p) €83 ifp < pa <oo.

THEOREM 4.4. The following are equivalent.
(1) |le®||s = O(e™*V™) for all t > 0.

(2) C,, is (N, L9)-0b for all 0 < g < co.

(3) C, is (N, LY)-0b for some 0 < ¢ < co.

Proof. {1)=>(2). First of all, we remark that (1) is equivalent to
(19 Zetﬁﬂtpnlll < oo forallt>0.

n=0

Let ¢, s € ]0,00[. By Lemma 4.1(1) one has

() MG, 8)(e?®)= sup If(w*(eiﬂ))léexp(ﬁf(jﬂ)-

fEEN (0,8}
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Moreover, Lemma 4.3 provides a positive constant ¢a(g, s) such that
W o (i) < ol Zn /T )

1 — | (e%)] =
Now, by (1') we get the convergence of the series

PG

n2l

So by Beppo Levi’s theorem and the equality [|[¢" |1 = |l¢*" ||1, the function
oG

Z RN

n=1

|e*|™

is integrable on 8D. By (i) and (ii), this implies that the maximal function
M(C,, s) is g-integrable on 4D. Finally, (2) follows because s and ¢ are

arhitrary.

(2)=(3) is immediate.

(3)=>(1). Let ¢t > 0. It follows from (3) that

M(C,,s) € L&D, m) for all s > 0.
By Lemma 4.1(2), there is s(2, ¢) > 0 such that, for all s > s(¢, ), we have
~ ; NY £2/(4q)
MG a)e®) = s (o) 2 e (i),
? FEBN(0,8) 1 — |*(ef®)|

Now the g-integrability of M (af,, s) on OD (for s > s(t,¢)) implies the
integrability of the function exp (—L[) Hence, by Lemma 4.3, we get the

I
integrability on 8D of Y oo | n~%/4e!V™|*|. So, by Beppo Levi’s theorem
and the equality [[¢™]]; = ||¢*"||1, we obtain the convergence of the series

YTt
Finally, since t is arbitrary, (1) holds and so does (1). n

The next corollary is an immediate consequence of Theorems 4.4 and 3.1.

CoOROLLARY 4.5. If C,, is (N, L9)-0b for some 0 < q < oo, then it is
(HP,L%)-0b for all 0 < p,q < 0.

The converse of Corollary 4.5 is not always true. More precisely, we have
the following.

PROPOSITION 4.6. (1) There is a one-parameter family of operators Co
with [|¢llee = 1 which are (N, L9)-o0b for all 0 < ¢ < co.

(2) There is a one-parameter family of composition operators which are
(H?, L7)-0b for all 0 < p,g < oo and (N, L%)-0b for no 0 < g < co.
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Proof We are going to show (1} and (2) simultaneously. In order to
show the existence, it is sufficient to apply Corollary 2.3.4 to a one-parameter
family of appropriate moment sequences. We get the first set once we exhibit
moment sequences (F,(n))nen satisfying

(o) Fyin) = O(e~*v™)  for all o > 0.

The existence of the second set will be ensured by those sequences {(F., (1) Jnen
such that

™ VP < Fo(n) < cin™®  for all @ > 0 and n € N*.
Given 0 < v < 1, we consider the function G = G, defined on [0, o[ by
Gz)=1-{z+1)7.
Then F' = F, = expo G is of class C* on [0, cof. Apply the formnla of Faa

di Bruno:

k1 17 Rz kn

G G
(n) — (32 ki) el

P = S aten=ea(G) (F) - (5)

, kn, such that

where summation is over all integers k1, ...

Zik,; = n.
Noting that sign G\%) = (—1)* for each k € N*, we deduce that
sign F(W = (—1)f1(—1)%2 (1) = (=1)" foralln € N".

Now since F(0) = 1 and F > 0, Theorem 2.3.2 asserts that (F(n))nex is 2
moment sequence. Hence, by Corollary 2.3.4, there is ¢ = ¢, € H(D, D)
such that

(ee) [™]lx ~ F{n).
The sequences (F,(n))nen with 1/2 < v < 1 satisfy () and so do (because
of (ee)) the corresponding analytic moment sequences. Therefore, by Theo-
rem 4.4, the operators G, (1/2 <y < 1) are (N, L?)-ob for all 0 < ¢ < oo.
This completes the proof of (1).

On the other hand, the sequences (F,(n))nen with ¢ <y < 1/2 satisfy

e~V = o(F,(n)), F,(n)=o0(n"%) foralla>0.
So, by (ee) we deduce that, for each 0 < vy < 1/2,
eV < okl £n™® forall @ >0andn € N

Now by Theorem 3.1, one easily sees that the second inequality implies that
every Cp, (0 < v < 1/2) is (HP, L?)-ob for all 0 < p,¢ < oc, while the first
estimate, according to Theorem 4.4, shows that those composition operators
fail to be (A, L9)-ob for any 0 < ¢ < oo. This completes the proof of (2). m
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REMARK. There is another way to show (1) of Proposition 4.6. Indeed,
as in Proposition 3.3 we can give an explicit construction. Let & > 0 and
1/2 < -y < 1. Consider a partition (4;);en» of the unit circle such that

m(A;) = e¥(e”®" — g7l

We define the function g, on 8D by

o0

Gary (™) 1= e s,

i=1
where x; denotes the characteristic function of the set A;. Now taking the
outer function ¢, as in Proposition 3.3 and using the same arguments
given in the proof of that proposition, one can deduce by Theorem 4.4(2)
that the operators C,, _ are (A, L9)-ob for all 0 < ¢ < oc.

The following theorem says that the (A, L?)-order boundedness of C,, is
not stronger than its compactness from A into HY.

THEOREM 4.7. The following are equivalent.

(1) llg™h = O(e=*™) for all A > 0.

(2) Cp: N — HY is compact for all 0 < ¢ < oo.

(3) Cp : N — HY is compact for some 0 < g < c0.

(4) Oy : N'— HY is bounded on every bounded set for some 0 < q < oo.

Proof (1)=>(2). As in [1], we say that C, is compact from A into H?
if, for every s > 0, the image under C,, of Bps(0, 5) is relatively compact in
H4, and by a normal family argument this is equivalent to the following:

() fo = 0and | fully < s = ||Cp fallg — 0.

The hypothesis implies that [¢*(e®)| < 1 almost everywhere. So, if g, =
fn 0, then g} = f, o ¢* almost everywhere and

1 2 1 2T
5 Y 1n (eI = —— | |£alp"(e?))]7 B
o 0

1 27
) a6 =: = | M (%) ab.

Now, M € L', since by Lemma 4.3 and Beppo Levi's theorem,

2T
1
S—Sexp( 23q
21 2

1Ml =) an(2sg)lle"[1 € 3 ca(259)e® T 7|, < oo

n=0 n=0

By the hypothesis (with A > 2./25g), this proves that ¢* is in L7, therefore
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gn € H? with |lg.]l; = |lgillq- Moreover, if 0 < A < 1, then

HgnEISS% | |fn(w*(ei9})|qd9+% | Mo

BN L[ >»
1 )
sup |Fn(w)|? + 3 S M () de.
|| <A L
[ |>A
It then follows from the hypothesis of () that

 Co 1 i@ .
(-4 B lgallg < o= § M(e%)df = o().
l* |>A

IA

But o(A) — 0 as A — 1, since
12 .
oA) = 5= | M(e®)1ia a0y (%) 08,
"o
where A()) = exp(2sg/(1 — A)} — oo as A — L. Therefore, letting A tend to
1 in (*+) gives lim |jgn||? < 0, which proves () and thus the assertion (2).
(2)=(3)=>(4) is obvious.
(4)}=5(1). Fix A > 0, let s > 0 (to be chosen later) and set
s(1+ e""‘z))

alz) = exp ( gy

From the inequality log(1 + z) < 14 logt z, it follows that [|gallx < 1+ s.
Therefore, ||gq 0 ¢|lq < M., where M, depends only on s. That is to say,

(sreien

127r
o )

or equivalently (using the identity 32 = —1 4+ 2-)

1z l-—=z

dg < M?

2w ioe, ok (il 2
s (1 + e (7))
2 g <P ( 21— eleg*(ef?)
1 2w, oo ) ) 2
=5 S E an{5)e ™ ™ ()| df < M.
0 'n=0

Now, integrate with respect to der/(27), and apply Fubini’s and Parseval’s
theorems to get

Y lan(s)Plle™ |y < M.

n={}

Fixing g, we obtain in particular
le*™ |y = O(|an(sq/2)] %) = O(n*/2e~ V™),
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Since ™[l < [l@"]l2 = |@?" |1/, we have
H(anl — O(n3/4e_2"”sq}‘
Now adjusting s so that 2,/3g > A, we get
le™[ly = 0(e*™),
ag desired.

We conclude with the following question. If we assume that Cy, : A — HY
is continuous, we can prove that [|¢"||1 = O(e™Y™) for some A > 0, which
characterizes the continuity of C, : F* — H? (see [9]). However, we have
not heen able to decide if this is true for all A > 0.
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