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Most expanding maps have
no absolutely continuous invariant measure

by
ANTHONY N. QUAS (Memphis, Tenn.)

Abstract. We consider the topological category of various subsets of the set of ex-
panding maps from a manifold to itself, and show in particular that a generic & ! expanding
map of the circle has no absolutely continuous invariant probability measure. This is in
contrast with the situation for C* or 31 expanding maps, for which it is known that
there is always a unique absolutely continuous invariant probability measure.

Let X be a compact boundaryless Riemannian manifold with Rieman-
nian volume A. We will write E”(X) for the collection of all C" expanding
maps from X to itself, and will be mainly interested in F'(X). We will be
interested in the existence and properties of invariant measures for maps
in E'(X) which are absolutely continuous with respect to A. We will work
both with absolutely continuous invariant probability measures (which we
abbreviate to a.c.i.p.) and o-finite absolutely continuous invariant measures
(which we abbreviate to a.c.i.c.) By a.c.i.e. we will always mean a o-finite
ahsolutely continuous invariant measure which is not a finite measure. An
absolutely continuous invariant measure will mean either an a.c.i.p. or an
a.ci.c. The density of an absolutely continuous invariant measure is the
Radon~Nikodgm derivative of the measure with respect to A. _

If T is a member of E2(X), it is known (see [7] and [5]) that T has a
unique a.c.i.p. This measure also has strong ergodic properties. Kreyzewski
([6]) showed that the set of C* expanding maps which have an a.c.i.p. with a
continuous density bounded away from 0 is meagre in E*{X), but it is clear
that there are a number of ways in which this can fail. In [10], it was shown
that in the case where X is the circle, there is a dense set of C? expanding
maps with an a.c.i.p. whose density is not bounded away from 0, nor from
co. In [3], an example of a €' expanding map of the circle was produced
for which there is no a.c.i.p., but there was no information about the size of
the class of maps with this property. This example was later shown to have
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an a.c.i.o. (see [4]). An example of a O expanding map with no a.ci.c. or
a.c.i.p. was given in [2].

In this paper, we show that the class of expanding maps of the circle
which have no a.c.i.p. is a dense Gs set (i.e. is the intersection of countably
many dense open sets), and also prove a statement in the general case where
X is a manifold about the class of expanding maps having more than one
absolutely continuous invariant measure.

If T is an expanding map X — X, let L be the corresponding Ruelle-
Perron-Frobenius operator with respect to A. This operator may be defined
by the equation

Jsrlgldd=\foT gdx
for all g € L*(A) and f € L*°(A) and is given explicitly by the equation

-~ fy)
L',T[f](fﬂ) = QE;M |T’(y)|‘

If T preserves an absolutely continuous invariant probability measure
u, write Dr for its Ruelle-Perron-Frobenius operator with respect to .
This operator satisfies { fDrlgldp = {fo T - gdy for all g € L'{u) and
f € L>=(u) and is normalized (Dp[1] = 1}. If i has density A, then Dz and
L7 are related by the equation Dr{f](z) = Lr[h-fl(z)/h(z). If ¢ : ST — S*
is a diffeomorphism, T is an expanding map with absolutely continuous
invariant measure i and S is the conjugate map ¢ o T o ¢~ ! preserving the
absolutely continuous measure 1o ¢!, then the operators Dg and Dr are
related by Dsig] = Drlgo @] o ¢~L. The reader is referred to [11] for a fuller
discussion of the properties of Ruelle~-Perron-Frobenius operators.

A measure u (not necessarily invariant) is called ergodic under T if
p{A AT 1A) = 0 implies that p(A) =0 or u(A®) =0.

THEOREM 1. If X is o compact Riemannian manifold, then the set of
Cl ezpanding maps T : X — X which are ergodic and conservative with
respect to Lebesgue measure is residual.

This should be compared with a result of [8], which is stated in terms
of g-measures (the set of g for which there is more than one g-measure is
meagre).

Since X is assumed to be a compact space, it is known that C{X) has a
countable dense subset, Let f1, fo, ... be a countable dense set of functions
in C{X) with the uniform norm topology. Set

_ LAl Lilfnl(e)
i ={T € 20 s T at

This is clearly an open set in E*(X).
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Next, set
R= ﬂ m U Am,k,n~
m n k
Since | J, Am,k,n 13 open, R is a countable intersection of open sets. We now
prove some lemmas about R and then apply them to complete the proof of
Theorem 1.

LEMMA 2. The set R is dense in FY(X) so R is a residual set.

Proof. To show this, we show that any C? expanding map belongs to R.
Let 7" be a C? expanding map. Then there exists a continuous function h
such that C[1] converges uniformly to h (see [11] for a proof). Also, for
each n, L%[f,] converges uniformly to ¢,h for some constant ¢, (see [5]).
Since & may be shown to be uniformly bounded away from 0, it follows that
for each m and n, T' € U, Amk,n, and so T € R as required. m

LEMMA 3. The set R (defined above) consists of those T in E*(X) for
which LB[f)/ L[] converges uniformly to { f dX for each continuous func-
tion f.

Proof. Given T as described in the statement of the lemma, it is clear
that for each n,

LE[fn] L[ fn]
S SU TR ] TRk TR
Tt follows that for each m > 0 and n > 0, there exists a k such that T €
A k,m, and accordingly, we see that T € R.

Conversely, if T € R and f € C(X), let 0 < € < 1 be given. We first
note that £X[f]/£E[1] is uniformly convergent to | fdA if and only if the
same conclusion holds for f +c for any constant ¢. We may therefore assume
without loss of generality that f(z) > 1 for all z.

Let ax(f) and be(f) be defined by

LE1f]

ag(f) = inf —== Lelf] and by (f) == sup Eh

ch[1]
We then have

(1) ar (F)LEL] < L5(F] < b (LRI

Applying Cr, we see that ax(f)LE 1] < CEPMf] < be(F)LE1] and it
follows that ap(f) < ax+1(f) < bwl(f) < bk,(f). Hence, ap{f) is an in-
creaging sequence and bi(f) is a decreasing sequence. Integrating (1), we
see that ax(f) < §fd\ < be(f). Tt follows that a(f) and by(f) are con-
vergent sequences to a(f) and b(f) say, where a(f) < {fdx < b(f). It is
then sufficient to verify that by(f) — ax(f) tends to 0 as &k tends to oc.
To see this, note that by assumption, we have by{fn} — an(fn) — 0 as
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k tends to oo, so since ag(fn) < {fadh < Di(fn), we see that ar(fn)
and by(f,) converge to | f, dA as k — oo. Now as the f, are a dense se-
quence, there exists an n such that ||f — fu| is bounded above by &/2.
Since min f, > minf —¢/2 > 1 — 1/2, on dividing through by f,., we
see that ||f/fn — 1| < ¢ Then we have (1 —¢)fn, < f £ (1 + &)fn.
It follows that (1 — &)ap(fn) < ax(f) < be(f) < (1 + e)be(frn), so that
b(f) — a(f) < 2e§fndl Since f, may be chosen arbitrarily uniformly
close to f and £ was arbitrary, it follows that a{f) = b(f) = {fdX as
required. m

We now apply these lemmas to complete the proof of the theorem.

Proof of Theorem 1. We show that if 1" € R then the volume measure A
1s ergodic under 7. Suppose that this is not the case. Then there exists a set
A such that A = T~14 up to a set of measure 0 and 0 < A(A4) < 1. Since A is
non-singular with respect to T', we may assume that A = T A by modifying
A on a set of measure 0. Applying T, we now see that 4 = T'(A), and
similarly, we get A° = T(A%). Now let g1 = xa/A(4) and g2 = x40/ A(A°).
Then | g4|; = 1 for { = 1, 2. Further, since g1 is supported on A, the images
L2[01] are of mass 1 and are supported on T™(A4) = A. A similar statement
is valid for ps and we deduce that ||L3[e1] — L% [g2]||1 = 2 for all n. However,
since C'(X) is dense in L'(X), there exist two positive continuous functions
f1 and f2 each of mass 1 such that ||o;— fi]|; < 1/2. By Lemma 3, we see that
L3 fil/ £3]1] converges uniformly to 1 so (L&[f1] — L[ fa])/LE1] converges
uniformly to 0. Multiplying through by £}[1] and integrating shows that
NLZ[f1] — L3 [f2]ll1 converges uniformly to 0. But now we have

2= |[L3[ea] — L]ea]llx
< 1Lples] = LR +LE[A] — L[ fallln + I1£31f2) — L3 [e2]|l1
< 3+ ICRA] ~ L3Rl +5 <2 for large n.
The second inequality follows from the fact that | Lz|; = 1. This contra-
diction establishes that X is ergodic as claimed.

To show that a residual set of C' expanding maps is conservative with
respect to Lebesgue measure, we use Proposition 1.3.1 from [1], which states
that C, the conservative part of a transformation T, is equal (up to a set of
measure 0) to {z : Y- LB[f](z) = oo}, where f is any strictly positive
function which is integrable (with respect to ). In this case, we take the

function f to be 1. We then see that to show that T is conservative, it is
sufficient to show that

Te ﬁ D {T:iﬁ%[l}>N}.

N=1n=1 i=0
This set is clearly a G5 set and it remains to show that it is dense. To see this,
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note that if 7" is a O? expanding map, then L2[1] is uniformly convergent
to a strictly positive function h. It follows that T belongs to the set, w

COROLLARY 4. The set of C* expanding maps preserving more than one
absolutely continuous invariant measure (a.c.i.p. or a.c.i.0.) is meagre.

Proof. We have shown that the set of ergodic conservative maps is resid-
ual. These maps have at most one absolutely continuous invariant measure
(see {1], Theorem 1.5.6). The corollary follows. m

We now specialize to the case where X is the unit circle. We will identify
the unit circle S with [0, 1), In the case of X = S, we are able to show that
the set of C* expanding maps which have absolutely continuous invariant
probability measures is a meagre set. Set

S={T'e E'Y(SY): liminf A({z : L3[1](z) > 1/2}) = 0}.
LeMMA 5. The set § contains o dense Gy set.

Proof Let f(z) be the continuous function which is 0 if z < 1/3 and 1
if £ > 1/2 and linear in between. Then define a family of continuous maps
from E'(S*) to R by

An(T) = F(L7 1] (z)) dA ().

Then it is clear that

iminf A, (T) =0 Te () () U {T : Ap(T) < %}
k=1m=1ln>m
This set is a G5 set and liminf A, (7") = 0 implies that T € S. It remains to
prove that the set of T’ such that liminf A, (T") = 0 is dense in E*(S§1).

Since B%(S') is dense in E*(S'), it is sufficient to show that any
E'-peighbourhood of any map in E?(S') contains a map 7" such that
liminf A,{T) = 0. To show this, we use Baire’s theorem and show that
in any El-neighbourhood N of any map S in E?(5), for any £ > 0 and
m > 0, there is an n > m and a T & N guch that A,(T) < &. This then
shows that (), 51T : An(T) < 1/k} is dense in E*(S7).

Now pick Sp in E?(S'). Since Sy is a €2 expanding map, it preserves
an absolutely continnous probability measure pig. Let the density of pg with
respect to A be . It is known (see [5]) that ¢ is a O function. Setting
¢~ (@) = ug([0, =) and letting Ty (z) = ¢~ 0Syod makes Ty a C? expanding
map preserving A which is conjugate to S;. (To see that Ty preserves A,
note that A = ug o ¢, and to see that Ty is expanding, note that any C*
map preserving A is automatically expanding.} We then find a small C?
perturbation of Ty and apply the conjugacy to get a map close to Sy. The
mayp Sy, density o and map ¢ are fixed for the remainder of the proocf.



74 A.N. Quas

Fix £ < 1 and let P be the natural partition of S* into the branches of Tp.
We now introduce a collection of quantities which depend on the choice of e.
These will be denoted by, for instance, s(¢) when they are first introduced,
and then simply by s for tidiness.

Since T is expanding, there exists s(g) > 0 such that the intervals of
P = \/f;(],L Ty “D are of length at most £. Next, let £ be the Ruelle—Perron—
Frobenius operator for the map Tp with respect to A. Since Tp is conjugate to
Sp, the relationship between the Ruelle-Perron—Frobenius operators shows
that £ f converges uniformly to § f dA for any continuous function f. Since
the functions x 4 for A € P, may be approximated above and below by con-
tinuous functions with arbitrarily small L' difference, it follows that £™ x4
converges wmiformly to A(A) for A € P,. Since |P,| is finite, there exists a
k(e) > 0 such that for each A € Ps, |L¥xa — A(A)| is uniformly bounded by
eM(A). Tt is known that U% L¥(f) = Ex[f|T; "B] where Ur(f) = f o T (see
[9]) so it follows that |Ey [x 4|75 *B]— (A} is bounded above by eA(A). Now
pick a 8{) > 0such that (1+68)F < 1+¢ (it then follows that (1-8)* > 1—¢)
and let f(z) be a continuous function with || f{jec =1 and Ex [f|757 8] = 0.
Set G(z) = 1+6/(z) and write G (z) = G(z)G(Ty(w)) - .. KI5~ (x)). We
will specify n later, but note that G has the property that fgrtdx =1
because

fa™ax = {G2)G(To(x)) ... G(T ™ (=) dA(o)
\EAIG T ' B(@)G(To(2)) . .. G(Ig ™ () dA (=)
{c(To(@)) ... G(I5H e) dA(z)

VEAIG o Th| Ty * Bl (2)(T5 (2)) - .. G(Tg ™ (=)} dA(z)

i

=1.
Also, if A € Pg, then
fomdy< {1 +6) xaGeTf...GoTg™ dA
A

< (1+ ) | EAlal T *BIG o T5 ... G o TgH dA

< (L+e)PAA)|GeTh. .. GoTy ™ dr

= (14¢&)27(4).
Similarly, {, G*™ dX = (1 — £)*A(4). Now, define a homeomorphism 6 :
5 - St by b(z) = S[O,a:] G} d). Since the interval [0, z] consists of a union
of elements of P, together with a remainder interval which is contained in

a single element of P, we see from the above that [#(z) — z| < 6¢ for each
ze S
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Since we have {G'dA = 1, and G is non-constant, we have, by Jensen’s
inequality, {log GdA < 0. Let a = —{logGd). Note that log G™ (z) =
log G(z}+...+log G(T&L_l (z)). By ergodicity of A under Ty, we deduce that
for Malmost all z, (1/n) log @ (z) = (1/n)(log G{z)+. . .+log G(Ty ~(z)))
converges to —c. In particular, there exists a K such that for n > K, there
exists a set of measure at least 1 — e inf p/8 on which log G (z) < —na/2.
Now choose n > K such that exp(—nea/2) < /2. Then G (z) < /2 for =
in a set of measure L—& inf g/8. It follows that { min(G™ (z), 4/inf p) dX < &.
But we have

G(n) < IIli.ll(G(m 3 4/11’1f Q) + G(H)X{m:G(ﬂJ(m)?A/inf g}

Integrating, we get
(2) SG(H)X{m:G(")(m)zéﬁnf@} di = S(G(N) - min(G(n)u 4/inf 0))dr>1—e.

We now use @ to define a map 7'(z) conjugate to Tp by setting T' =
0o Ty o6t This technique was used similarly in [10]. Since # can be made
arbitrarily close to the identity and the map sending a homeomorphism to
its inverse is continuous, it follows that as ¢ is reduced to 0,1 approaches
Ty in the uniform norm. To establish C* convergence, it is also necessary to
establish that 7" approaches T} as £ is reduced to 0. To see this, note that

T’(.'L') _ 9I(TG(6_1$))T6(9—1(:E)) _ G('n) (T(](e_l(m)))

T5(6~* (=)

- 12) GO (01 (2))
n (g1 —irn
- SO Do - L Do

As ¢ is reduced to 0, T§(62(z)) converges to Tj(x) and & tends to 0, so the
first term converges to 1. It follows that as ¢ is reduced to 0, the map T'(¢)
converges to Ty in the C* norm. The map T preserves the absolutely continu-
ous invariant measure vp = Ao, This has density gr(x) = 1/G™ (87 (z)),
so in particular, pp(z) < infp/4 when G (6~ (z)) > 4/inf g That is,
{z : pp(x) < inf p/4} is O(A) where A = {z : G/ (z) > 4/inf ¢}. It is not
hard to see that A(§(A)) = §, G(™ dX, but by (2), we have A(#(4)) = 1 —e.
It follows that op is less than inf o/4 on a set of Lebesgue measure at least
1—e

Now, letting S{g) = ¢oTo¢™t, §is a C* expanding map preserving the
abgolutely continuous invariant measure vg = vp 0 ¢~*. The density of this
measure is given by os(z) = or(¢ (2))/¢' (#*(z)). This is less than 1/4
on the image under ¢ of a set whose vp-measure is at least 1 — g, s0 we see
that pg is less than 1/4 on a set of vg-measure at least 1~ ¢/info. Clearly,
as ¢ is reduced to 0, S(e) converges in the C* topology to So (s the map
TrspoTop b is C* continuous) and the density gg is less than 1 /4 on a
set of measure arbitrarily close to 1.
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Now S is a ¢ expanding map and may be chosen to be arbitrarily close
in the C' topology to Sp. It is also conjugate to Sy and it follows from
this that the Perron-Frobenius operator Dg for S with respect to vg is
conjugate to the Perron—Frobenius operator for 5p with respect to po. This
operator inherits the property that DE[f] converges uniformly to { f dvg as
n — oo, Now the Perron—Frobenius operator for § with respect to A is given
by L5 = My DsM, I where M ¢ is the multiplication operator sending a
function g to fg. It follows that £%[f] converges uniformly to og { fdA as
n — co. In particular, 4,{5) < s/inf ¢ for sufficiently large n, so for small
&, we have

(i) S is in the original neighbourhood,
{ii) lim inf A, (S) < 1/k.

This completes the proof of Lemma 5. =
We are now able to use this to prove our main theorem.

THEOREM 6. The set of T in E*(S1) which have no absolutely continuous
invariont probability measure contains a dense Gs set.

Proof. We will show that the C' expanding maps belonging to RN &S
have no absolutely continuous invariant probability measures. Pick 1" &
NS and suppose that T has an absolutely continuous invariant probability
measure 4. The density of 4 with respect to X is then an L' function ¢ which
satisfies Lr[p] = g. Given g, there is then a continuous function f such that
If —oll1 < € and { fdx = 1. Now, by Lemma 3, there exists an ng such
that for n > ng, (1 — e)LR[1] < L&[f] < (1 + £)L3[1]. It follows that
L2 [1] — L2f]]l1 < . Since Lz is a contraction in the L' norm, we see that
| C2{1]— ol < 12300~ L2111+ | f el T follows thas | CA[1] - ol < 2
for n sufficiently large. Since & was arbitrary, it follows that £ [1] converges
in the ! norm to p. We now show that this contradicts the fact that T' € &.

Since p is a density, the set A = {x : p(z) > 3/4} has positive mea-
sure, ¢ say. As T' was assumed to be in &, we also see that there exists a
sequence n; such that AM({z : L7 [1}{z) > 1/2}) < /2. It then follows that
|1£7 (1] — o]l > @/8. This contradiction shows that T has no absolutely
continuous invariant probability measure, as claimed, when T' € RN S, and
RN E clearly contains a dense Gy set by Theorem 1 and Lemima 5. =

‘We note that, in fact, for T € R, T € § if and only if T has no absolutely
continuous invariant probability measure. To show this, we note that if T ¢
S, then there exists an @ > 0 such that for all n, A({z : L&[1](z) > 1/2}) >
a. We gee that L£7[1] is the density of Ao T™" with respect to \. Setting
frn= 5X{mug% 1)(=)>1/2}, we have fr < L1 and o/2 < § f dA < 1/2.Let vy,
be the sequence of measures defined by v, {4) = S 4 fa(A) foreach A € B. As
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fn < }and fn < LB[1], we see that va{A4) < FA(A) and va(A) < XoT™"(4)
foreachng()andAeB

By weak*-compactness, there is a sequence n; such that vy, is weak™-
convergent to some measure v (not a probability measure) and also Ao
T-ni g convergent to a probability measure p say. These limiting measures
satisfy v(4) < L1A(A) and v(4) < w(A). It follows that v is absolutely
continuous. By comstruction, we have v(S') > /2. Using the Lebesgue
decomposition theorem, we may write y as a sum pae -~ s, Where fiac is
absolutely continuous with respect to Lebesgue measure and y, is singular
with respect to Lebesgue measure. It follows that there exists a set B € B
such that A(B) = 1 and s (B) = 0. We now have pa.(B) = p(B) 2 v(B) =
»(8Y) — »(B%) = v(8") > «/2 and it follows that piac is non-trivial.

We then verify that pa. is invariant as follows: Since T € R, we see that

[ Lr[1]]/ L3[1] converges uniformly to 1. If follows that for each continuous

function g,

lgeTaroT™™ ={gdroT " = {g(CLEH1) — LE[1]) 2,

which converges to 0 and so u is an invariant measure for T'. Since T is
non-singular with respect to A, it follows that the absolutely continuous
component jiye of 1 is an invariant measure and so we see that T has a
finite absolutely continuous invariant measure as claimed.

Tt would be interesting to know whether a generic C! expanding map
of a manifold has an absolutely continnous invariant measure, and even in
the case where the manifold is the unit circle, it is unclear whether or not
a generic C" expanding map has a o-finite absolutely continuous invariant
neasure.

T should like to thank James Campbell for helpful discussions of some
of the above material and alsc the referee for pointing out areas needing
attention.
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On coerciveness in Besov spaces
for abstract parabolic equations of higher order

by
YOSHITAKA YAMAMOTO {Osaka)

Abstract. We are concerned with a relation between parabolicity and coerciveness
in Besov spaces for a higher order linear evolution equation in a Banach space. As proved
in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov
spaces under a certain parabolicity condition adopted and studied by several authors. We
show that for a higher order linear evolution equation coerciveness in Besov spaces forces
the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in
Besov spaces are equivalent.

1. Introduction. Dubinskil [7] classified linear operator differential
equations of higher order by means of spectral properties of operator pen-
cils. He introduced the notion of a parabolic equation of higher order. In a
Banach space X consider a linear evolution equation of the form

A:D it = fl8), 0<t<T,
) 2::0 1D ult) = f(2) <t<

Dtn"ju(O) =z; Jj=1,...,n,

where A;, 7 =1,...,n, are continuous linear operators from Banach spaces
X; to Xy, respectively, and Ay is the identity operator in Xg. The X; are
assumed to be continuously embedded in X;_; for j = 1,...,n. Dubin-
skil's parabolicity condition is a spectral condition on the operator pencil
Sor o A" A, When n = 1, this condition reduces to the usual one on the

J
resolvent of the operator Aj.

For a parabolic equation of order n several solvability results were given
by Dubinskif [7] and Obrecht [16]-[18] (see also Tanabe [22], [23]). There are
also many results on sufficient conditions for (1.1) to be a parabolic equa-
tion (see Favini and Obrecht [8], Favini and Tanabe [9] and the references
therein),

1991 Mathematics Subject Classification: Primary 47D09; Secondary 47D086.

(78]



