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On coerciveness in Besov spaces
for abstract parabolic equations of higher order

by
YOSHITAKA YAMAMOTO {Osaka)

Abstract. We are concerned with a relation between parabolicity and coerciveness
in Besov spaces for a higher order linear evolution equation in a Banach space. As proved
in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov
spaces under a certain parabolicity condition adopted and studied by several authors. We
show that for a higher order linear evolution equation coerciveness in Besov spaces forces
the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in
Besov spaces are equivalent.

1. Introduction. Dubinskil [7] classified linear operator differential
equations of higher order by means of spectral properties of operator pen-
cils. He introduced the notion of a parabolic equation of higher order. In a
Banach space X consider a linear evolution equation of the form

A:D it = fl8), 0<t<T,
) 2::0 1D ult) = f(2) <t<

Dtn"ju(O) =z; Jj=1,...,n,

where A;, 7 =1,...,n, are continuous linear operators from Banach spaces
X; to Xy, respectively, and Ay is the identity operator in Xg. The X; are
assumed to be continuously embedded in X;_; for j = 1,...,n. Dubin-
skil's parabolicity condition is a spectral condition on the operator pencil
Sor o A" A, When n = 1, this condition reduces to the usual one on the

J
resolvent of the operator Aj.

For a parabolic equation of order n several solvability results were given
by Dubinskif [7] and Obrecht [16]-[18] (see also Tanabe [22], [23]). There are
also many results on sufficient conditions for (1.1) to be a parabolic equa-
tion (see Favini and Obrecht [8], Favini and Tanabe [9] and the references
therein),
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80 Y. Yamamoto

In the preceding paper [26] under a condition of Dubinskii’s type we
solved the equation (1.1) in an intersection of X;-valued Besov spaces with
suitable exponents, 7 =0,1,...,n. The result is that the map

n
P:y— (Z Athn—ju(t), Dtn~1u(0)’ o ,u(O))
j=0

is an isomorphism between the space of solutions given above and the space
of data with certain compatibility relations. We call this property of {1.1)
coerciveness in Besov spaces. For n = 1, a similar property of a parabolic
equation has already been obtained in [6], [15], [19], etc. Moreover, in [25] we
showed that the condition for parabolicity of a first order equation follows
from coerciveness in Besov spaces. In this paper we prove that for a higher
order equation, coerciveness in Besov spaces implies the parabolicity condi-
tion assumed in [26]. This together with the result of [26], given below in
Section 5, shows that parabolicity in the sense of Dubinskii and coerciveness
in Besov spaces are equivalent for a linear evolution equation of any order.

To deduce parabolicity from coerciveness in Besov spaces we consider a
system of first order equations for the unknown functions (D" u,...,u)
in the product space Xp x ... x X,,_; and construct from a solution of (1.1)
a semigroup of bounded linear operators in Xp % ... X X,,_; relating to the
system. Spectral properties of the operator pencil Z?:o A"JA; are then
derived from the Laplace transform of the semigroup. Note that, as in [26],
Brézis-Fraenkel’s condition on the spaces X, 7 = 0,1,...,n, as assumed
in [18], is not necessary. In [26] we solved the equation (1.1) by reduction
to the same system as we considered above. For another method of solving
(1.1) with the use of fundamental solutions, we refer the reader to [16]-[18],
[22] and [23].

2. Notation and preliminaries. R and C denote the fields of real
and complex numbers, respectively. Z, is the set of nonnegative integers.
Let E and F be Banach spaces. L(F, F) is the space of bounded linear
operators from E to F with uniform operator norm || - || zp,m). We write
simply L(E, E} = L{E).

For 1 <p <0, 0<T <ooandl e Z; U{oc}, we consider the following
E-valued function spaces. D'(0, T’; E) is the space of distributions on (0, T).
The derivatives of f € D'(0,T; E) are denoted by D;'f. L#(0,T; E) and
LZ(0,T; E) are the L* spaces with respect to the Lebesgue measure dt and
the measure t™'dt on (0, T), respectively. For an interval I = (0,7"), (0,71,
[0,T) or [0,T, CI; E) is the space of | times continuously differentiable
functions on I. C%L(I; E) is the subspace of C'(I; E) which consists of the
functions whose derivatives of order up to ! belong to L°°(0,T; E). In the
notation above we omit the symbol F when F =R or C
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We now define Besov spaces on intervals with or without boundary con-
ditions. Assime 1 < p <00, 1 g <00, 0 <8 < o0, 0 < T < 0. Set
m = [f] + 1, where [f] is the largest integer which does not exceed 6. For a
strongly measurable function f on (0,T) with values in F put

(flse (o,1;8) = }hﬁe‘ i(—l)m_k (7:)]0( + kh)
k=0

LP(0,T—mh;B) | LL(0,T/m)

The subspaces Bg’q(O,T; E) and Bg’q(O,T; E) of LP(0,T; E) are defined as
follows:

(1) f € LP(0,T; E) belongs to B (0,T; E) if
[flsg ,c0.7:5) < o0
(2) f e LP(0,T; E) belongs to By (0,T; E) if
FEBE0,T;E) and |h78flzeommy| e < oo

The spaces Bg,q(O,T;E) and Bg,q(O,T; E), called the Besov spaces, are
equipped with the norms

|38 0.738) = |flze0,7:m) + [flBe 0,73m),
|f\Bg_q(n,T;E) = W—e|f|LP(0,h;E)|L2(0,T) + 1ﬂBg'Q(D,T;E))

respectively and are Banach spaces. In this paper we make use of the fol-
lowing properties of the Besov spaces. For the proofs see, for instance,
Triebel [24]. In the following proposition B(#,p,q) stands for BS (0,T; E)

or BY (0,T;E).

PROPOSITION 2.1. Assume 1 < p,p' < oo, 1< q,¢ <0, 0<8,8 < oo,
0<T <o Letf=1+0 withl € Z,. and o € (0,1]. Then (1)-(6) below
hold.

(1) B(6,p.q) C B(6',p,qg') when 6 > &',

(2) B(6,p,q) € B8 —p™* +p7"pq) whenp' 2 p, ¢ = ¢, 0 >
-1

.__p" .

(3) For a e CF((0,1) and f € B(#,p,q) we have af € B(8,p,q).

(4) For f € B(8,p,q), if T < oo then {; f(s)ds € B(1+6,p,q).

(5) For f € B(8,p,q) we have Di*f € B0 — k,p,9), k=0,..., 1.

(6) B}, (0,75 B) = {f € B ,(0,T; E) : DEFOY=0fork=0,...,1—1,
Dife BZ (0, T, E)}. When o —p~t is not an integer, we have
Bg,q(O:T;E): J'”p_l <0,
{feBs (0.T;E): f(0) =0}, c—p~t>0.

p“I

Bg (0,T;E) = {
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3. Results. Let X;, = 0,1,...,n, be Banach spaces with norms |- |;.
X; is assumed to be continuously embedded in X;_j for f = 1,...,n. Let 4;,
i=1...,n, be continuous linear operators from X; to Xy. Put P(D;) =
h =0 A Dt , where Ag is the identity operator in X[]

Assumethat1<p<oo 1<g<o00,0 <l <o 0T <.
For u € (}p Brz+?(0,T; X;), by Proposition 2.1(5) we have P(Dg)u €

Bgiq(O T Xy). Hence we may define a linear operator by
P ﬂ Broi(0, T X,) - BS (0T Xo),  Pu=P(Diu.

Fu.rther assume # —p~! € Z,. By Proposition 2.1(5) the range of the
linear operator u +— (P(Dg)u, D" *u(0),...,u(0)) acting on the space
ﬂ ‘6 B“‘3+5 (0,T; X;) is included in Bg,q{O, T Xo)x Xox...x X, 1. Taking
compat1b111ty relations for (P(Dy)u, D" 'u(0),...,u{0)) into account, we
get a subspace of the product space. Fort > Qand z € X;, j =0,1,...,n,
put

Li(t,) = jnf (Zt’“ o gt 3 £l
LEL RSN
(if 7 = n, the second sum is meant to be zero). Define the subspace Y; of

(3.1) Yi={zeX;: sup L;({tz) < oo}
0<t<oo

The space Y; equipped with the norm [z|} = |2|; + supgeiceo Lj(t, @) is
a Banach space. Several properties of Y; are collected in [26, Section 3].
Here we recall that ¥p = Xo, Yo =X, and ¥; C Y4, =1,...,n. We
denote by Dy the linear space which consists of the elements (f,z1,...,2,)
of BY (0,T;Xg) x Xo x ... x X,_; satisfying the condltions (1) and (2)
below. Set N = [§ —p~ }—{—1 Put yoj =5, §=1,..

(1) fk < N, then yx; € X;, 7 =1,...,n. In this case put

n
Dtkf(o) - ZAlykl: .7 = 1:

 Ykj-1, J=2,...,n
(2) Ynj € (}g—lbyﬁ)ﬂnp—l+1—N,q7 J =1,... » T

Here (¥Y;_1,¥;)ng 0 < m < 1,1 < g < oo, is the real interpolation
space between Y;_; and Yj. See, for instance, [1], [3] and [24]. We denote by
L l¢¥;-1,¥)),., the norm in (Y. 1,Y;), . Since by definition we have

Yet1,5 =

o YNG-keN, 1 ST S<n—-N+k,
(32) Yk = {yk—j-l-n,n; n—N n k < j S n,
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the space Dy equipped with the norm

N-1
|f|39 L,(0.T5X0) + Z l‘!lknln-i-Zl?JNgl(Y, 1. ¥ ) g p—tp1—ng
k=0 i=1

is a Banach space. The space Dy describes certain compatibility relations
for (P(Di)u, D" 1u(0), . .., u(0)) in the following sense.

LeMMA 3.1. Foru € ﬂj O173‘,:,Lq-"+‘9((] T; X ;) we have

(P(Dg)u, D" u(0), ..., u(0) € Dp.
Proof. See [26, Section 6]. m

Thus we may define a linear operator by
P: ﬂ Bp 0,15 X;) — Do, Pu= (P(Dy)u, D" u(0), ..., u(0)).

We are now in a position to state our main result.
THEOREM. The following five stotements are equivalent.
(1) P is bijective for any (p,q,0,T).

(2) P ts bijective for some (p,q,8,T).

(3) P is bijective for any (p,q,0,T) with 6 —~p~* ¢ 7, .
(4) P is bijective for some (p,q,0,T) with 8 —p~' € Z, .
(6) The linear operators P,(A), A € C, in Xy given by

D(P,(\)=X,, P.Nz= i NI A,

are bijective when A ~w € ¥ = {A € C : |argA| < o} for some constants
weR andyp € (7/2,7). Forj=1,...,n, we have
(3.3) sup _[i{A — @) TP (A) T £, 2,0y < 00
Aew+E
REMARK. The condition (8) on the operator pencil P, () is essentially
the same as the parabolicity condition due to Dubinskil [7]. For n = 1, the
agsertion of the theorem has already been proved in [25].

We prove the 1;11eoram as follows. Obviously, (1) implies (2), and (3) im-
plies (4). Assume 6 —p~' ¢ Z, . For f € BS (0,T;X0) we have (f,0,...,0)
€ Dy. Moreover, if u € ﬂ *_o BRGIT0(0,T; X;) satisfies Pu = (£,0,...,0),
then u € _o BE=I+0(0,7; X;). Hence (2) follows from (4). Therefore, if
we prove that (2) implies (5), and that (5) implies (1) and (3), we obtain
the theorem.
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To show that (2) implies (5) we first construct from a solution of Pu=7§
a semigroup of bounded linear operators in X x ... X Xp_; relating to the
system of equations

n

Deug + ZAjUj =0,
(3.4) i=1

Dtujmuj_1=0, j=2,...,ﬂ.

wi{y=z; j=1...,n
The condition (5) is then deduced from the behavior of the semigroup by
means of the Laplace transformation. A detailed proof will be given in the
next section. In [26] we bave proved that (5) implies (3). Similarly we can
prove that (5) implies (1). In Section 5 we give an outline of those proofs.

4. (2) implies (5). Throughout this section E and F' denote the prod-
uct spaces Xg X ... x X1 and X1 x ... x X, respectively. We start by
constructing a semigroup of bounded linear operators in E relating to (3.4).

The following lemma is a consequence of a simple computation. Put
J .
=3 A4DIF, §=0,1,...,n,

LEMMA 4.1. Foru; € D'(0, T, X;) and f; e D'(0, T3 X;1),5=1,...,m,
the following two relations (4.11) and {4.12) are equivolent:

Bo(Di)un = Y Pi_1{De)f5,
(4.13) ; ’ ’
w1 =Dy — f3, 7=2,...,n
Dyuy + ZA;'U;’ = fi,

j=1
Dtuj—uj_lzfj, j22,...,n

(4.1,)

Suppose that for a set of numbers (p, g,#,7") the operator P is bijective.
Put m = [f] + n. Define the linear operators

-1 .
Uem-rs: B = [ BP0 X0, j=1,...,m,
=0
by
tm-}—l
(U—m—1,52)() = mﬂ?j; T =(z1,...,2,) € B.
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Then, for integers k > —m, define the linear operators
o ﬂBJ 0,7 X)), j=1,...,n,
successively by solving the equagions

PUinz = ZPj—l (D:) DiUg 1,52,

=1
Ug,jrz = DtUkj.’E—-DtUk_llj:B, J=2,...,n

(4.2)

By Lemma 4.1 the equation (4.2) is equivalent to

DU + ZAjUkjLE = DtUkml,lm,
Jj=1

DtUkj.’D—Uk’j_lm‘—‘DiUk_ij, j =2,...,n.

Fork > ~m and x € E put
t

(4.4) Vhy = tUkml,jm+S{(k—2)UkM1,jw— (k +m)Ukjm} ds, 7=1,...,n.
1]

By definition we have vy =0, 7 = 1,...

Ukj € ﬂ‘g:U Bg,_ﬁfl+9(07T; XI): j=1,...

can easily derive the equation

(4.3;)

,n. For & > —m we see that
;. For k 2 —m + 1 from (4.3;) we

n
Dyogy + Z'AJ‘U/@J’ = Dt’t)k_ﬁl’]_,
j=1
Dt’l)kj — Vi1 = Dt’Uk_l’J‘, j = 2, e, T
By Lemma 4.1 this implies that

kan—z

V,5—-1 '—Dt'uk] Dtvk—l,ja j :2:"':”’

~1(D¢}Dyvr_1,5,

Recall that v ; = 0, 7 = 1,...,n. Since Pis injective, by induction on
k 2 —~m we get vi; = 0, § = 1,...,n. On the other hand, differentiating
(4.4) in £, we see that

Dyvgj = (8D A+ k ~ 1)Ug-1 57 — (k + m)Uk;.
This implies the following lemma.

LemmA 4.2. For k> ~m+1 and z € E we have

1
(45) Uk_,$ = ﬂ——(tDt + k- 1)ch_1,j$, i=1...,n
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Using (4.5), by induction on k& we obtain the following equations in
DOT X)), i=1,...,n

(4.6) Dy *Upz = {-k%t Dllgm, —m<k<1(0=1),
!
(4.7) Up;z (k; T )F k l(t DgUOJ.'L') 1<k <o
The equations (4.6) show that the mappings
z— {k-+m)tF "D U, —m <k <1,

give the same linear operators from F to D’(0,T;X;), which we denote by
S;z. The derivatives of 5;z are expressed as

!
!
(4.8) ™Dt = (T +m) > (~1)F (k>DtUkja:, leZy.

k=0

These are derived from the equalities
tl+m

t.’c+m
YR Q— e D'(0,T;X;),
and from (4.7). By (4.5 ) and (4.8) we get S;z € O°((0,77; X;). Hence we
may define the linear operators 5;(t) : E — X; by
S;(t)x = (S;z)(t), =z B

We denote by S(2) the linear operator z — (S1(f)z, ..., Su(t)z) from E to
F. We now prove that the mapping ¢  S(f) extends to a semigroup of
bounded linear operators in F.

Define B € L({F, E} by

n
B.’Bm( E Aj:rj,—ml,...,
j=1

Differentiating (4.3_,} m + 1 times in ¢, we obtain

(4.9) DiS(tyr + BS(t)z =0, 0<t<T.

—mnm.l), z=(21,...,2,) € F.

ProrosITION 4.1. (1) & € E belongs to F if and only if there existsy € E
such that

(4.10) DStz + S(t)y=0, 0<t<T.

(2) Fora ¢ B, if Stz =0, 0< ¢t < T, thenz=0.
(3) Forz € F' and y € E the relation (4.10) is equivalent to y = Baw.
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Proof. For z,y € E consider the relation given by {4.10). First let us
rewrite it as follows. For k& > —m, put

i
Why = Uk——l,jm*“Ukjl‘—SUkjde, j=1...,n
0
For k > —m+ 1 we have wy; € (_, Bi=0(0,T; X,), 5 =1,.
entiating ws; in ¢, by (4.3;) we have

..y n. Differ-

n
Dywyy =Y AUz ~ Uny,
J=1
thlj = MUL_.,-_lm - Uj_jy, j = 2, ey TR
By the definition of S; we have

fm-\-l tl
U]_jﬂ?: ( ) SCL' UljyzmSjy, j=1,,'ﬂ
Hence, using (4.9), we obtain
tm-+1
Dywy; = “W(Dtsjw +8y), i=1...,n

Therefore (4.10) is equivalent to wy; = 0, = 1,...,n. On the other hand,
using (4.3x) and Lemma 4.1 as before, for k > —~m + 1 we obtain

n
Pwkn = ZPj_'l(Dt)thk—l,jq
j=1
Wh,j-1 = Dywgy =~ Dywp—15, F=2,...,n.

By the injectivity of P we see that wiy; =0,7=1,...,n, and hence (4.10),
is equivalent to w.m ; =0, 7=1,...,n.

Let us prove part (1) of the proposition. It suffices to show that z <
E belongs to F' if and only if there exists y € E such that w_,, ; = 0,
J = 1,...,n. Suppose that x € F. Then for y € E we have w_p; €

. UB;}', ql l"9(0,1“; X1, 3=1,...,m It is easy to see that

Puomn =Y Pa(De)U oy (Bz —y),
J=1

W, j—1 = thwm,;j - me—l,j(B-'E -y), i=2,...,n
Hence, taking y = Bz, by the injectivity of P we obtain Wepng = 0,5 =
1,...,n. Conversely, suppose that w_p, ; =0, 7=1,...,n, for some y € F.
Then, by the definition of w_, ; we have U_p— ;& = U.m)jﬂ:“l"‘sg U jy ds,
J = 1,...,n. Since the right-hand side is an X,-valued function, by the
definition of U_p,—1,;2 we obtain z € F.
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Next, let us prove (2). Suppose that S(t)z = 0. Since (4.10) holds with
y =0, we bhave w_p, ;s =0, j =1,...,n, with ¥ = 0. Therefore, by the def-
inition of w_p, ; we have U_p,_1 50 = U_pm %, § = 1,...,n. Differentiating
this equation m + 1 times in £ and recalling the definition of S(t), we obtain
= §(t)z = 0.
Finally, we prove (3). As in the proof of (1) we have DS(#)z+ S(t)Bz =
0, 0 <t < T. Therefore, if (4.10) holds, then (2) implies that y = Bz. m

LemmA 4.3. There exist constants Ko and Ky such that for z € E,
leZy and 0 <t < T we have

n i
Zzt“”"“"}l? 185(t)ali1 < KK I(T /)0 3OS T .

j=1i=1 F=1 i=1
In particular, the function S : (0,T] — L{E), t — 8(t), is analytic.
Proof. Since P is bicontinuous, there exists a constant Cy such that for
u € o Broit9(0,T; X;) we have
-1

Z; [ulgzeeer o,y < ColPulgy omix)-
<

Taking u = Ugnz, k > —m, by Proposition 2.1(5) we get

n

> | Dlknt] gomsvomx, 1y < ClZZ[DtUk L% gi=+0 00,1,y

i=1 i=114=1

with a constant C; independent of k. Since by (4.2) we have
- n .
Uiz = D" Uy — Z Dtl_JUk__l,;’L‘, j=1,...,n—-1,
=4+1
by Proposition 2.1(5) we get

i
z; | Delkjcel ggiv0 0 ;. )
=)

j
<Yy |DUknal BRI 01X, )

i=1

+Ce Z ZJDtUk 1”:'15‘I 1""S(EJTX,_. )’ i=1. . n-1,
I=4+1 i=1
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with a constant O independent of k. Hence we obtain

n

n M J

Duliyal gy <0y Y IDWins
_Z;.ZJ Uil g mivo 07,4y < O | D132 gg—ivo 0 ryx, )
j=li=

=1 4i=1

with a constant C'3 independent of k. By a simple computation we obtain

n 7
Z Z |DtUki"“|Bf;::,'*"(o,T;xi~1)

j=1 ié=1

n_ 4
kb1 ' -1
<Cs ZZ|DtU—mwl73m|3g;‘+a(O,T;Xi—l)

J=1i=1

noJ
< O403k+m+1Tm—9-E-p_1 Z ZTl‘_”:Ej'i«l

F=1 =1

with a constant Cy independent of k. For f € Bf ql 00,7 X 1) and 0 <
t < T we have Lf|B_-, —H0(0  Xey) S |f|BJ S0 Ty Xy 1) Therefore it follows

from (4.8) that

n 7
I+ !
> 18D S5 pmsrogg ik

F=1 =1
< (l+m)12( )ZZ}D UWIB, 00,6 X 1)

§=1i=1

noJ
< ORI (e m)I(1 4 Ca) S Y Ty s
4=1 i=1

By (4.5) and (4.8) we get ™+ D,'S;(t)z € BI040, T; X;_,). Hence
I DSy (e = §f Dy (s D "‘.S',.n)a!s J=12,.
inequality ta the integrals, J = 2, 1, we obtain
2 DyES; ()i

< C';stj""""’”f‘z"pml{|]z“f“'“1‘9“1""P""1iﬁ“*"m+2Dhl“"1Sj:c|Lg O

.. Applying Hélder’s

iet)
(L m o 2) IO T R D LG e 0 0 )

< C ?q i f+2—-p 'U —(f—i+0) lsi-lm}-ZD l+23 m‘

Lo(o,hXs1) | £3(0,2)
+ 2(1! +m - 2)]}}" (j—i+0) iSt+m+1D5£+1Sjmlﬂpcoah;xi—l)[Lﬁ(ﬁ,i)
- (l +=m 2) (l +m 4 1)']1_(J“i+9) |gl+mDslSjw\Lp(0,h;Xi_z) IL:{(O,t)}
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with a constant Cy independent of . Combining the estimates above, we
arrive at the conclusion. =

LEMMA 4.4. For 0 < t; < T and T € CO((0,t1); E) N D' (0,41, F), of
D+ BU = 0 in D'(0,t1; E) and limg_,qu(t) = 0 in E, then & = 0 on
(0,11).

Proof Take ¢ € C°{(0,£1)) with supp ¢ C (0,¢1). For 7 € (¢1,7] and
A€ C\ [r—ty, 7], from the equation Dy + Bu = 0 we have

@) T plyu)
4.11 N Sk WA e(A) = | LMY
(4.11) g)\—(v’—t) ( §)\—(T—t)

Notice that by assumption we have z(A) € F. By Lemma 4.3 the function 5 :
(0,T) — L(E), t — S(t), is analytic. Hence S has an analytic continuation to
a complex neighborhood of the interval (0,7]. The continuation is dencted
by S. In the complex neighborhood, consider a rectifiable Jordan curve -y
enclosing the interval [T —#1,7]. Applying S(A) to (4.11) for A € v and then
integrating both sides over -, by Cauchy’s integral formula we have

t1

() S (T — t)u(t) dt = '

| #0S(r - 0= e b5

Proposition 4.1(3) implies that S'(A)z(A) + S(A)Bz(A) = 0 for A € y. Hence

D {S(r — t)u(t)) = 0 in D'(0,1; £). Since Lim;_,qU(t) = 0 in E, we obtain

S(r — )a() = 0 on (0,¢1). Again by the analyticity of S this implies that

S(s)u(t) = 0,0 < s < T, for each ¢ € (0,%1). By Proposition 4.1(2) we
conclude that % = 0 on {0,%1). =

Let us study the behavior of S;(t) as ¢ — 0. Choose ¢ € C°°([0,0))
such that ¢ is 1 on [0,1] and 0 on {2,00). For 7 € (0,7 and & € E, define
Ugn-1,§ € ﬂj 1B~" I'5"5’(0,1";?(’1), j=1,...,n, by

U1 (8) = 9/ (Uomorga)(t), 0 <t<T,

Then for k > —m define uy; € ﬂ B:{J;I""*'E(O TX),i=1,..
sively by solving the equations

2/ () + Bz(\), dt.

(Nz(A) + SN Bz(A)) dA.

., N, SUCCes-

e
Puy, = ZPj—l(Dt)Dtuk-—l,j=
=1
up,j—1 = Dyugg — Detig—1,5, F=2,...,n
Using Lemmas 4.1 and 4.4, by induction on k > —m—1 we have uy; = Uy;z,
i=1,...,n, on {0,7). Hence by (4.8) we get

i

{

tl+thISj:r=(l—(—m)!Z(»——l)l_k(k>Dtuk3—, leZy, on(0,7).
k=0
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Using this in place of (4.8), by an argument similar to that of the proof of
Lemma 4.3, for x € B, l € Z, and 0 < ¢t < 7 we obtain

ZZ% DS (#)z)ie1 < K Ko r jt)™ WIZZT* ol

F=1 i=1 j=1li=1
with constants Ky and K| independent of | and 7. Taking t = 7, we obtain
the following estimate of S.
PrOPOSITION 4.2, There erist constants Ko and K, such that forz € E,
l€Zy and O <t T we hove
noJ o no3 .
(4.12) SO #THIDSS (alioy < K EWY ) St gl
Je=1 d==1 i=11i=1
For ty,ty > 0 with t3 +1t2 < T and z € E define % € C([0,%1]; F) by
1 t
(t)= = {(t—s)"S(s +1)zds, 0<Lt<ty.
™D
Using the equation (4.9), we get

21

—~ ~ t™

{ Deii(t) + Bift) = =
%(0) = 0.

By (4.3.m) the function (Uep, 19 (¢2)2, ..., U_mnS (t2)x) satisfles the same

equation on (0,%1) as % does. Hence % = (U..pp15(t2)z, ..., U_ymnS(ta)x)

holds on (0,t;) by Lemma 4.4. Differentiating this m + 1 times in ¢, we

obtain the semigroup property of 5.

PROPOSITION 4.3. For ty,4y > 0 with t1 + t2 < T, we have Sty +#3) =
S(ts)S(ta).

By (4.12) and the semigroup property of S the £(E)-valued function S

n (0,7 has an analytic continuation to a sectorial region &' = {t € C:
|£ng t| < ¢} with a constant ¢ € (0, 7/2). The continuation, also denoted by
8, enjoys the semigroup property and satisfies the growth condition

(4.13) 11mbum "L log |8 ()]l 2m) < o

e X
Lk OO

S(te)z, 0<t<ty,

The operator norm [|S(t)||z¢x) I8 not necessarily bounded as ¢ tends to 0
in I'. However, if all the components but the first one of z € F are 0, by
(4.12) the norm |S(#)z|r remains bounded as t tends to 0 in X’. By the
semnigroup property of S there exists a real number w such that

(4.14) sup [HFmewE8, () (21,0, . .

tex’
|zy oK

O)Ij—l‘(OO: ji=1...,n
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For A € C with R\ > w, define R(A) € £(Xo, X
RNz = | e™8,.(t)(21,0,...,0) dt,
0

—l)1j=17'-'=n7 by
z1 € Xo.

By (4.14) the £{X,, X;_1)-valued function R has an analytic continuation
to a sector w + X, where
Z={xeC:largA| <¢}

with a constant ¢ € (7/2, 7). Moreover, for j =1,...,n, we have

sup [|(A = w)" TR || £xp,x;-0) < 0O
AEw+ X

To show the property (5) of the theorem for P, (}) it suffices to prove that
R(X) gives the inverse of P,{}).

LEMMA 4.5. If RA is large enough, then the operator A+ B is injective.

Proof. Suppose that z € F and (A -+ B)z = 0. For ¢, s > 0 by Proposi-
tion 4.1(3) we have 8;(e~**5(t+s)z) = 0. This implies that S(s)e"*S(t)x =
S(s)z. By Proposition 4.1(2) we get e **5(t)z = ». Hence, if ) is large
enough, the growth condition (4.13) gives z = 0. u

PROPOSITION 4.4. If RX is large enough, then the operator Po.()\) is
tnjective.

Proof. For z,, € Xy, if Po(A)z, = 0, then (A + B)(A\*lz,, ..., z,)
= 0. Hence the assertion follows from Lemma 4.5. m

LeMMA 4.8. For z1 € Xg, if RA s large enough, then we have
fo e MS(t)(#1,0,...,0)dt € F and

[
(A + B) | e 8(t)(21,0,...,0) dt = (21,0, ...,0).
0
Proof. Since D,S(s)5(t) = 8,5(¢ + 5), integrating by parts gives
QO
D,5(s) S
0

AtS( )(:‘Elﬁ 'K :O)dt

oo

A eS8 (21,0, ..., 0) dt).
0

By Proposition 4.1 this leads to the conclusion. m

= ~$(s){(@1,0,...,0) -

The following proposition is an immediate consequence of Lemma 4.6.

PROPOSITION 4.5. For z1 € Xo, if RA.is large enough, then R(N)z,
€ Xn and P (N R(M21 = o1.

icm
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Propositions 4.4 and 4.5 show that when RX is large enough, P,()\)
is bijective and P, ()\) = R()\). We now prove that this holds for all
Aew+ Z. I P(A)7? (/\) and Pp(u)~* = R(y), then

n—1

R({ (-

=0

R(N) - R(y) = T X4 FROY i £(Xo).

Since R is an L(Xg, X,—1)-valued analytic function, the equality also holds
for \,p € w+ X. This implies that R is an L{Xp, X, )-valued analytic
function in w 4+ . This in turn proves that P, (A)R(A) = I in £(X,) and
RN P, (A)=Tin L(X,) for A € w + X, as required.

5. (58) implies (1) and (3). Suppose that the statement (5) of the
theorem is true. We first make a reduction of the equation {1.1). Consider
the following transformation of the unknown function of (1.1):

u(t) —ul(t) = e ®u(t), pedl.

The new unknown function %#¢ should satisfy

STARDMIue(t) = e f(E), 0<t<T,
(5.1) i=C

D?“jue(ﬂ) = m;’, i=1..,n,
with

D“"Eﬁ(XpXo)a i=0,1,....n,

1
A = Zgj—l(nm
1=0 =
L . n‘"—j
m?:Z(_Q)l"J(n—l>mh J=1...,n

=4

Notice that 3.7, A" AL = Py(¢ -+ A). For ¢ > w, by the condition (5)
of the thcorcm, 11",,(5))’)310 gives a norm on X, equivalent to |z!,. Hence,
replacing the equation (1.1) by (5.1) if necessary, we may assume that the
condition (5) of the theorem is satisfied with w = 0 and that (3.3) holds for
d=1...,mn+1 The coxmsponclence between the data of (1 1) and those
of (5. 1) is as follows. For f € B (0, T5 Xp) we have e~? f € B 0 0, T, Xo)
When 0 — p~! ¢ Z,., defino Lhe suhspa.ce D, of BE (0,T; Xy) >< Xo X .
Xp—1 for (5.1) in the same manner as we defined Dg for (1.1) in Sectlon 3
We then have the following lemma.

LemMA 5.1, For (f,zy,...,5n) € BY (0,75 Xp) x Xo x .
(f,21,...,3n) € Dy, then (e f,a%,...,28) € D,.

e X X’n—"l} ":f
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:cn)e’.Dgiet{ykj:jzl,...,n, k:O,A..,N}be
o, k=0,,..,N} by

Proof For {f,z1,...,
the sequence given in Section 3. Define {yg; : j=1,...

Yij = ;(—Q)H (Z:D gk::o(—.g)k'm (:;)ymz-

We have y5; = 25, j = L,...,
k < N. Moreover, y3; € (Yi—1, Vi)o—p-141-m,00 T = 1,01,

n. We see that yi; € Xj, j = 1,...,m, for
T, since

Ymi € (}/l—m+N—l,Yi—m+N)6—p“‘1+l—-N,q c (}?—1’3‘?)9-—?“14-1—3\/',4'

for j <l<n—N4+m,and ypy € Yo forl > n~N+mby (3.2). For k < N
by direct calculations we obtain the equations

yk+11+ZA;yk1 DEEEN0), vE; =V =27
=1

This proves that (e72'f,z%,...,z2) € D,. m

Having added the above assumptions, we now introduce the unknown
functions u; = D" u,j = 1,...,n, and write (1.1) as a system of equations

T
Dy (t) + Z-Ajuj (1) = f(8),
J=1
Diug(t) —u;a(t) =0, j=2,...
u(0) =25, j=1,..n
With the notations

0<t<T,

v, 0 <t < T,

quzt(mla*"amﬂ)l .F:t(f:()a"wo))

the system is written as a single equation of first order

ﬂit(ul,...,ﬂn),

(5.2) {gta+.§a=f, 0<t<T,
u(0) = &,
where B is a matrix of operators given by
Ay Ay .. An1 A,
-I 0 ... 0 0
B=1}0 -1 0 0
0 -I 0

‘The matrix B is regarded as a linear operator in F = X X .
domain D(BY) =F = X x ... x X,,.

The injectivity of the operators P and P is a consequence of the following
proposition on the uniqueness of rather weak solutions to (5.2).

X X1 with
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PROPOSITION 5.1. For i & CO((0,T); BY N D'(0,T; ), if Dy&i+ B =0
in D'(0,T; B) and lim, o U(t) = 0 in E, then T =0 on (0,T).

Proof. By the condition (5) of the theorem. the operator A+ 5 is bijective
for A € X The inverse (A + B)™! is expressed as a matrix of operators with
(¢, j) component given by

)\n_z:Pn()\)—lpj_l()\) - )\jhi“lf, i< 4,

AP (A) T Pyaa (), i 24,
where Py(A) = Eﬁ:u /\’“_i.fi;, k=0,1,...,n Let v be a contour running in
¥ from ™V oo to ¢V %00, The integral

feda=B)ytdy, t>o,

(5.8)

()—2—{=

gives an L({E)-valued analytic functlon on (0, 00}, Take ¢ € C°°((0,T)) with
supp¢ < (0,7). For 7 > T, from the equation D% + Bt = 0 we have
T T

V&' (e 05 dt = (A + B) [ AT Pe(tyal) de.
0 0
Acting with {A 4+ B)~! on both sides for A € v and then integrating over ~,

we get Sg ¢ (L)S{(r—)u(t) dt = 0. Hence, as in the proof of Lemma 4.4 we ob-

tain §(s)u(t) = 0, ¢ > 0, for each ¢ € (0,T). The function § has the property

of Proposition 4.1(2) (see [26, Lemma 7.1]). Therefore & = 0 on (0,77). u
In order to prove the surjectivity of P and P we regard (5.2) as an

equation in a certain subspace of F. Let Y5, = 0,1,...,n, be the subspaces
of X; given by (3.1). Put

E=Yyx..xY,_y, F =Y x..xY,

and define the linear operator B in B by

D(B"Y=F', B'z= Bz
Consider the following equation in E’:

D+ BE=f 0<t<T
5.d 1t ) y
(5.4) { 7(0) = 7.
For f & BS (0,T;Xq), if & € BLEO(0, T E') Baq(() T F') is a solution

of (5.4) with & = 0, then the nth component of 4 = b(ul,. U ) glves
a solution of Pu = f. Slmilarly, for (f,21,...,2n) € Dy, from a solution
e BEEO, T BYNBE (0,15 F') of (5.4) asolution of Pu = (f,21,...,2n)
is obtained as above,

In [25, Section 5] we showed that when n = 1, the condition (5) of the
theorem. implies the conditions (1) and (3}, We now show that the result
applies to (5.4). First observe the correspondence between the data of (1.1)

0, q(
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and those of (5.4). Clearly, f € Bg,q(o, T X,) implies that f € Bg,q((], T, B,

When 8 — p~ ¢ 7, define the subspace Dy of BS (0, T; E') x E' for (5.4)

in the same manner as we defined Dy for (1.1) in Section 3. Then from

(#,21,...,@y) € Dy we obtain f € Bﬁ,q(U’Ti BN, e F and (f, %) € Dy.
The following proposition shows that for the equation (5.4) the condition

(5) of the theorem is satisfied with n = 1. This completes our proof of the
surjectivity of P and P.

PROPOSITION 5.2. For A € X the operator A+ B’ is bijective. We have
(5.5) sup || A(A+ B’)_1|§£(Ef) < 00,
AEL
Proof. The assertion corresponds to that of [26, Lemma 5.6]. We sketch
the proof of [26]. The following two lemmas are of importance.

LEMMA 5.2. Fort >0 anda €Yy, j=0,1,...,n, put

Li(t,z) mf (Ztk"J\mm¢]k+ Z tk"J\q"[')

k=i+1
(if 7 = n, the last sum is zero). Define the subspace Z; of Y; by

Zi={z €Y;: sup Li(t,z) < 0}
O<i<oo
with norm |©|] = ||} + SuPgerec, Li(t, 2). Then Z; = Y5, j = 0,1,...,n
with egquivalent norms.
Proof. See [26, Proposition 3.1]. =

LeMMA 5.3. We have the following estimates analogous to (3.3):
(5.6) i}slg ||)\"_j+an()\)"1||5(y0,yj_1) <oo, j=1,...,n,n+1.
Proof. See {26, Lemma 5.3]. u

_ For A € X the operator A + B’ is bijective. The inverse (A + B')~
given by a formula similar to (5.3). For u € C and z; € Y;,i=0,...,n~1,
put

n
' Z Z k- k- !
L(#,CCU,.-.,I,,-,, 1 _¢l€n§£ ' 12 Jm nqb
J=

(if & = n, the inner sum is zero). As shown in {26, Lemma 5.5], it follows
from (5.6) that for A € 5 we have

|B' (A+ By 2z, 2y 1) ~ LAYz, ... 2 Tn—1)

( I | B is the norm on the product space E'). This means that the left-hand
side is bounded from above by the right-hand side multiplied by a constant

Coerciveness in Besov spaces o7

independent of z;, j =0,...,n—1, and of A € ¥, and vice versa. It is easy
to see that for all z;, 1 =0,...,n —1, and A € X' we have

n-—1
A Yao,. . 2no1) <3 LEIA 25).
J=0

Hence, by Lemma 5.2 the norm |B/(A+B') =1 (=g, ..., Zn—1)|z is bounded
from above by E;:Gl |z;|5 multiplied by a constant independent of A € .
We thus obtain supyeg || B'(A + B) 7| ¢z < co. This proves (5.5). m

In contrast to the assertion of Proposition 5.2 the boundedness of the
operator A(A+B)~! in L(E) is conditional: it remains bounded in L(E) as A
tends to oo in the sector X if and only if E/ = E with equivalent norms (see
[26, Remark 5.1]). It seems that in applications this is a strong restriction
on the choice of the spaces X;, 7 =1,...,n~ 1.
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From the abstract:

“In earlier papers we have studied compact embeddings of weighted func-
tion spaces on R", id : Hy(w(z),R") — L,(R™), s>0,1 <g<p<oo
s—n/q+n/p > 0, with, for example, w(z) = ()%, & > 0, or w(z) = log? (),
B >0, and {z) = (2 + |z]*)'/2. We have determined the behaviour of
their entropy numbers ex(id). Now we are interested in the limiting case
1/q = 1/p+ s/n. Let w(z) = log”(z), B > 0. Our results imply that id can-
not be compact for any 8 > 0, but after replacing the target space Ly (R™) by
a “slightly” larger one, Ly(log L)_,(R"™}, a > 0, the corresponding embed-
ding becomes compact and we can study its entropy numbers. ‘We apply our ‘
result to estimate eigenvalues of the compact operator B = by 0 b(-, D) 0 by
acting in some L, space, where b(-, D) belongs to some Hérmander class
U x2>0,05y< 1, and by, by are in (weighted) logarithmic Lebesgue
spaces on R™. Another application concerns the study of “negative spectra”
via the Birman-Schwinger principle. The last part shows possible gener-
alisations of the spaces Ly(log L}_o(R") with R™ replaced by a space of
homogeneous type (X, 8, )"
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