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Perturbation theorems for Hermitian elements
in Banach algebras

by

RAJENDRA BHATIA (New Delhi)and DRISS DRISSI (Kuwait)

Abstract. Two well-known theorems for Hermitian elements in £ *-algebras are ex-
tended to Banach algebras. The first concerns the solution of the equation az — 2b = y,
and the second gives sharp bounds for the distance between spectra of g and b when a, b
are Hermitian.

1. Introduction. Let .4 be a complex unital Banach algebra. An element
a of A is said to be Hermitian (or conservative) if ||e¥?|| = 1 for all real
numbers ¢. This notion is a natural generalization of self-adjoint elements in
a C™-algebra, and has been of considerable interest in the theory of Banach
algebras. See, e.g., [7].

Several properties of self-adjoint elements of C*-algebras remain true
for Hermitian elements of Banach algebras, while many others do not. For
example, if o is Hermitian then [|a| = r(a), the spectral radius of a. This
was proved, almost at the same time, by Browder [8], Katsnelson [11] and
Sinclair [16]. All the three proofs depended on Bernstein's inequality for
entire functions; in fact this theorem about Hermitian elements is eguiva-
lent to Bernstein’s inequality [13]. Among the properties that are strikingly
different from the corresponding fact in C*-algebras is the following. If a is
Hermitian and invertible, then ¢~ need not be Hermitian. In this case, an
interesting inequality has been proved by Partington [15]: if a is Hermitian
and invertible, then

™) o™l < 5@,

and the inequality is sharp. Partington’s proof used Kolmogorov's inequal-
ities [12] for derivatives of functions. A different proof and a generalization
were given by Haagerup and Zsidé [10].
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In this note we prove for Hermitian elements of Banach algebras ana-
logues of two theorems that are important in the perturbation theory of
spectra in C*-algebras.

Our first theorem is about the equation,

(2) ax — xh =y

in Banach algebras. This equation has been studied by several authors; see
[6] for a recent survey. It is well known that if o(a), the spectrum of a, is
disjoint from o (b), then the equation (2) has a unique solution z for every y.
Motivated by some questions in perturbation of spectral subspaces of self-
adjoint operators, Bhatia, Davis and Mclntosh [5] obtained a particular form
of the solution of (2) when a and b are self-adjoint operators in a Hilbert
space. We will prove an analogue for general Banach algebras.

THEOREM 1.1. Let a and b be Hermition elements of a Banach aolgebra
with a(a)No(b) = 0. Let f be any function in L*(R) whose Fourier transform
f defined as

o0
o~

Fls)= | e 7(t)dt

—00
-~

has the property that f(s) = 1/s whenever s € o(a)—a(b). Then the solution
of the equation (2) can be ezpressed as
(3) T = S e Heyeh £ (1) dt.

—0Q

As a corollary we obtain the following.

COROLLARY 1.2. Let a and b be Hermitian elements of a Banach algebra

such that dist(o(a), o(b)) = 8§ > 0. Then the solution = of the equation (2)
s bounded by

T
(4) el < 5yl
The constant 7 /2 in this ineguality is sharp.

This inequality follows from (3) upon using the solution of a minimal
extrapolation problem for the Fourier transform obtained by Sz.-Nagy and
A. Strausz [18] (see also [17]). This argument was used in [4] and [5].
Haagerup and Zsid6 [10] use the same result to prove the inequality (1);
they also obtain a significant generalization of Sz.-Nagy’s result.

Our second theorem concerns perturbation of spectra.

THEOREM 1.3. Let a and b be Hermitian elements of a Banach algebra
and let Ao(a),a(b)) denote the Hausdorff distance between their spectra.
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Then

(5) Alola), o) < Tha— bl

The constant w/2 in this inequality cannot be improved. We also have
(6) la —bil < max{is - | : A€ o(a), e olb)}.

We should remark that for C*-algebras the factor «/2 in (5) can be
replaced by 1. This is true more generally when a, b are normal; see [1,
p. 119], [3, p. 161].

The proofs of these theorems are given in Section 2. They are followed
by some remarks in Section 3.

2. Proofs. Bach element a of A induces two operators on .4, the left
multiplication L, and the right roultiplication R,, defined as Lq(z) = ax
and Ry{z) = za for every = € A. Given a, b in A we denote by C,p the
operator Cup = Lo —Rp. It is called a generalized commutator. The following
facts are easy to verify:

(7 o(Le) = o(Ra) = ola),
0 VL7l =R = ] forall n 20,
(9 5o | = iR = [l

So, if a is a Hermitian element of A then L, and R, are Hermitian elements
of the Banach algebra £{A). If a and b are Hermitian, then so is Cy .

‘We will need some facts from local spectral theory; for more details see
[2] and references there.

Let T € £(X) and z € X. We define (2, to be the set of & € C for which
there exists a neighbourhood V¥, of a with u analytic on V, having values
in X, such that (A — T)u()) = = on V,. This set is open and contains the
complement of the spectrum of T. The function u is called a local resolvent
of T on V. By definition the local spectrurn. of T at z, denoted by oo (T}, is
the complement of (2, so it is a compact subset of o(T"). The local spectral
radius of T at @ is defined as 7, (T) = sup{jA| : A € 0(T)}-

Proof of Theorem 1.1. Since L, and Ry commute, we have

o{(Cap) = o(Ls) — 0(Ry) = o(a) — a(b).
Since this set does not contain the point 0, Cyp is invertible. For each y
the local spectrum oy (Cyy) is contained in o(Cup) = o(a) — a(b). Since a
and b are Hermitian, the generalized commutator Cy p is also Hermitian. By
the characterization of Hermitians given by G. Lumer in [7, p. 46}, Cop is
the generator of a uniformly continuous group of isometries. Using a well
known result (which goes back to Colojoari-Foiag) claiming the equality
of the spectrum of a Hermitian operator with the Arveson spectrum of the
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generated isometry group, that is, the support of the canonical functicnal
calculus with the Fourier transforms for integrable functions on the line (see
(9] for more details), for f & L'(R) with f(s) =1/s for all s in o(a) — o(b)
we obtain

Corly)y= | e tCaryp(t)at.

Since L, and Ry commute, we have

E—tha,by — e——tha E“R"y — 6—@tayeitb.

Since the solution of the equation (2) can be written as z = C7} (y), this
proves the theorem. ’

We should remark that the proof of the special case of this theorem
for Hilbert space operators given in [4] depends on the spectral resolution
of self-adjoint operators. This argument is not available in the setting of
Banach algebras.

Proof of Corollary 1.2. Since [|e"*|| = (|€*®|| = 1 for all ¢, from (3) we
get |[z|| < || fllz:[lyl], where f is any function that satisfies the hypothesis of
Theorem 1.1. Hence |z|| < (¢1/6)||y||, where

(10) c1 = mf{||fllzs : Fls) = 1/s for |s| > 1.
By an old theorem of 8z.-Nagy and Strausz [18] (see also [17]), ¢; = 7/2.

We should point out that the same argument leads to a proof of Part-
ington’s inequality (1). Since a is Hermitian, o(a) is a subset of R; since it
is invertible the number § := wf{|A| : A € ¢(a)} is positive. If we choose a
function f; in L'(R) such that f3(£) = 1/¢ for |t| > 4, then by the holomor-
phic functional calculus,

[+ 9]
a”t = | e gs(t) dt.
-0
From this we obtain the inequality (1) again by the theorem of Sz.-Nagy and
Strausz. (This appears already in the paper by Haagerup and Zsidé [10].)

Proof of Theorem 1.3. The idea of the proof is essentially the same as
that in (3, p. 161]. '

Let £ = Zlla — bjl. We have to show that if 8 is any point of a(b) then
there exists a point & in o{a) such that |§ —a| <e. Applying a translation,
we may assume that § = 0. Suppose § := inf{|a| : & € o(a)} > £. Then a
must be invertible and r(a™") < 1/¢. So, using (1) we get
m
=r

o~ <
o<

(@) < 5“1
Hence £
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la™ (b~ a)| < fla™'| - [lb-af <1
This shows that 1 + a=*(b— @) is invertible, and therefore, so is b = a(l +
a~*(b—a)). This is not possible if o(b) contains the point 0. Hence, we must
have § < . Interchanging the roles of a and b, we obtain the inequality (5).
To prove (6) first note that if £ and F' are compact subsets of R, then
we can find a point v such that
A— -y = — 14
e A=l Fmaxle— ol = agax Al
Now, if a and b are Hermitian elements of A and if e is the unit element,
then for any real number 7,

la — bl < lla—vell + [|b = yel| = r(a — ve) + (b — 7e)

max |A — pf.

= max |A—v+ max |p—v| =
A= ) |l —l reo (BB

A€c(a} go(b)
This proves (6). This idea, essentially due to L. Elsner, is also used in [3,
Problem VI. 8.4)].

It remains to show that the factor 7/2 occurring in (4) and (5) can-
not be replaced by anything smaller. This follows from a construction in
McFachin [14]. He has demonstrated the existence of n x n matrices An, By
and @ such that A, and B, are Hermitian, A{o(Ay),o(B,)) = 1, and

nllrn;o “AnQn - Q”B'ﬂ”/”Qn” = 2/71'.

So, if a,, and by, are the Hermitian elements in the space of operators on nxn
matrices corresponding to left multiplication by A, and right multiplication
by By, respectively, then

Alolan), o)) =1 and |jan — byl — 2/7.
This shows that the inequality (5) is sharp.

The same example shows that (4) is sharp for the algebra A = L{L(H)), .
where M is a Hilbert space. Indeed, the motivation for McEachin was to
show the sharpness of this inequality in this special case considered in [4]
and [5].

This example can also be used to show the sharpness of (1), for which a
different example was constructed by Partington [15].

3. Remarks

3.1. A local version of inequality (1) that could be useful in operator
theory can be proved using the ideas in Section 2. This says that if 4 is an
invertible Hermitian operator on a Banach space X, then for every « in X,

(11) |4~ 3]l < Zra(A7H),

where (T} denotes the local spectral radius of T' at z.
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3.2. A. R. Sourour has pointed out to us that if @ is positive in addition to
heing Hermitian, then the factor /2 occurring in (1) can be dropped. This
can be proved as follows. Assume, without loss of generality, that o(a) C
[6,1]. Let b = 1 — a. Then o(b) € [0,1 — &), and hence, ||b]| = 1 — §. Since

L= (1= =14+b+0b%+..., it follows that

le <1+ =-8)+1-8%+...=1/6§=r(a").

3.3. An element @ of A is said to be normalif o = h+-ik where h and k are
two commuting Hermitian elements of 4. There has been some interest in
this notion [7]. However, normal elements do not have as pleasing properties
as Hermitian elements. For example, the norm of a normal element need not
be equal to its spectral radius. (This is always so in C*-algebras.)

In [5] Bhatia, Davis and McIntosh have studied the equation (2) in C*-
algebras with o and b normal. The idea that we have used in the proof
of Theorem 1.1 can be used to extend Theorem 4.2 of [5] (see also Theo-
rem 9.5 in [6]) to the setting of Banach algebras. Now, the solution of (2) is
expressed as a two-dimensional Fourier transform. This leads to a minimal
extrapolation problem for the two-dimensional Fourier transform: evaluate
the constant

- 1
12 = inf : =0T
(12) cp=1in {If”L’(Rz) Fls1,82) 51+ 152

It has been shown in [4] that ¢ < 2.91. However, the problem of finding the
exact value of ¢y remains open.

The inequalities proved in this paper for Hermitian elements can thus
be extended to normal elements with larger constants replacing m/2. The
interested reader can easily work out the details.

whenever s? 4 g% > 1}.
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