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A resolvent condition implying power boundedness
by

BELA NAGY (Budapest) and
JAROSLAV ZEMANEK (Warszawa)

Abstract. The Ritt and Kreiss resolvent conditions are related to the behaviour of
the powers and their various means. In particular, it is shown that the Ritt condition
implies the power boundedness. This improves the Nevanlinna characterization of the
sublinear decay of the differences of the consecutive powers in the Esterle~Katznelson—
Trafriri theorem, and actually characterizes the analytic Ritt condition by two geometric
properties of the powers.

1. Introduction. Let T be a bounded linear operator on a complex
Banach space X, with spectrum o(T'). In recent years, the property

(1) |7 —T™ -0 asn—oo

has been studied by a number of authors (see especially [Es], [KT], [N1],
[N2]). The obvious necessary condition

(2) o(T) c {]Al <1 u{1}
is not sufficient for (1} in general (even in the two-dimensional case).

Assume that (2) is satisfied. Observe that the differences 7" — T™¥1 are
the Taylor coefficients of

3 A=DT-ADTr=-I+> @I -TH (Al> 1)
n=1

It turns out that the boundedness of this analytic function, that is, the
condition

- const
(4) T =AD" € =77 (IA1>1)

|A—1]

already implies (1) (see Proposition below). This condition (and the pos-
sibility of extending it to a larger sector) is relevant to the quantitative
behaviour in (1) (see [N1, Theorem 4.5.4], [N2, Theorem 2.1]). It can be
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traced back to [R], where it was shown that (2) and (4) imply

(3) |7l = o(n) asn — oo,

an important condition occurring in uniform ergodic theory [D]3 [LZ}. As
pointed out by Olavi Nevaniinna in [Z1, p. 376], a close look at Ritt’s proof
[R] reveals that more precise information can be derived from {4). Let
_I+T+... 4T (

i)

M, (T} n=12...).

PRrROPOSITION. Let T satisfy (4). Then

(i} [|T™] = OQlogn) as n — oo;
(i} | Mn(T)| = O(1) as n — oo;
(iii) |7 — T+ — 0 as n — co.

Proof Note that (4) implies (2). Write each of the three operators in
question as the Cauchy integral over a Jordan curve =7 ulyuly
surrounding o(T), where I} is contained in the open unit disc (except for
the endpoints), I consists of two arcs on the unit circle, at distance > 1 /n
from 1, and I3 = {{A ~ 1| = 1/n, |A| > 1}. Choose I3 of small length £ > 0,
and consider n > 1/¢. Standard estimations of each of the three integrals,
over each of the three parts of I" separately, vield the results. =

Now, (5) follows immediately from (i) or (iii). Concerning (i) and (iii}, see
also [EHP, Theorem 2] and [Tad]. Property (ii), in turn, implies the so-called
uniform Abel boundedness [GHu, Theorem 2]. Also, a related result seems
to be [KT, Theorem 2].

Moreover, by (iii} and the Fatou-Riesz theorem [V], series (3) converges
at each point of the unit circle different from 1 {1). Consequently, by [PéS,
IIL. 246], 1 is not a pole of (3).

It is interesting to compare (4) with the (weaker) Kreiss condition
const

AN € e 1
(6) - s 5oy (N>,
which implies the weaker conclusions
1T = O(n),

| M (T)|| = Ologn) and || M (T)?} = O(1)

as n -+ oo (see [N1, p. 32], [N2, p. 248], [R51, pp. 20, 52, [StW, pp. 344,
351]). These consequences of (6) do not require (2). Does (2) add stronger
conclusions? Is it possible that (2) together with (6) implies a variant of (1)?

(1) We shall see in Section 3 that the resolvent actually extends analytically through
these points to a larger sector.
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The Kreiss condition (6) can be characterized in terms of boundedness
of certain functions of T' (see [Sh], [StW, Theorem 6.1]). As regards the
(stronger) Ritt condition (4), see Theorem below.

2. Some examples. It may be instructive to look at a few examples.
Consider the Volterra operator

(VHE) = | fls)ds
0
).

on a suitable space of functions on (0,1). Let A= (I+V) " 'and B=1-V.
Recall that A and B are similar [A2, p. 15].

If X == L4(0,1), then ||[A®|| =1forn=1,2,... (see [Ha, Problem 150]).
So A satisfies (6), but not (4) as can be seen from the resolvent [N1, p. 27].

On the other hand, if X = L;(0,1)}, then [B™| is of order n'/4, but
| M. (B)| is bounded (see [Hi, p. 247]). This example justifies [MZ, Théora-
me 2]. By (i), the Ritt condition cannot hold (which can also be seen directly
frorn the resolvent as before). See also [A2], [Py].

An example satisfying (iii), but neither (i) nor (i) (), is [Sw, Example 2].

To find an example that does satisfy (4) one can analyze [R62, Exam-
ple 3.7], an example suggested by Béla Nagy for another purpose. Let H
be a separable Hilbert space with orthonormal bases {er} and {fx}. Let
X = H@H, and let {or} and {8} be sequences in (0, 1) such that oy 1
and B N\ 0 as k — oo. For e =y, &re and f = 5, nefr, the operator T
on X is defined by

Te@ f) =) _(anbe+ Brme)er & f-

k
Then o(T) = {a} U {1}, and e, are Fredholm points. Next,
) 16 @ ) = (o + T2k Jeu 0 fo
— o
and
(8) T —T)(e® f) = Y oR[{l - ar)ék — Bunkler © 0.
k

Formula (3) now reads

© (-DT-AD o) = ~(eof+ T (1o kb a0,
k

(24

(%) As observed by Urszula Skérnik.
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which can be verified by applying T'— AT to both sides. Note that {1 —a;| <
|A — ay| for [A] > 1. So if

(10) sup

< 00
v 1—ag ’

then the right-hand side of (9) is bounded over {|A| > 1, |le®f| = 1}, and (4)
holds. At the same time, however, (7) and (10} imply that sup,, |77 < oo!
Passing to the Calkin algebra yields the identity. This example motivates
an improvement of the above Proposition (see Section 3 below). Moreover,
formulas (7) and (9) indicate a connection between the growth of the powers
and the growth of the resolvent, depending on the growth of 8, /(1 — ag) as
k — oo; it would be interesting to find a general form of this phenomenon.
What is the characterization of (1) in this example?

A simple construction of an unbounded (not closable) operator satisfy-
ing (4) appears in [TaY, Example 3.7] though the resolvent operators are
defined there only on a dense subspace. This indicates the strength of the
requirement that the spectrum be small.

3. The main result. For § > 0 let
K5 = {,\: L+ré?: r>0, 0 < g—%«c?}.

Curiously enough, it turns out that estimate (4) extends, with a larger con-
stant, to some sector K. This is due to the particular form of the Taylor
coefficients of the resolvent (the powers of a fixed operator). Since this obser-
vation is the key towards understanding and generalizing the example stud-
ied in Section 2, we include the simple proof below (see also [F, Lemma 4.2.3]
or [Pa, p. 62]). :

LeEMMA. Suppose (4). Then
(11) 027 < 52 (e k)

for some strictly positive constants § and M.

Proof. Let A =T~ I If we denote by C' the constant in (4), it follows
that

cAyc{ A A+1 <1}y {0},
and

A=A < % for |A+1] > 1.

In particular, this estimate holds for each )y with Re Ao = 0 and Im Mg # 0.
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Since
o0
(A=AD" =) (A=) A~ do)"
n=0
whenever

|A= 2ol [I(4 = 2eD)7H < 1,
we see that (A—AI)~! exists for all A with Im A = Im Ap and |Re A| < |Aq|/C.
Since Ag 5 0 was arbitrary on the imaginary axis, it follows that (4 — AI)~?!
exists for all A € K, — 1, where tane = 1/C.

To obtain an appropriate estimate, fix a § € (0,¢) so that tand = ¢/C
for some g € (0,1). Consider a A € K5 — 1 with ReA < 0. Let Ag = iImA.
Then

A= ol l(A= 2D < g <1,
hence
kad C C
o -1 _ -1 o .
642070 1A= D™ 6 S [ro o < (i graaes

Thus, letting M = C/({1 — g)cosd) = +/C? +¢%/(1 — q) = C and going
back to the operator T', we get the claim. =

The above Lemma improves the second part of [N1, Theorem 4.5.4] to
the effect that it actually suffices to assume the Ritt condition outside the
unit disc only. Now, this result yields the power boundedness as well as the
sublinear decay of the differences of the consecutive powers. Thus we get
the following strengthening of parts (i} and (iii) in the above Proposition.
(How could (ii) be improved?) The converse follows from [N2, Theorem 2.1]
(see also [Go, Theorem 1.5.4]).

TaeoreM. If (4) holds, then

(12) sup ||T7]| < oo,
T
and
(13) sup n||T" — T | < oo,
kil

where n=1,2,...
Conversely, (12) and (13) together imply (4). »

We note that (13) characterizes the essentially quickest possible conver-
gence (1), in view of [N1, Theorem 4.5.1] and [Z1, p. 373]. In general, this
convergence can be arbitrarily slow [ARa, Theorem 4.2]. Is it possible that
(13) may imply (12) or at least (14) below? All the examples mentioned in
Section 2 do suggest so. Moreover, (12) is actually not used in the proof of
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the first part of [N1, Theorem 4.5.4]. For Riesz operators, even (1) (via (5))
implies (12) by [Z1, Theorem 7].

Since (T — A1) ~Y| > 1/dist(, o(T")), we see that (4) corresponds to the
slowest possible growth of the resolvent at 1 € (7). This adds further inter-
est to the question about the relation between (4) and (13), and motivates
the more general problem of relating the rate of growth of the resolvent at
1 to the rate of convergence in (1).

In the following, (14) comes directly from (12} as in [N2, p. 251] or by
[A1, Lemma 2], and (15) from (13) as in [N2, Theorem 2.1].

COROLLARY. If (4) holds, then

(14) sup |71 < oo,
i>0
and
o=t
(15) ||(T—f>t-f(’f~ﬂ||ﬁo(1 - ) for > 0. m

Is there a kind of converse also here? In particular, does {14) imply back
(12) at least in the case where o(T) = {1}? We note that (14) implies
const
ReA -1
by estimating the Laplace integral formula for the resclvent [Pa, p. 25], while
(12) implies {6) by estimating the Neumann series. The proof of (ii)=-(iv)
in [N2, Theorem 2.1] shows that (14) and {15) together imply (11).

(T - A7 < (Re X > 1)

It would be interesting to know what is the optimal condition that has
to be added to (4) in order to get the Gelfand conclusion T = I. Results of
this kind and the corresponding references can be found in the survey [Z1].
See also [Z2].

4. Unbounded operators. The results of Section 3 complement the
theory of analytic semigroups [F], [Ga], [Pa] providing additional informa-
tion about the generator. To show this, suppose that 7" is a linear operator
(not necessarily closed or densely defined) such that (3)

const
A

Then T must be bounded on X. (This improves the statements in [Go, p. 38]
and {Kj, p. 60].)

(16} T =AD" < (1Al > K).

(*) Here we understand that the inverse is a bounded operator on X, as in [Go, p. 13].
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Indeed, since (T — AI)™! is a closed operator for large |A], so is T — AJ,
hence 7T itself, It follows from (16) that the Laurent series of the resolvent
around infinity has the form

=}
(T =AD"t =Y AT
n=1
where the coefficients A, are bounded linear operators on X satisfying

oo [+ ]
TY A =TT =AD" = MT - M)+ 1= S AT L
n=1 n=1
For A — oc both series above converge, and the closedness of T° yields
—A; =L
Thus, the Riesz-Taylor spectral projection corresponding to the bounded
part of the extended spectrum of T' is I, hence the extended spectrum of
T is bounded. Consequently, T' is a bounded Yinear operator on X by [Tay,
Theorem 5.7-B].
In other words, the results of Section 3 apply to every linear operator
satisfying (4).
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that (4) implies (12) and (13). Also Olavi Nevanlinna has claimed this an-
swer to our original question, together with a converse. We are grateful to
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