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Spectral localization, power boundedness
and invariant subspaces under Ritt’s type condition

by

Yu. LYUBICH (Haifa)

Abstract. For a bounded linear operator T in a Banach space the Ritt resolvent
condition |Ry(T)|| < C/IAx ~ 1] (JA| > 1) can be extended (changing the constant C)
to any sector |arg{h — 1)| < = — 4, arccos(C™Y) < & < /2. This implies the power
boundedness of the operator T. A key result is that the spectrum o (I} is contained in a
special convex closed domain. A generalized Ritt condition leads $o a similar localization
result and then to a theorem omn invariant subspaces.

The Ritt resolvent condition [6] is the inequality

1 Rl < (]A| > 1; € = const > 0)

¢
IA—1]
for the resolvent Ry = R5(T} = (T — AI)~* of a bounded linear operator
T in a Banach space X. Of course, according to (1) the spectrum o (T) lies
in the closed unit disk |A| < 1. Our main goal is to precisely localize the
spectrum (Theorems 2 and 3). In particular, we extend the inequality of
form (1) (with another C) to the sector

(2) Ss={A:larg(A—1)| <7 —48}, 1€5s,

with arccos{C™*) < § < #/2. This sector is the maximal possible for any
given C (see Remark 1 to Theorem 2).

By a theorem of O. Nevanlinna ([5], Theorem 4.5.4) any sectorial exten-
sion with 0 < § < 7/2 implies the power boundedness of T,

(3) sup || 77| < oo,
nz0

and also the following quantitative version of the well-known Katznelson-
Tzafriri Theorem [2]:

(4) |77 - T = Ofn ™).
Thus, we obtain
1991 Mathematics Subject Classification: 4TA10, 47A35.
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THEOREM 1. Any operator T satisfying the Ritt condition 1s power
bounded and estimate {4} holds.

This answers a question raised by J. Zemének at the 10th Matrix Confer-
ence (Haifa, January 1998). Earlier it was only known that ||[7"(| =O(lnn)
under the Ritt condition [8]. R. K. Ritt himself obtained [ T™|| = o(n).

Theorem ! was independently proven by B. Nagy and J. Zemdnek [4],
also by a sectorial extension of (1). Since in [4] extension is not maximal
possible, the proof turns out to be very short.

Let us start with some known simple facts.

The resolvent set o(T") = C\ (T} is open; moreover, if A € o(T') then

(5) {plu—=A <RI} € o(T)
This immediately follows from the fermula
o0
) Ry = Ry (p—A)F
k=0

where the series unifermly converges on the above mentioned disk. As a
consequence, we have the lower bound

(7) dist(\, o(T)) 2 R (M € o(D))-

Therefore if € 0o (T') then [[Ra]| — oc as A — p, A € p(T).
When applied to (1) the last staternent shows that actually

®) o(T) < {u+ lul < 1} U{1}

under the Ritt condition and, moreover,

(9) Rl < (A =1, A1)

¢
|A—1
Note that always €' > 1 since ARy — —I as |\| — co. Setting ¢ = 071,
so that 0 < g £ 1, we obtain the inequality
(10) dist(A, o(T)) 2 g2 -1 (1Al z1).
ProprosITION 1. The Ritt condition implies that
(1) oM CM={u:|ul £ 1&|u~e¥ > qle? — 1 (ju] < m)}.

Obviously, 1 € M. In the case ¢ = 1 the set M is the singleton {1},
hence o(T) = {1}. From now on we assume g < 1.

THEOREM 2. The sei M is convex and it is contained in the sector
(12) m—arccosg < |arg(p — 1) < 7

with vertes uw =1 (included in the sector).
Thus, the spectrum o(T) is contoined in that sector.
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Actually, this sector is tangent to M at the point u = 1, so it is the
minimal sector with vertex 1 containing M.

Proof of Theorem 2. Consider the one-parameter family of circles

(13) I,={p:lu—e?=qe?* -1} (¢l <),
(14) Tp={p:|pe™™ — 1" = 4¢®sin®(¢/2)} (J¢| < 7).

The family {I",} has two envelopes, inside and outside the unit disk respec-
tively. We are interested in the inner one which we denote by L. In order
to find L we follow the standard prescription to differentiate equation (14)
with respect to ¢ and then consider both equations simultaneously. Thus,
we consider the system of equations

(15) lue=™ — 1> = 4¢° sin®(/2),

(16) | {Im(ue“w —1) = —¢*sin¢.

Solving this system under the constraint |u| <1 we find

(1) Re(ue™ ™ — 1) = —2q|sin(ip/2)| /1 — ¢2 cos(¢p/2)
and then

(18) =" (1 - 2qlsin(p/2)|v/1 — @ cos?(¢/2) —ig°sing)  (le! < 7).
The last curve is, in fact, the envelope L: at every ¢ # 0 the point x defined
by (18) belongs to the circle I}, and p is the tangency point of L and I',.
For ¢ = 0 we have p = 1. Here only the one-sided tangents exist.

Obviously, L is a closed curve: p = 2¢ — 1 for ¢ _= =w. Moreover,
I is symmetric with respect to the real axis, u(—@) = p(p), and LNR =
{1(0), u(m)} = {1,2¢—1}. We establish that L is a convex curve, the bound-
ary of a convex closed domain NN, and then we prove that M=N.

Let us simplify (18) using some auxiliary parameters. By elementary
algebra, for

(19) t= —rslein(e/2)

we obtain

(20) b=+ (=PI +E -1 (gl <m).
Using the hyperbelic substitution

(21) t = sh{r/2}

we get

(22) b=t (1= e,
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By (19) and (21), 7 is a continuous function of ¢ such that
q .
(23) sh(r/2) = ——=|sin(¢/2)|.
V1-—¢?

Obviously, the function 7 is infinitely smooth everywhere except at ¢ = 0.
At that point the derivative 7'() has a jump,

24 7(£0) = £ ——,
As we see from (22), our curve L is an affine image of the curve
(25) A={(: (=TT (lp| <m)}.

It is sufficient to check that A is a convex curve, Note that A is simple, i.e.
has no self-intersections. In this case a sufficient condition for convexity is

(26) det(¢',¢") >0 (@#0),  det(¢'(~0),{'(+0)) > 0.

Indeed, the first inequality means that the tangent vector rotates in the
positive direction when the angle ¢ = arg ( increases in the intervals (—, 0),
{0,7); the second inequality means that the jump of the tangent vector at
v = 0 is also posttively oriented.

By differentiation of (25),

(27) ¢ =Ty, (= TRy
where

(28) u=—7"+i, w=[r")? 7" —1] - 27
Since the determinant is orthogonally invariant, we have
(29) det(¢',¢") = e=2det(u,v),

In turn,

(30) det(u,v) = Im(@) = v + (+')2 + 1.

By differentiation of (23),

(31) 7"ch(r/2) + %(T’)2sh(7/2) = ~«;ww\/-1_—q—~:_(;§|sin(<p/2)

= —Zsh(r/2) (p£0).
Hence we get
(32) = —3[(7)* + 1]th(r/2)
and then
(33) det(u,v) = [1 - Zth(r/2)] - [(+')? + 1] > 0.
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Thus, the first part of condition (26) is true. The second part is also true.
Indeed,

(34)  det(¢'(=0),{"(+0)) = det(u'(-0),'(+0)) = 7'(+0) — 7'(=0)

2
=—L>0.

v1—¢?
The convex curve L lies in its tangent sector at the point u = 1. The
sector is just (12). Indeed, L is symmetric, and (22) with (24) imply that

(35) W(H0) = (1= g*)(=7'(+0) +14) = /1 - g2 e”
where f = arccos(—¢g) = 7 — arccos ¢.

In order to finish the proof of Theorem 2 we consider the convex closed
domain N bounded by I and prove that M = N. Note that N \ {1} lies in
the open unit disk (since || < 1 by (22) with ¢ # 0). Let

(36) Ap={p: Ul S1&ip~e¥ < g -1} (p#0)
be the circular lune bounded by the corresponding arcs of the circle I,
and the unit circle [p| = 1. Since the center e*® of I', lies outside L and

L is a convex curve contacting I, the lune A, also lies outside L. Hence,
A, NN =@, so that

(37) NNl 4, =

p
On the other hand, if 4 € N and |u| <1 then p € A, for some ¢ # 0,
namely, for ¢ such that I, contacts L at the point nearest to p. We con-

clude that the union of all A, complements N to the closed unit disk. By
definition (11}, N =M. u

REMARK 1. As we see from (15), the distance from the point A = ¢&*¢
{ # 0} to the curve L is 2¢[sin(p/2)| = g|A — 1|. Therefore if " is a normal
operator in a Hilbert space such that o(T) = L then
1 C
We see that the convexr set M and hence the sector {12) are the smallest
containing the spectrum under the Ritt condition with any given C.

REMARK 2. The outer envelope L is not convex but consists of two parts
(in the upper and lower half-planes) which are convex.

ReEMARK 3. Using the standard rational parametrization of the unit circle
one can rewrite equations (15) and (16) in algebraic form. The classical
resultant theory shows that LUL is an algebraic curve of degree 6. However,
the transcendental representation (22) turns out to be more convenient for

our goal.
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Now we can prove

COROLLARY. Let an operator T satisfy the Rift condition. Then for any
sector S5 of the form (2) with arccosg < § < w/2 (g = C71) the estimate

(59) IRall < ok (he s, £ 1
holds with
(40) C(8) = C(1 — Ccosd) ™.

Proof. By Theorem 2, S5\ {1} C o(T). Take a point u € S5 with
|| < 1. The vector g — 1 determines a chord in the unit disk. Consider the
corresponding arc of the unit circle lying in the sector and let A be the point
on the arc whose orthogonal projection onto the chord is . Let 8 be the
acute angle between the vecters 41— 1 and A — 1. Then # < 7/2 — &, hence
sinf < cosd < ¢. Looking at the triangle with vertices 1, A, & we see that
|#t — Al = |A — 1|sin 6. The Ritt condition yields
Clu—A|

U NN RS et

=Csinfl < Ccosd < 1.

Now we can apply (6) and get
[ Aall 22N
[BA - lw = A 7 1= Ccosd’
Using the Ritt condition again we obtain the estimate
C 1 C 1
43 Ru < . < . .
(43) 15 1-Coosé |A=1] " 1~Ccoséd |u—1[

Here the constant factor is greater than C, so (43) is also valid for u € S;
with | ,LL[ >1l. m

(@) 1Bl < —

REMARK. The case C = 1 is included in Theorem 2. (We know that

o(T) = {1} in this case.) The proof does not need Thecrem 2, so this case
is the simplest one.

Now we consider a more general condition
(44) IBAl £ C/v(p)  (A=e", 0<p<2m)
where C' = const > 0, the function (i) is defined and continuous on [0, 27]
(this range for ¢ is now more convenient than [, 7}), and
(45) (@) >0 (0<y<2r), ~(27)=~(0)=0.
We do not assume the symmetry (27 — ) = v(;).

Under (44) the spectrum o(T") may partly lie outside the set D U {1}
where D is the open unit disk. Accordingly, o(T") = ¢_ (1) U oy (T) where
o+(T) are those parts of o(T) which are contained in D U {1} and in
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(C\ D) U {1} respectively. Here D is the closed unit disk. Obviously,
o_(TYnoy(T) C {1}.

THEOREM 3. Suppose that condition (44) is satisfied for an operator T'
with o function v € C2[0, 27| satisfying (45). Furthermore, assume that

(46) C > wmax+/7? + (v)? + (v)2,
Then the boundary of the set
(47) M={p:|u-e?|2aq1(p) 0<p<2m)}, g=C7,

is the wnion of two closed simple curves L and Ly such that L_NLy = {1},
and

(48) L_cDbhbu{l}, L,c(C\Dyu{1}.

If My stand for the closed domains bounded by the curves Ly respectively,
then

{49) M=M_UC\ M,
and '
(50) CF_(T)CM_, O’+(T) CC\M+.

In addition, the curve L_ is convex, i.e. M_ is a convex closed domain.
The curve Ly is convez iff v'(2w) = +'(0) = 0. In the opposite case the
intersections of My with the half-planes {p : Tm pr > 0} and {p : Imp < 0}
are conver.

Both L. are regular C"-curves except, maybe, at the point pn =1 (cor-
responding to ¢ == 0 and ¢ = 2) where the tangent angle for L_ is

(51) 7 /2 + arcsin(gy'{0)) < ¢ < 3w/2+ arcsin(gy' (27))

The tangent angle for Ly at p = 1 is the mirror image of (51) in the
imaginary aris.

Near this point L., stays outside the tangent angle. Actually, the union
Ly UL is a regular smooth curve with only one self-intersection at p = 1.

We see that Ly is conves iff its smoothness extends to the point p =1,
so that both the curves L. turn out to be smooth everywhere. Indeed,
A'(0) > 0, 4'(27) < 0 by (45), hence if v/ (27) = /(0) then both these values
are zero,

Note that Theorem 2 with restriction (46) for C is contained in the
non-smooth case of Theorem 3 (cf. (51) and (12) taking the difference in the
choice of branches for ¢ into account).

For the further proof of Theorem 3 it is convenient to rewrite (46) as

(52 gmax /77 (VP2 + (77 < 1/
The constant 1/7 comes from the following purely geometrical
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LEMMA. Let w(p) (0 < ¢ < 2 w(27) = w(0)) be o complex-valued
function satisfying the Lipschitz condition
(53) lw{p1) — wlp2)t < Klg1 — o
with a constant K < 2/w. Then the closed curve
(54) 2: p=e¥tulp) (0Lp<2m)
is simple.

Proof. Suppose that u{p1) = p{es) for some ¢ and @z with 0 < 1 <
w3 < 2. Then, according to (54), we obtain

) , 2

(55) 62— 691] = fulipz) ~ ()] < 2 (02~ 20).

Setting o = % (2 — 1), s0 that 0 < o < =, one can rewrite inequality (55)
as

(56) Siza <2

On the other hand,

(57) w(ip2) — wlier)] < jw(2m) - w(we)] + |w(ip1) — w(0)]
< %(27“* P2 + 1),

(58) sin{n — &) < g

m— ™
The function o(t) = (sint)/¢ decreases on (0,7) and o(n/2) = 2/7. Hence,

if o(t) < 2/ then ¢t > /2. Therefore we get a contradiction: @ > 7/2 from
(56) and = — ¢ > 7 /2 from (58). =

REMARK. The bound K < 2/7 is the best possible. Indeed, for w(p) =

—2(i/7) arcsin(sin ) the exact Lipschitz constant is just 2/ but p(37/2) =
p(m/2) =0, so the corresponding curve (2 is not simple.

Proof of Theorem 3. As in Theorem 2 we consider the one-parameter
family of circles

(59) Tp={u:lu—e?|=qv(p)} (0<p<2n)
and find its envelope from the system of equations

(60) e ~ 1 = ¢*4%,

(61) Tm(pe™" — 1) = —¢*yy'

(v = v(@), v =+'() for short). Since
(62) gyl <1
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by (52), the system has exactly two solutions:
(63) Re(ue™™ — 1) = £qyy/1 - 2(v')?,
so, respectively,
(64)  px=eP(1Egr/1-E(V)2—id®yy) (0<p<2m).
We have
(65) ] =1+ ¢*y* £ 2g7/1 — ()2,
so that || > 1 for 0 < p < 27 trivially but |u_| < 1is also true. Indeed,
(52) provides
(66) g7+ 4R < 2w
and, a fortiori,
(6 0 < 2T ET
The envelope of the family {I5,} is just the union L_ U L, of the closed

curves L = {p: p= pi(p) (0 <o < 2m)}, and, as we already know, (48)
holds, so that

(68) L.nL:={1}.
In order to simplify (64) we introduce an auxiliary function of ¢,
(69) # = arcsin{gqy’).

By (62) this definition is correct and |#] < m/2, hence cosé# > 0. Now we
can write

(70) p = €' ok gyt (PFE)
Note that the function 8 is of class €1[0, 2n], hence Ly are of the same class
except, maybe, at u =1 {¢ =0, ¢ = 2m).

Let us extend the range of the parameter g by adjoining the negative
values with the same bound for |¢| as (52) for ¢ > 0. Actually, now we deal
with the one-parameter family of curves
{(71) Lyt jg=¢¥ gyelti) (0 < p < 2n)

where 8, is defined by (69), and our . are, in fact, ft+, where ¢ > 0.
Therefore it is sufficient to prove that L, is convex for all ¢ such that

(72) lalv/72 + (V)P + (V)2 < 1/
From now on we omit the subscript ¢ in (71) for short, so
(73) L p=e¥ — gyelletd)

with a fixed ¢ satisfying (72).
To prove that L is simple we apply the Lemma with

(74) wlp) = —qye'®? (0 < p < 2n).
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The function w is of class C[0, 2] and

(75) W'(p) = —ge' PO (Y +i(14+8')y).
Hence,

(76) ' ()] = lg|v/ (L + 8242 + (+/)?
where

(77) 8 — ay"

T
according to (69). Obviously |8| < 1 by (52). Therefore
(78) W)l < 2l + (v)? <2/,

hence w satisfles (53) with K < 2/ as required.

For further geometrical properties of L we need the derivatives of u
from (73). First of all,

where
(80} u = i{cosf — gy(1 +6')),

taking into a,ccm'mt that sin 6 = g7’ by (69). Note that Re(u) = 0. We prove

that u # 0, which yields that u' 5 0, i.e. I has no singularities {(except

maybe, at g = 1). ’
Now we show that

(81) cos —gy(1+46') >0.

Indeed, (81) can be rewritten by (77) and (69) as

(82) V1= (¥4 (Y) + ] < L.

But this expression is less than

(83) a7+ P + 97 < laly + 1+ () + ()]

This, in turn, is less than #~' + 7=2 by (52), so (82) is true a fortiori.

By (79) and (80) the right-sided tangent vect —
directed as g vectors to L at p == 1 are

(84) ei[w/2+arcsin{q'y’(0))], ei{vr/2+arcsin(q'y’(2ar))]_
.Hence,’thfa corresponding tangent angle is just (51) for ¢ > 0 and its mirror
image in iR for 4 < 0.

Now let us temporarily assume that 3
v € C90,27], hence 8 € C2[0, 2
and then p € C?[0,2n]. In this case it follows from (79’) and (80) that[ 271

(85) p = eile )y,
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where

(86) v=14(l+8Yu+u,

so that

(87) Re(v) = —(1+ '){cos§ — gv(1 +8'}).
This yields

(88)  dei(y', ") = det{u,v) = Im(dw) = (1 + §")(cosf — gv(1 + 6))?
and then

(89) det(p', u") >0

because of |#'| < 1 and (81).

We have already got all the convexity statements of Theorem 3 but under
the extra assumption v € C3[0,27]. For v € C?[0,2n] we can approximate
+ by functions v, € C%[0,27] (n = 1,2,...) under the same condition (52).
Tndeed, (52) determines a ball in C2{0, 2nr] where the subset of C*-functions
is dense. The boundary conditions v, (27) = ¥a(0) = 0 can also be ensured.
Therefore the function p € C0, 27] given by (73) is the limit of a sequence
{n} such that the corresponding domains are convex. The limit domain

turns out to be convex as well.
Now the localization (50) of the spectrum can be proven as in ‘Theorem 2.

We do not repeat those arguments. =

With a view to some further applications we now estimate from below
the distance function

(90) d(i) = min{dist(u_ (i}, L+), dist(p4(9), L-)}-
Obviously, d(0) = d{2r) = 0 and d(¢) > 0 for 0 < ¢ < 27.

PROPOSITION 2. Let () satisfy the conditions of Theorem 3 and as-
sume it is conves in some neighborhoods of the points ¢ =0 and ¢ = 2. If
£ >0 is sufficiently small then there exists a = a(e) > 0 such that

{91) dlg) 2 ay(p) (D<@ <e 2~ < <2x).

Proof. For definiteness we will prove that
(92) dist(p— (@), L) Zav(p)  (0<p<e)
Let v be convex on [0,8] (0 <§ < m/2), te. v'(p) 20for 0 < < §. Since
4/(0) > 0, we have v'(¢) > 0 for 0 < » < 4§, so ¥ is non-decreasing on this

segment.
Fix ¢ and set u = p_.(¢) for short. Consider the point A = 4 {%) such

that
(93) dist(ps, L) = b — A,
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We get 0 < 0 < §if 0 < ¢ < £ with sufficiently small . Also let £ < § and
then 0 < € < /2 a fortiori.

Geometrically, A is the tangency point of L to the circle Ity (see (59)).
The vector p — A is the irmer normal to Ly at A, therefore it is directed as
e — X (" is the center of I'y). The curve L_ has no points inside I7, while
w € L_. Since the radius of I, equals gy(1}, we obtain the inequality

(94) = Al 2 2g7().

Now we need to properly compare () and (). If ¢ > ¢ then () > (i)
therefore we can assume that ¢ < ¢.
According to {79) and (80) the tangent vector to Ly at the point X is

(95) 7 = iell¥=y

where v > 0 (see (81)) and 7 = arcsin(gy'{¥)) (see (69)), so that
(96) 0 < n < aresin({l/7)

by (72). The vector ¢7 is normal to L, at A, hence

(97) p— A= —ppetl¥—m

where g > 0 since ¢7 is also directed toward the interior of L. Now (94)
can be written as

(98) ov > 29v(%)-

According to (70),

(99) p= e —gy(p)e T, X = e g gy(yh)etPT)
and now (97) takes the form

(100) e — " = gy()e"F T — (gv - gy())e! P,

This can be rewritten as the real system
(101) {cosso — cos 9 = gy(ip) cos(p + 6) ~ (ov — () cos(y —m),
(102) sin — sintp = g7(p) sinfp + 8) ~ (v — gqv(¥)) sin(¥ — 1),
which can be considered as a system of linear equations with unknowns gy(i)
and gv — gy(%). Its determinant is sin(2c + 6 + 1} where oo = (o — %) > 0.
The determinant is not zero since 0 < 200+ 6 + 1 < £ + 2arcsin(1l/7) < 7.
Therefore we can solve the system and get the quotient of the unknowns,
(103) Qv — Q’Y(%b) — COS(Oé + 9) )

77(¢) cos{er + 1)

By convexity of v we have 7/(2/) < v'(¢) and then 5 < 4, which implies
cos(a + ) < cos(a + 1) since o+ 8 < £/2 + arcsin(1/7) < /2. Now (103)
implies v ~ gv(¥) < g7(p) and (102) yields

(104) siny —sing < 2gv(g).
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On the other hand,
sin g — sin}

105 = CO8
(105) pp—; 3
where 2 < £ < @, 80 that cos£ > cosy > cose. As a result,
2
(106) 0<p—y< 22D
cose

Using convexity again we obtain

(107) (@) 2 v(p) - V(@) e~ 9) 2 (1 - M)v(w)

COsE
and, finally,

2
(108) 1) > (1 =) (o)
by (72). Combining (108), (94) and (93) we conclude that (92) is valid with
2
(109} a=2q (l ~ )
FCOSE

whare £ is determined as before. m

Combining our results with the local spectral theory developed by
Stampfli [7] (cf. [3]) we can prove the following

THEOREM 4. Suppose that, in addition to the conditions of Theorem 3,

the function y(¢@) is convex near p = 0 and

29
(110) { Iny(e) dp > ~o0.

0
Suppose that an operator T satisfies (44) with constraint (46). If c(THY\ {1}
has points in D and outside D then there exist non-trivial hyperinvariant
closed subspaces X such that

(111) o(T|Xx) C M.

Proof. Theorem 3 remains in force if we replace ¢ = C~! by any & with
0 < k < ¢. In this way we obtain a family of curves L. (x) with the same
properties as the initial ones, 1. However, all these curves intersect the set
M (given by (47)) only at the point 1, so that the localization (50) can be
sharpened:

(112) o (T)\ {1} Cint M_(x), o (T)\ {1} C C\ My (k)

where M. () are the closed domains bounded by Ly(x) respectively.
For any point u = u(yp) € L+(x) we have

(113) Al =w1(p) (=€)
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We can estimate [|[R,| like (41), (42), namely,

‘ Clp— Al
114 Ryl - g~ Al € ———=Cr < 1.
(114) 1Bl - [ — A < ) K
This yields
(115) 1Bl < el O ]

IRl Ju= A = 1=Cr +{w)’
Therefore we could suppose from the very beginning that
(116) o (T)\{l} Cint M, o (T)\ {1} CcC\ M.

Following [7] (Theorem 1 with subsequent remarks and Theorem 1') we
only need to construct two functions fi(A) in H*°(C\ M,) and H>®(M..)
respectively, both with no zeros and such that

(117) sup{|| £+ (\RA(T))) : A € L} < oo
and, finally,
|2 ()
(118) S | dA {dpd < ool
LS_ LS+ | A= gl Oo

For definiteness we do it for f_ (). Our construction is a counterpart of a
classical one which is well known for H°° (3}, where D is the closed unit
disk {see, e.g., [1], Chapter 4).
Denote by G(A, 1) the Green function of the Dirichlet problem for M_
and introduce
2

(119) 9N = | G p(p) Inv(p)ds(p) (A€ int M_)

o
where s(p) is the arc length of the curve L_. The function g(A) is harmonic
and continuously extends to L_ \ {1}. Tts boundary function is just In ().
Consider the conjugate harmonic function h(A) and set

(120) Fo(A) = fHRN) () g int M),
(h(A) is well defined (up to an additive constant) since int M_ is simply
connected.) :
The function f_()) is analytic in int M_, it has no zeros and
2

(121) F-0 =™ < § GOA, - (0))1(0) ds()

_ 0
by the arithmetic-geometric means inequality. The function on the right-
hand side of (121) is also harmonic in int M_ and continuously extends

to () on the boundary. Thus, this function is bounded and we see that
f- € H®(ML).
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The boundary function for |f_(A)| is just (). Hence,
(122) If-ABEA(D) <C (Ae L),

i.e. (117) is valid. Further,
2w

|f-(M)] v(p) ;
(123) LS_ L& ] Il < LS+Id"”| § diot(a_ (g, Iy) (e < o0
by (92), i.e. (118) is valid as well. m
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