icm

STUDIA MATHEMATICA 134 (2) (1999)

Norm continuity of ¢g-semigroups
by
V. GOERSMEYER and L. WEIS (Karlsruhe)

Abstract. We show that a positive semigroup T; on Ly (£2,r) with generator A and
||R{e+1i8)|| — 0 as |8] — oo for some a € R is continuous in the operator norm for ¢ > 0.
The proof is based on a criterion for norm confinuity in terms of “smoothing properties™
of certain convolution operators on general Banach spaces and an extrapolation result for
the Lp-scale, which may be of independent interest.

1. Introduction. (y-semigroups T} which are continuous in the operator
norm of a Banach space for ¢ > 0 have a number of interesting properties
which do not hold for general cg-semigroups, e.g.

¢ The spectral mapping theorem holds, i.e.
a(Ti) \ {0} = &™)

where A is the generator of T3 ([3], Theorem 2.19).

e As a consequence, the Lyapunov stability theorem holds, i.e. if the
right halfplane belongs to the resolvent set of A, then every mild sclution
y(t) = Ty, ¢ € X, of the Cauchy problem

y'(t)=Ay(t), v(0)==2
is exponentially stable.
o The semigroup operators T} are compact if and only if the resolvent
operators R(}, A) are compact (see [9], Chapter 2, Theorem 3.3).
It is therefore important to find natural conditions on the resolvent of A

that guarantee that T} is norm continuous. Since
oo .
R(h4)={e™MTdt, 2>w(Th),
0

it follows from the Riemann-Lebesgue lemma that ||R(x + 18, A)| — 0 as
|8] = oo for @ > w(T}) is a necessary condition for norm continuity (see [9],
Chapter 2, Theorem 3.6). It was shown first by P. You [12] (see also [5], [7],
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[8]) that in a Hilbert space this necessary condition is also sufficient, but it
seems to be an open question whether this is alsc true in general Banach
spaces.

In this paper we give a partial affirmative answer: If Tt is a positive
semigroup on L,(£2,7), 1 < p < 0o, then the condition ||R{c +i8, A)|| — 0
as |8] — oo for some a > w(T;) implies indeed the norm continuity of T;
(Theorem 3.3 of Section 3).

The proof uses a characterization of norm continuity in terms of a smooth-
ing property of the convolution operator

t
(1) Kf(t)=\Ts(f(s))ds

0
(see Def. 2.1) on L,([0,7], X), which we also use to give a simple proof of
the Hilbert space result quoted above (Theorem 2.4 and Corollary 2.5 in
Section 2).

As a further preparation for the proof of our main result, we prove an
extrapolation result for the convolution operator (1) (Theorem 3.1), which
allows us to reduce the L,-case to the Ly-case and which may be of inde-
pendent interest.

Some further characterizations of norm continuity of a semigroup may
be found in [4] and [6].

We use standard notation: X denotes a Banach space and B(X) the
bounded linear cperators on X with the operator norm. Uy stands for the
unit ball of X. For a ¢g-semigroup T; with generator A on X we denote by
s(A) the spectral bound, s(A) = sup{Re A : A € o(A4)}, and by w(T3;) the
growth bound,

w(Ty) = inf{w : 3C [Tl < Ce**}.

2. Norm continuity and convolution operators. For every cp-semi-
group T; on a Banach space X we can define a convolution operator K f(t) =
Sto Ti-s(f(s))ds, t <7, on Ly([0, 7], X). We will characterize the norm con-
tinuity of T} by the following “smoothness” property of K:

2.1. DEFINITION. A bounded operator K on L,([0, 7], X) satisfies the
Riesz criterion (Rp), 1 < p < o0, if
(Rp) VIE A +b) ~ (KA @)IPdt— 0 ash—0

0

uniformly for f € Ly([0, 7], X) with || f|| € 1 (and K f extended periodically
from [0,7] to R).

2.2. REMARKS (on the Riesz condition (R,)). (a) If dim X = oo condition
(Rp) does not imply that K is a compact operator on Ly,([0, 7], X ). But the
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proof of the Fréchet-Kolmogorov theorem on compactness in L, ([0, 7)) (see
e.g. [1], 2.26) shows that K has (R,) if and only if K is “almost smoothing”
in the following sense: For all £ > 0 there is an M < oo such that

(Sp) KU, 0} € MUwx) + ULy x)-
(b) The set of operators on L,([0, 7], X) with (R,) is a closed right ideal
in B(LP([UiT]:X))' -
(c) If Spf(s) = f(s+ h) denotes the shift by h for f € L,([0,7], X)
(again f is extended periodically), then (R;) can be reformulated as
||(I - Sh)KHLP([O,T],X) — 0 as h — 0.

Hence condition (R,) “interpolates”.

Sketch of proof for (a). It is clear that (S;) implies (R,) since
R
lg(t+h) — g(&)F <h"/? | |g'(s)[" dt.
t
On the other hand, given (R,) we choose a ¢ € C®(0,7) with ¢ > 0,
§o(t)dt =1 and put @-(t) = (1/e)(t/e). The operators K. f = @, % (K f)
map L, ([0, 7], X) into W{[0,7], X) and since

SO-K[)= | oK) - Kf(2)]du
lu|<e
we see from (R;) that, as ¢ — 0,
|Kef — Kfliz, < sup IKf(+h)— Kflr, =0 u

2.3. EXaMPLE. Let [0,7]? 3 (,8) = k(,s) € B{X) be a Bochner mea-
surable, operator-valued kernel with

-

S(Snk(tsmB(X as)” dt <o, 1<p<oo,
0

Then the operator K on Ly([0, 7], X) given by

+ —=1,

1
v

=

T

Kf(t)=\k(t, s)(f(s))ds

0
satisfies the Riesz condition (Ry).

Proof For ||fll,mx) €1,

Tk T—h
| IKfe+r) - Kf@)Pdt< § (g];th ) — k(t, s)||1°ds)/ dt — 0
0 0
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as b — 0, and also

Fisola < § (et o) )" a0
A A D

for A [0, 7] with m(4} — 0. =

2.4. THEOREM. A ¢p-semigroup Ty on o Banach space X is continvous
in the operator norm for t > 0 if and only th for all 7 > 0 the operator
K 2 Ly([0,7], X) — Lp([0, 7], X), Kf(t) = {;Tis(f(s)) ds, satisfies the
Riesz condition (Rp) for some (all) p € (1,00).

Proof. If 7} is continuous ir the operator norm, then we can write K as
Kf(t) = Sgk(t, 5)f(s)ds, where the kernel k(f,s) =Ty for0 < s <t < 7
and k(t, s) = 0 otherwise satisfies the assumption of Example 2.3. Hence &
has {R;).

To deduce norm continuity from (R,,) put

(1) Ap(t)z = (t+ h)Tipnz — tTiz.
Observe that for t -+ h < 7,
i1k z
Ap(t)z = S Tt hs(Tom) ds — ST’tms(Tsm) ds= Kf(t+h) - Kf(t)
0 0

with f(s) = Tox, | fll, (0,7, %) < 7/7Cllz)| and C = sup{||Ts|| : 0 < s < 7).
Now (R,) implies that
T/2
(2) | lan@®)elPdt — 0 as h—0F
0
uniformly for z € Uy.
To relate this condition to the continuity of T3, we use
1

STt_S(Ah(s)x) ds = S (s + h)Tiynz — sThz) ds
0 0

i

{t+ h)2Tt+hﬂ3 - %tthw ~ %hsz—hm
Hence for ||z|| <1 and t < 7/2,

t
I(t + B Topne - Tz < 2§ || Toe s (An(s)2)] ds + B2 || Typn)
0
- 1/?’ T/Z I-/P
<20(r/DY (] | an(s)alP ds) " +h2C.
: 0
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Now (2) implies that #°T; is norm continuous on [0,7/2} and the claim
follows. =

Criterion 2.4 leads to a short proof of the following Hilbert space result
originally due to P. You [12] (see also [5], [7], [8]).

2.5. COROLLARY. Let X be o Hilbert space. Then a cy-semigroup Ty with
generator A is continuous in the operator norm for t > 0 if and only if for
some @ > s(A),

|R(a+1i8,A)|| =0 as|B| — oo.

REMARK. In the following proof we will use the fact that for a Hilbert
space X the Fourier transform

od

By =\ ePrt)a

—cG

multiplied by 1/+/27 defines an isometry on Ly(R, X). Therefore, for a con-
volution operator

Lity= | lLi-s(f(s))ds  on Ly(R,X)
where ¢ -+ I; € B(X) is strongly integrable and {7 [iL;||dt < oo we have
t =1 & B(X) and L}(8) =L (B)(F(9)) so that

(3) ILlizamx) = sup [[(E)" (B
BeR

Proof of 2.5. Without loss of generality we can assume that w(T;) < 0.
We can also choose & = 0, since by the resolvent equation

Rla+i8, A) = [ + (o/ - )Rla + i, A)|R(o’ +10, A)

for all w(T}) < a < o' and the term in square brackets is uniformly bounded
nBelk

It was already checked in [9], Chapter 2, Theorem 3.6, that our assump-
tion on the resolvent is necessary.

On the other hand, since R(i83, A) = (T3 )*(8), where T; = 0 for t < 0, we
may think of K f(2) = {7 Ti_,(f(s)) ds as a Fourier multiplier on La(R, X')
with multiplier function R(i(3, 4), i.e.

KJ(B) = R(i8,4)[F(8)].

To see that the restriction K; = xpnKxp, of K to Lz([0,7], X)
satisfies (Ry) we split K for every n € N into two convolution operators
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K =K, + L, defined by
(K f)"(8) = w(8/m)R(B, A)[F(B)),

(Lnf)MB) = [ — w(B/n)RGS, A)FB)],
where ¢ is C® with support in [-2,2], ¢ = L on [~1,1] and || < 1. By (3),
our assumptions now imply that ||Ln}|z,(xy — 0 as n — oco. The operators
K, are of the form K, f(t) = | kn(t, 5)f(s) ds with the kernel

kn(t, 5) = [@(-/n) B(i-, A)]¥ (£ — 8),
that is, Bochner integrable and bounded in B(X).

Therefore, the restriction K n = Xjo,-]EnX0,-] of Kn to L2([0, 7], X ) sat-
isfies the assumptions of Example 2.3 with p = 2 and we can conclude that
K., has property (Rs). Since | K, — Krn|| < || Ln|| — 0 as n — co it follows
from 2.2(b) that K, has (Ry). Now the claim follows from Theorem 2.4. w

3. Positive semigroups on L,(f2,v). In order to extend the character-
ization of norm continuous semigroups on Hilbert spaces (Corollary 2.5) to
positive semigroups on L,{f2, ) we need an extrapolation result for positive
operators (Theorem 3.1 below).

It is known (Theorem 2.1 of [11]) that for a positive operator R :
Lp(£2,v) — Ly(£2,v) with v o-finite, there is a density 0 < g € L1(£2,v)
such that
(1) R=J7RJ : L,(2,7) — Lyp(12, D),
where dU = gdv and Jf = ¢g"/Pf is an isometry of L,(£2,7) onto L,(£2,v),
extends to a bounded operator on Ly ({2,7) and
(2) ”R”Lq(,j) < ZHRHLP(V) forall 1< ) < .

It seems to be an open problem whether it is possible to extrapolate even
a positive cg-semigroup T; on L,{f2,v) in the same way. The next result
shows that one can at least extrapolate the convolution operator
t
Kf(t) = T1s(f(s)) ds
0
on Ly(R, Ly, (12, 7)) to the whole Li(Lg)-scale.

3.1. THEOREM. Let 1y be o positive cg-semigroup on Lp(£2,v) with
w(Ty) < 0. Then there exists o density 0 < g € Ly(2,v) and an isome-
try Jf = gY/Pf of Ly(R,%) onto L,(2,v) (where d¥ = gdv) such thai:

{i) The operators J™*R(X, A)J, with Re X > 0, exfend to operators on
Ly(£2,V) and there is o constant O with [|J " R(A, A)J || (5 < C for all A
with ReA >0 and 1 < g < oo.
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(i) The operator Kf(t) = SE JIT_ J(f{s))ds, t > 0, extends to a
bounded operator on La(Ry, Le(£2,7)) and there is a C < oo with ||f’€"HLg(Lq)
< C forall 1 € g < o0,

(iii} For all f € La(Ry, L2(£2,7)) we have

(K f)NB) = T R(i8, A)J(F(B)).

For the proof we need the following result on convolution operators from

[1o[:

3.2. LEMMA. For a fized 1 < g < o0, let R 3 t +— k(t) be a function
into positive operators on Lg(£2,v) such that t — k(t)f is locally Bochner
integrable for f € Lg(R2,v). Assume that for oll 0 < h € Ly(2,v) and
0 < g e Ly(2,v) we have

Vg, k(t)R) dt < Cllgll s Rz, -
E
Then the convolution integral

o0
Kf(ty= | kit —s)(s(s))ds
defined for step functions f:R — L,(2) extends to o bounded operator on
Ly(£2,L.(R)) for all 1 <r < oc and K flig,zn < Cllfllzgr,y- =

Proof of 8.1, We apply the extrapolation result (1) to R = R(—2¢, 4) for
some & with w(T}) < —2¢ < 0 where 4 is the generator of T;. The operators
J-UT.J may not extend to Lg({2,7} for all ¢ but we can get around this
difficulty by using the Yosida approximation of A and Ti:

Ay = MZR(.UW A)—p, Tue= exp(tdn), p>0.
Then A, = J1A,J and T,,; = J~T,,.J extend to bounded operators on

L,(£2,7) for all 1 < g < oo since Ry, 4) < Rior 2 0.
It follows from [9], Chapter 1, Lemma 7.2, that

3 Ri-e, A, = (- 2) oI~ HR( 2, )

= (u-e)+ (” - E)zR (:_‘EE, 21’)

< I+4R(~2,A)

for p > po := max(l + €,2¢). Since the semigroups T),, are positive, it
follows by (2) that for u > pp, A > —c and all 1 < g < 00,

@ RN Az, < 1+4| R(—2¢, 4) ||, &) < 14+8||R(~2¢, 4) |z, = C-
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We will also need a uniform growth estimate for Ty, ; in L,(¥). Since
w(Ty) < —2¢ there is a constant D with
(1 +26)" | R(ps, A"||z, 5y < D for > 0.
For y > pg we then obtain, for all ¢ > 0,

o0

- 1 n, 2n i
(5) Iuls, <> SR, )|

n=0

—ut _
< De™# ZnT (#HE) =D

Now we consider the convolution integrals

-2
exp ( il t) < De™*t,
A+ 2e

o

K, f(t)= S ku(t— s)(f(s)})ds

—o0

with k,(t) = T}, ; for t > 0 and k,,(f) = 0 for ¢ < 0. For all 0 < b € L, (2, 7),
0L g€ Ly(92,0) and p > g we get, by (4),

V (g ku()hdt = § (g, T,,ch) dt
A )

= (g, R(0, A)R) < | R(O0, A) |z, ligllz, Il c,
< Clgliz, 17z,

Applying Lemma 3.2 to all Ly(£2,7), 1 < g < oo, with r = ¢ we see that
K, is a bounded operator on the spaces L4(R, Ly (12, 7). If we restrict the
K,’s to Ly(Lg) = Ly(R.., Ly(£2,7)) we conclude for all 1 < g < oo and all
# 2 pio that

(6) 1 Euflrgcy = Cllflzyzy

where = f{t) € Loo(£2,7) C Lg(2,7) is a finite step function. Since such
step functions are dense in Ly (L,) it remains to show that

(7) Jim K, f = Kf  inLy(Ly).

First we note that (7) holds for g == p. Indeed, we have lim, o0 T, 8 =
T.g in Ln(£2,%) for all g € Ly(£2, y) and the uniform growth estimate (5).
In particular, K, f converges to K f in measure on R x {2,

Furthermore, for every function f(£) = xa(t)g with a bounded, measur-

able set A C [0,0] and 0 < g € L,{f2,7) the functions K uwfs i > g, are
uniformly dominated by a function in L (L,):
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i 0o
Kuf(8) =V Tuslxalt — s)glds = | e™*xa(t — 8)(e=* Ty o) ds
8] a
< gelt-a) S e”ﬁhsg ds = e == R(—¢ 4,)g
0

< e s8I 4R(—2¢, A)lg
for y# > po by (3). Lebesgue’s convergence theorem and (6} now imply (7)
and |Kf|| < ClIf]-

Now we prove (iii). For a finite step function t — f(t) € L,(2,7) N
Ly(£2,7) we see that § — (Kf)"(8) and 8 — J™LR(i8, A)J (f 7(8)) belong
t0 Loa(Lp) N La(L2) and are equal a.e. by the definition of K. Since such
step functions are dense in Ly(L,), (iii) follows from the boundedness of the
Fourier. transform on Ly(Ls) and (i). w

Finally, we are prepared to prove cur main result on norm continuity in
Ly(02,v).

3.3. TuEOREM. Let T} be o positive semigroup on Ly(£2,1) for 1 < p <
co with generator A. Then T} is continuous in the operator norm fort > 0
if and only if, for some o > 3(A),
(8) [B(a+i8, A)|| = 0 as|B] — co.

3.4. REMARK. As noted in the introduction, 3.3 implies that for a pos-
itive semigroup on L,(£2,v), (8) is sufficient for s(A) = w(T}) and for the
spectral mapping theorem to hold.

Proof of 8.8. We may assume that w{7;) < 0 and, by Theorem 3.1, that
the operators R(A, A) extend to L,(f2,v) for all A with ReA > 0 and all

1 € g £ oo. Furthermore, the operator
¢

Kf(ty=\T,.(f(s))ds
0
on Ly(Ly) extends to Lg(Lg) for all 1 € ¢ < oo, where
LQ(LQ) = L‘}(R”l" ) Lfl(‘Qr V))a
and the norm of all these operators is bounded by one constant C' < oo.
By applying the Riesz interpolation theorem to the resolvent on L, {2, )
and Ly (£2,v), 1/p+ 1/p" = 1, respectively, we obtain

IR(8, Dllzacam £ 1RGB, AN ) IRGA D 0,
Since || R(i3, A)| L) S C' the assumption gives
| R(:8, A)lir, (20 — 0 as || — oo

By 3.1 and the proof of the Hilbert space result 2.5 we conclude that K
restricted to La([0, 1], La(f2,v)) satisfies condition (Ra). If Spf(s) = f(s+h)
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again denotes the (periodic) shift by h on Lg(Lg) := L,([0,1], Ly(£2, 1)) then
(Rg) for X = L,(12,v) is equivalent to
I(I—S)K||—=0 ash—0.

Hence, again by interpolation, K satisfies (Rp) on Lp(Ly). Indeed, by [2],
Theorem 5.1.2, we have

1T~ SR Ky 2,y < I = SWVKILE, I = SOKIS, 1)
where in the case 1 < p < 2 we choose g =1 and ¢ = 2/p’ and in the case
2 < p < o0 we choose some g with p < ¢ < oo and 8 = 2(g — p)/(p{g — 2)).

Since we have ||(I—S)K||1 (z,) < 2C, an appeal to Theorem 2.4 completes
the proof. m
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Function spaces and spectra of elliptic operators
on a class of hyperbolic manifolds

by
HANS TRIEBEL (Jena)

Abstract. The paper deals with quarkonial decompositions and entropy numbers
in weighted function spaces on hyperbolic manifolds. We usge these results to develop a
spectral theory of related Schrédinger operators in these hyperbolic worlds.

1. INTRODUCTION

A bounded connected domain 2 in B? is called a d-domain if, roughly
speaking, its boundary 8(2 is an inner Minkcowski d-set. Here n—1 < d < n,
with d = n—1 in the case of a Lipschitzian boundary, whereasn—1 < d < n
indicates fractal distortions. We convert {2 in a non-compact hyperbolic
manifold M of bounded geometry and with positive injectivity radius by
introducing the Riemannian metric

(1.1) ds? = g*(z)dz®, x€ L,
where g(x) is a positive C*° function in 2 with
(1.2) (dist(z,82)) ' ~ g(z), =z€ 0,

where “~” means that the quotient of the two functions involved can be
estimated from above and from below by positive constants which are in-
dependent of # € 2. Based on [Iri86] and [Tri87] we developed in [Tri92},
Ch. 7, a theory of two scales of function spaces F3 (M) and Bj, (M} on
(abstract) Riemannian manifolds with bounded geometry and positive in-
jectivity radius. These scales include (fractional) Sobolev spaces, (classical)

Under the above more special circumstances there is no problem to intro-
duce weighted spaces Fj,(M,g*) with s € R. The paper deals with the
following topics:
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