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again denotes the (periodic) shift by h on Lg(Lg) := L,([0,1], Ly(£2, 1)) then
(Rg) for X = L,(12,v) is equivalent to
I(I—S)K||—=0 ash—0.

Hence, again by interpolation, K satisfies (Rp) on Lp(Ly). Indeed, by [2],
Theorem 5.1.2, we have

1T~ SR Ky 2,y < I = SWVKILE, I = SOKIS, 1)
where in the case 1 < p < 2 we choose g =1 and ¢ = 2/p’ and in the case
2 < p < o0 we choose some g with p < ¢ < oo and 8 = 2(g — p)/(p{g — 2)).

Since we have ||(I—S)K||1 (z,) < 2C, an appeal to Theorem 2.4 completes
the proof. m
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Function spaces and spectra of elliptic operators
on a class of hyperbolic manifolds

by
HANS TRIEBEL (Jena)

Abstract. The paper deals with quarkonial decompositions and entropy numbers
in weighted function spaces on hyperbolic manifolds. We usge these results to develop a
spectral theory of related Schrédinger operators in these hyperbolic worlds.

1. INTRODUCTION

A bounded connected domain 2 in B? is called a d-domain if, roughly
speaking, its boundary 8(2 is an inner Minkcowski d-set. Here n—1 < d < n,
with d = n—1 in the case of a Lipschitzian boundary, whereasn—1 < d < n
indicates fractal distortions. We convert {2 in a non-compact hyperbolic
manifold M of bounded geometry and with positive injectivity radius by
introducing the Riemannian metric

(1.1) ds? = g*(z)dz®, x€ L,
where g(x) is a positive C*° function in 2 with
(1.2) (dist(z,82)) ' ~ g(z), =z€ 0,

where “~” means that the quotient of the two functions involved can be
estimated from above and from below by positive constants which are in-
dependent of # € 2. Based on [Iri86] and [Tri87] we developed in [Tri92},
Ch. 7, a theory of two scales of function spaces F3 (M) and Bj, (M} on
(abstract) Riemannian manifolds with bounded geometry and positive in-
jectivity radius. These scales include (fractional) Sobolev spaces, (classical)

Under the above more special circumstances there is no problem to intro-
duce weighted spaces Fj,(M,g*) with s € R. The paper deals with the
following topics:

1991 Mathematics Subject Classification: 46E35, 35710, 356F20.
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180 H. Triebel

A. Quarkonial (or subatomic) decompositions of some spaces F5, (M, g*).
This extends what has been done in [Tri97], Sect. 14, and in particular in
[Tri98], from the euclidean case to the above Riemannian case.

B. Based on A we estimate the entropy numbers e, of the compact
embedding

(1.3) id: Fplo, (M, g7) — Fgl,, (M, g™)

where 0 < py < ps <co, 0 < g <o, 0 < g3 < o0,

(1.4) 5"——(51~£>—(32—£«)>0, 2= — g > 0.
n P2

‘We obtain

(1.5) e ~ ke ea)/n kN, if 3 > dd/n,

(1.6) e~ BTFAXUPISLPL B e N, f 2 < 8d/n.

Of course the interpretation of “~" is ag in (1.2) now with respect to & & N.
This behaviour is surprisingly similar to the euclidean case, where M, g(z), d
is replaced by R”, (1 + |z|>)1/2,n. We refer to [ET96], 4.3.2, pp. 170-171,
based on [HaT94], and recently substantially extended in [Har98] (limiting
cases).

C. On the basis of A and B, and the technique used in [Tri97], one
can now develop a spectral theory of weighted (fractal) pseudodifferential
operators on the above hyperbolic manifold M. This will not be done here
in detail. We restrict ourselves to an example. It is well known that the
Laplace-Beltrami operator — A, with its domain of definition

(L.7) dom(~4,) = H*(M) = F5,(M)

is self-adjoint in Da(M) (= Ff4(M)) and bounded from below. Let o € R
be such that

(1.8) - spec(—A, + pid) C [1,00).

Then we are interested in the negative spectrum of the relatively compact
perturbation

(1.9) Hy=—Ag+oid—fg™, x>0, 8>0,
of —Ag + pid. In other words we ask for the behaviour of
(1.10) Ng = i{spec(Hg) N (—00,0]} as g oo

Problems of this type attracted a lot of attention in the euclidean setting (i.e.
with R™ in place of M}. They originate from (euclidean) quantum mechanics
and the semi-classical limit & — 0 (Planck’s constant tending to zero) and
B ~ K2, considered there. Let ||, be the Riemannian distance of ¢ € M
t0 a fixed off-point, say, 0 € M. Then there are two positive continuous
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functions
(1.11) mz)~1, M(z)~1, =z
such that
(1.12) g(z) = M(zy2m@ll g, > 1

Hence the potential g~ *{z) in (1.9) is of exponential decay measured against
|z|;. We obtain

(1.13) Np o 730 < o < 2d/n (5 — o0),
(1.14) Ny~ ™7 if 36> 2d/n (8 — c0),

which might be considered as the main result of this paper. Again there
is a striking similarity to the euclidean case where M, g, d is replaced by
R”, (14 |z|?)~*/2, n. We refer to [ET96}, 5.4.7-5.4.9, pp. 236-242, based on
[HaT94*], and extended in [Har98]. To imitate the hydrogen atom in R™
(where m» = 3 has physical relevance) we put > = 1 in (1.9) and multiply
near the off-point with the “Coulomb” potential || !, hence

(1.15) H = ~ Ay + gid ~B(g min(1, |a],)) .

It turns out that for n > 3 the local perturbation |z|;* does not influence
(1.13} and that

(L.16) N~ B B—oo,n23

Hence the physicists in the hyperbolic world (M, g} claim that one can find
out by local measurement (1.16) how fractal (n — 1 < d < n) the invisible
boundary of their infinite world might be (under the assumption > = 1).

We collect definitions, results and further comments in Section 2. Proofs
are given in Section 3. Here we are in a comfortable situation. The paper is
an application of [Tri98] combined with the techniques developed in [Tri97]
in connection with fractal pseudodifferential operators. With these results
the proofs are not so complicated.

2. DEFINITIONS, RESULTS, COMMENTS

2.1. Manifolds

2.1.1. Preliminaries. Let £2 be a bounded connected domain in R™. Then
dist(z, 812) denotes the distance of z € {2 to the boundary 012 of 2. It is
well known (and can be checked easily) that there is a positive C'°° function
g(z) in 2 with
(21)  g(a) ~ (dist(z, 02))", |D7g(s)] € ¢y¢*"Mw), =z €82, ve NG,

for some positive constants c,. We use “~” for two positive functions a(z)
and b(z) or two sequences of positive numbers ax and by (say, k € N) if
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there are two positive numbers ¢ and C such that

ca(z) € bz} < Ca(z) or cap by < Cay
for all admitted variables z or k. We equip {2 with the Riemannian metric
(2.2) ds® = g*(z) da®.

Then we obtain a non-compact hyperbolic manifold, denoted by M, of
bounded geometry and with positive injectivity radius. Details about the
notation used may be found in [Tri92], 7.2.1, pp. 281-285, and the refer-
ences given there. We used this type of interplay between Riemannian and
euclidean metrics in [Tri88] to study pseudodifferential operators.

2.1.2. The covering. Let
(2.3) 2; ={zc:27977 < dist(z,00) <277}, jeN.

We assume, without restriction of generality, that £2; # @ for all § € Ny and
dist(z, 82) < 1 for any = € £2. For a fixed small positive number ¢ we cover
£2; by balis By, of radius 277 centred in {2; such that

(2.4) Bim C .Qjﬂl U ,Qj U Qj+11 je N,
(with 2_; =0) and m = 1,..., M;. The covering

co M;
(2.5) 2= U Bim

j=0m=1

is assumed to be locally finite: there is N € N such that at most N balls
involved in (2.5) have a non-empty intersection. Furthermore we assume
that there is a number A with 0 < A < 1 such that all the balls AB,,, are
disjoint. Here AB;p, stands for the ball with the same centre as B, and of
radius A times the radius of Bjy,.

2.1.3. DeFINITION. Let n—1 < d < n. The above domain 12, or likewise
the related Riemannian manifold (M, g), is called a d-domain if there is a
covering of the above type such that

(2.6) M;~2¢ jeN,.

2.1.4. REMARK. If {2 has a Lipschitz boundary then d = n — 1. If
n—1 < d < n then 802 is a fractal. Notation of this type is useful in
connection with the spectral theory of the (euclidean) Laplacian —A in
bounded domains with fractal houndary [Lap91, HeL97, EvHO3, Ber0g]. In
the notation introduced there d is the inner Minkowski dimension of 2.
We refer to [Fal85], [Fal90], [Mat95] for the background of fractal geometry.
A short description of some relevant aspects may also be found in [Tri97],
including what is called a d-set.
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2.1.5. Bzomples: Thorny star-like d-domains. The prototype of an
{n—1)-domain in the above context is the Poincaré n-ball, that is, the unit
ball B = £ in R™ equipped with the Riemannian metric

(2.7) ds® = (1 - |z[")"2dz?, |z <1

Let Q be the unit cube in R*! and let 0 < s < 1. In [Tri97], Sect. 186,
pp. 119-123, we constructed a positive function z, = f(z') with ' =
(Z1,+0 0 Tp—1) € R™~1, compact support in Q, and f € C*(R*~1) (Hélder
spaces) such that its graph {(2', f(»'}) 1 ¢’ € "'} is an (n — s)-set in R™.
As indicated in [T¥i97], p. 123, with obvious modifications one can replace @
by the unit sphere {z € R™ : [z| = 1} and z,, by the radial direction. Then
one obtains a rather thorny star-like (with respect to the origin) simply
connected d-domain where d =n — s.

2.2. Function spaces

2.2.1. Basic notation. Let S(R™) be the Schwartz space of all complex-
valued, rapidly decreasing, infinitely differentiable functions on R". By
S'{R") we denote the dual space of all tempered distributions on R*. Fur-
thermore, Ly(R™) with 0 < p < co is the usual quasi-Banach space with
respect to the Lebesgue measure, quasi-normed by

(25) 1712, = ( | Ifte)Paz)”,

Rn

with the usual modification if p = co. If ¢ € S(R") then

(29) &) = (Fp)(&) = (2m) "/ | e p(a)dm, LR,

Rn
denotes the Fourier transform of p. As usual, ¥ or F~lp stands foi the
inverse Fourier transform, given by ¢¥(£) = #(—£). Both F' and F~* are
extended to §(R™) in the standard way. Let ¢ € S(R") with

(2.10) ee) =1 x| <1, o) =0 ifjy >3/2
We put wo = o, p1{2) = ¢(2/2) — p(z), and
(2.11) en(e) = @ {27 w), z€R", kel
Then, since

o0
(2.12) 1= thk(w) for all z &€ R™,

k=0

the y, form a dyadic resolution of unity. Recall that (g f)Y () is an entire
analytic function on K™ for any f € S'(R").
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2.2.2. The F-scale, Let s e Rand 0 < p < oo, 0 < g < oo (with g =00
if p = oo0). Then F, (R") is the collection of all f € 5/(R”) such that

i) IR E = (S e 0r) [ L)
=0

(with the usual modification if ¢ = oo) is finite. The theory of these spaces
has been developed in [Tri83], [Tri92], and more recently in [ET96], [RuS96],
[Tri97]. In particular they are quasi-Banach spaces which are independent
of ¢ (have equivalent quasi-norms with the somewhat sloppy cmission of
on the left-hand side of (2.13)). We mention that

(2.14) Hy(R") = Fj,(R"), s€R, 1<p<oo,

are the usual {fractional) Sobolev spaces with the (classical) Sobolev spaces
(2.15) WY R*) = HYRY), ke, 1<p< oo

as a subclass. Furthermore,

(2.16) CHR™) = Fis (RY), 530,

are the Holder—Zygmund spaces. In what follows one might always think in
terms of the special cases (2.14)-(2.16), accepting that there is a generalisa-
tion F; (R™). In connection with manifolds the F-scale has always preference
compared with the B-scale consisting of the spaces B (R™}, where s € R,
0 <p<oo, 0 <g< oo, We refer to [Tri92], Ch. 7. We only mention that
By = Fop-

2.2.3. DEFINITION. Let {2 be a bounded domain in R". Let s € R,
0<p=<00,0<g= oo (with g=00if p = o00).

(i) We set
(217)  Fp,(2) = {f € D'(Q2) : there is a g € F5,(R™) with g[{2 = f},
(2.18) 171 Foq (D) = inf [lg | F, (R™)]],

where the infimum is taken over all g € F5 (R") such that the restriction

g!{2 coincides in D'(2) with f. Furthermore, I%;q(.!?) is the completion of
D(12) in Fg,(£2).
(ii) We also set

(2.18)  F2(2)={f e D'(%):
there is a g € F (R™) with suppg C 2 and f = g/},

(2.20) I | F5a(@)]) = inf [lg | 2, ()]
where the infimum is taken over all ¢ admitted in (2.19). Furthermore
(2.21) Fpo () = {f € F3,(R") : supp f 7).
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2.2.4. Properties. Of course, D(2) = C§°(£2) stands for the collection of
all complex C* functions with compact support in~a’2, whereas D'{(7) is the
dual space of complex distributions. Fy () and F3 (£2) are quasi-Banach

spaces in D'(£2), while F}_(£2) is a closed subspace of Fp,(R™). Under the
additional assumption that (2 is a bounded C* domain we studied these
spaces in [Tri98]. We list some of the properties proved there which are
useful later on (always assuming that {2 is bounded and C*). Recall o, =

max(a,0) if a € R.
HIf0<p<oo, ~00 <8< 1/p, 0 <g< oo, then

(2.22) Fyy(2) = Fp(42).
(i) IfF0 < p < oo, 0 <g<Loo (with g=00if p=o00c )}, and
(2.23) max(l/p—1,n(t/p—1)) < s < o0,
then
(2.24) Fe (@) =F2 (D).
(i) f 0 < p < 00, 0 < ¢ < 00, and
(2.25) s>n(l/p—-1). with s—1/p & Ny,
then
(2.26) B () = F3,(82).

Proof, comments, and references may be found in [Tri98).

2.2.5. Spaces on M. Let 2 be a bounded connected domain in R*. Fur-
nishing {2 with the Riemannian metric (2.1), (2.2), we obtain a non-compact
hyperbolic manifold with bounded geometry and positive injectivity radius,
denoted by M or (M, g). On manifolds of this type we introduced in [Tri92],
Ch. 7, in an abstract way, spaces Fy (M) where s € R, 0 < p < oo,
0 < q < oo (with ¢ = oo if p = o0). We do not repeat this definition
here, but we assume in the sequel that this is done by using a resolution of
unity related to the covering (2.5), where the balls By, are approximately
congruent with respect to the Riemannian metric. This resolution of unity
will be described below. Details may also be found in Step 1 in 3.1, Under
these circumstances it makes sense to speak about weights on M and related
weighted spaces.

2.2.6. DeEFINITION. Let (M, g) be the above manifold and let » € R.
Then

(2.27) P2, (M, 07) = {f € D'(2) : g*F € (M)},
(2.28) 171 B2, (0, g = llg™f | Fg()].
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2.2.7. Resolution of unity. Let 2 be covered according to (2.5). We may
agsume that there is a related resolution of unity,

oo Mj
(2.29) Y3 oml@) =1 ifze,

j=0m=1
of C'™ functions @;m, (z) with
(2.30) Supp @jm C Bjm
and, for suitable e, > 0,
(2.31) |D70im ()] € e, 2717l where v € NT.
Recall the abbreviations

1 1

{2.32) Op = (I_? - 1)+ and opg = (m - 1)+

where 0 < p < 00,0 < ¢ <00
2.2.8. THEOREM. Let either

(2.33) l<p<eoo, 1<g<oo (g=o0ifp=00), sck,
or
(2.34) 0<p<oo, 0<g<oo {g=coifp=o0), §>0p.

Let 5z € R and let F,,(M,g”) be the space introduced in 2.2.6. Then f €
D'(£2) belongs to Fj, (M, g*) if, end only if,

[++] M:i . l/p
(235 (D0 ) 2R f B (RMP) T < oo

J=0m==1
(with the usual modification if p = ¢ = o). Purthermore, (2.35) is an
equivalent quasi-norm.

2.2.9. REMARK. The theorem gives a perfect link between the weighted
spaces F, (M, g*) on the above hyperbolic manifold M and related spaces
on B". For our later purposes (2.34) would be sufficient. But we incorporated
{2.33) to make it clear that (2.35) holds in particular for the interesting
weighted (fractional) Sobolev spaces

(2.36) HY(M,g") = FSo(M,g%), l<p<oo, s€R

On the other hand, the restrictions (2.33), (2.34) allow a direct application
of the pointwise multiplier assertions in [Tri98], 3.9. But there is hardly
any doubt that the theorem holds for all 0 < p < 00, 0 < g < 00 (g = 0o if
p = o0), and s € R. Furthermore, (2.35) indicates how the spaces Fo (M, g*)
and the corresponding spaces on {2 introduced in 2.2.3 and described in 2.2.4
are related.
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2.2.10. THEOREM. Let {2 be a bounded C*° domain in R™ and let (M, g),
or, for short, M, be the reloted Riemannian manifold introduced in 2.1.1.

(i) Let

(2.37) 0<p<oo, 0<g<oo (g=00if p=o00), §>apg
Then
(2.38) F3,(M,*=7) = Fi ()
(with equivalent quasi-norms).
(il) Let
(2.39) 0<p<oo, 0<g<oo, s>0p, s5—1/péN.
Then,
(2.40) Fe (M, g" Py = F3 (02).
(iii) Let

(241) l<p<oco, 1<g<oo (=00 if p=o), -o0<s<1/p
Then
(2.42) Fp (M, g°~™/P) = F2(0).

2.2.11. REMARK. The above theorem holds under the additional as-
sumption that the bounded domain in f2 is €. In particular 2 is an
(n—1)-domain according to 2.1.3. This restriction comes from [Tri98] where
we dealt exclusively with bounded C™ domains. Combined with the two
lifts described below, in this case any space Fpqa(M, g} can be reduced to
spaces on {2 in the euclidean setting.

2.2.12. Lifts. Let (M, g) be the above hyperbolic non-compact manifold
with bounded gecmetry and positive injectivity radius. Let —A; be the
corresponding Laplace-Beltrami operator. let 0 < p € o0, 0 < ¢ < o0
(g = o0 if p = 00), and s € R. Then for any sufficiently large p € R,

(2.43) —Ag +oid: Fpf? (M) — F2 (M)

is an isomorphic mapping (lift). This assertion is proved in [Tri92], Theo-
rem 7.4.3, p. 316, based on [Tri86], [Tri87]. The Laplace-Beltrami opera-
tor ~A, and, more generally, pseudodifferential operators on Riemannian
manifolds attracted a lot of attention: (essential) self-adjointness in La (M),
dependence on p of the spectrum in L,(M) with 1 < p < oo, mapping prop-
erties etc. We refer to [Tri88], [Dav89], Ch. 5, [Tay89], [Shu92], [Stu93], and
most recently [Skr98*]. We need here an extension of (2.43) to F¢, (M, g*)
and mapping properties of the pointwise multiplication operator G,

(2.44) Gu:frgtf, pneR, feD' (D).
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2.2.13. THEOREM. Let 0 < p <00, 0 g€ 0 {g= 0 ifp=00),3€R
ond 3 € R. Lel Fj (M, g) be the spaces defined in 2.2.6.

(i) If 0 € R 4s sufficiently large, then
(2.45) —Ag+ oid : (M, g7) — Fy(M, g7)
is an isomorphic mapping.
(i) Let p € R. Then
(2.46) G : Ty (M, g7) = Fp(M,97%)
is an isomorphic mapping.
2.2.14. REMARK. If 3c = (), then (2.45) is covered by (2.43). However,
the arguments in [Tri92] can be extended to all >» € R In other words:

We take part (i) of the above theorem for granted. Part (ii) follows from
Definition 2.2.6.

2.2.15. Embeddings. We recall basic facts on embeddings between I,
spaces on R™ and on bounded domains 2 in R”. Let

(2.47) —co<sa<s<oo, 0<pr<pa<oo, D<o, 0<ge<0
(g1 == o0 if p; = 00, and ga = o if pa = oo). Then

(2.48) o (R C Bz (R™)

if, and only if, é > 0, where

(2.49) 5= (31 - 1%) - (52 - %)

The same assertion holds with {2 in place of R®. Since {2 is bounded we
know in addition that

(2.50) F2ro(2) C F2(2) is compact

Piqi Pagqa

if, and omly if, § > 0. We refer to [Tri83], 2.7.1, and [ET96], 3.3.1. Using
Theorems 2.2.8 and 2.2.13(i) one has the following counterpart.

2.2.16. PrOPOSITION. Let M be o manifold as in 2.1.1 and let the spaces
Fai (M, g*) and F32,(M,g*2) be defined by 2.2.6 under the condition

(2.47) and 31 € R, 300 € R. Let & be given by (2.49). Then

(2.51) Folo (M, g™} C Fp2. (M, g7™)

(continuous embedding) if, end only if, § > 0 and 35 > s53. Furthermore,
{(2.51) is compact if, and only if, § > 0 and 6 > .

2.2.17. REMARK. This proposition is the direct counterpart of the corre-
sponding assertions for weighted spaces on 2" as developed in [HaT94] and
[ET96], 4.2.3, p. 160. As indicated in (1.3)—(1.6) it is one of the main aims of
this paper to calculate the entropy numbers of these compact embeddings.
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For this purpose we need first quarkonial {subatomic) representations of the
related spaces.

2.3. Quarkomnial decompositions

2.2.1. Preliminaries. As already mentioned, this paper is a continuation
of [Tri98]. This applies in particular to quarkonial (or subatomic) decompo-
sitions. In [Tri98], 2.5, we gave a description of quarkonial decomnpositions of
the spaces F,,(R") and added a few comments and references about atomic
and subatomic decompositions. This will not be repeated here. Whereas
atoms in (euclidean) function spaces are quite fashionable nowadays, there
are only a few papers dealing with atomic decompositions for function spaces
on Riemannian manifolds. We refer in particular to [Skr96], [Skr97], [Skro8g].

Let {2 be a bounded C* domain in R* and let F‘;q(ﬂ) be the (euclidean)
spaces introduced in (2.19), {2.20). If p, g, s are restricted by (2.37) then we
have (2.38), and {2.35) reduces to

oo Mj

1
252) (23 loms | B @) <o
j=0m=1
This coincides with [Tri98], Theorem 2.2.2. This assertion is the basis to
prove the quarkonial decomposition for the spaces ﬁ;q(ﬂ) obtained in
(Tri98], Theorem 2.5.7. In other words, if one accepts (2.35) under the re-
striction (2.34) then one can take over the arguments from [Tri98]. The only

point is that one has to adapt the quarks to account for the additional factor
27(*=s+n/p) in (2.35). But this causes no trouble.

2.3.2. Some notation. We follow essentially [Tri98], 2.5.6. Let (2 be
a bounded connected domain in R™. There are positive numbers ¢ (I =
.,8) and ¢, {v &€ Ng), (irregular) lattices
(2.53) {28™ m =1, Nj}C 2 forjeNy,

and subordinate resolutions of unity {1, : m =1,..., N;} with the follow-
ing properties:

(i) we have
(2.54) er € N; 279" ey for § € Ny;
(2.55) |g? ™ — g8 ™| > 05270 for § & Ny, my # ma;

(2.56) dist(Kjm, 02) > 4277 forjeNo, m=1,..., Ny,
with
(2.57) Kim={y:ly—2"™| <277} Cc .
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(i) jm () are 0 functions with

(2.58) supp ym C Kjm for j €Ny, m=1,...,N;,

(2.59) |DVpim (@) < 027 fory e N, m=1,..., N},

and
. Nj

(2.60) g < Z Yim(z) <er if 2 € 2 with dist(z, 812) > 277
m=1

for all § € Ny. For short, we call {¢;m } a family of approzimative resolutions
of unity in (2 if one finds lattices {#/"™} with all the properties (2.54)-
(2.60). Let xjm(x) be the characteristic function of K, in (2.57). Then

xﬁﬁl(m) = 20"/Py;m(z) with 0 < p < oo is the p-normalised version. As

usual in connection with atoms and quarks for Fp, spaces we introduce the
sequence space

(.61 75 ={x: 2= (S 5 2201 [ 2| < o0}

F=0m=1
where
(262) Aﬂ{)\ijCZjEND,mﬁl,...,Nj}
are the related sequences, We put
(2.63) AT={N,€C:jeNy, m=1,...,N;} forvyeN.

2.3.3. Normalised y-quorks. Let s € R, 0 < p < co, 7 & Ng, and
# € R Let {4} be a family of approximative resolutions of unity in (2 as
described above. Then

(2.64)  (vgu)jm(z) = 273 (—n/P)Fil7] 9~h(s—sin/p) (z — 2™ Vb ()
= g9~ kreg—(i—k){s—n/p)oi|v] (x — 25 ehin (1)

are the normalised elementary building blocks we are looking for. Here

(2.65) k=k({j,m) suchthat z9™ g ()

according to (2.3). In [Tri97], [Tri98], we called constructions of type (2.64)
¥-quarks, which might explain the notation. Compared with [Tri98], (2.92),
we now have the additional factor 2~ *(*—stn/p) ity (2.65) which comes
from the related factor in (2.35). By [Tri97], Sect. 14, and [Tri98] we have

(2.66) [ (vqu)m | Fpg(M, g)|f ~ c(),
which means that the elementary building blocks in (2.64) are approximately
normalised, where the related constants are independent of J and m.

2.3.4. THEOREM. Let {2 be a bounded connected domain in R™. Let
D, 4,8 satisfy (2.34). Let » € R. There are a number ko > 0 end a family
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{thim} of approzimative resolutions of unity in 2 as described above with
the following property. Let p > po and let (yqu);m(z) be given by (2.64),
(2.65). Then f € D'(£2) belongs to Fp (M, g7) if, and only if, it can be
represented as

oo Ny

(2.67) F=03 3 A (vquw)jm(z)

yeNG =0 m=1
whith
(2.68) sup 24707 | £2] < oo
¥

Furthermore, the infimum of the expression in (2.68) over all admissible
representations (2.67) is an equivalent quasi-norm in Fo (M, 7).

2.3.5. REMARK. This is the counterpart of Theorem 2.5.7 in [Tri98]. In
2.5.8 of that paper we gave a discussion and related references. So we restrict
ourselves here to a few comments to make it clear what is going on in the
above theorem. If 3¢ — s +n/p > 0 then by (2.35) and s > o0,,, and the
related embeddings, it follows that

(2.69) Fp (M, 9™) C L1(12).
We may assume that ¢; In (2.57) is small. Hence,
(2.70) 297z — &™) (@) < Yim(2).

Then by (2.68) the expansion (2.67) converges absolutely in L;(¢2). If 2
is small then by (2.46) one has a corresponding assertion in the weighted
space L1(f2,¢?) for some ¢ € R. The number x4 may be chosen large, but
the equivalence constants in the above assertions depend in turn en w. A
discussion of this effect has been given in [Tri97], 14.6, p. 97.

2.3.6. REMARK. Although it is clear by construction, we remark that
there is a number ¢ > 0 such that & < ¢j in (2.65). We may even assume
k< jin (2.65) and (2.64).

2.3.7. REMARK. If » = s — n/p then (2.35) reduces to (2.52). In this
case we proved Theorem 2.3.4 in [Tri98] in a slightly different context. (If
one starts from (2.52) then the assumption in [Tri98] that £ is C°° is
not needed.) The different scaling in (2.35) is just the k-term in (2.64). In
other words: Theorem 2.3.4 follows from Theorem 2.2.8 and the technique
in [Tri98].

2.3.8. Generalisation. By the lifts in Theorem 2.2.13 one can start
from Theorem 2.3.4 and derive quarkonial decompositions for all spaces
Foy(M, g*) defined in 2.2.5 and 2.2.6. We will not need this.
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2.4. Entropy numbers

2.4.1. Preliminaries. Let A, B be quasi-Banach spaces and let T €
L(A,B). Put Us = {a € A : ja|A|| < 1}. Then for all k¥ € N, the kth
entropy number ex(T) of T' is defined by

(271} ex{T)

2k—1
= inf {E >0:T(Ua) C U (b; + elp) for some by, ..., baw—1 € B}.
j=1
Let T € L{A) be compact and let
(2.72) (T)] 2 |p2(T)] 2 ... > 0

be the ordered sequence of its non-zero eigenvalues listed with algebraic
multiplicity. Then

(2.73) ' k(D)) < VZer(T), k&N

(Carl’s inequality). We do not go into further details which may be found
in [ET96{, Ch. 1. There cne can find proofs, references and (historical) com-
ments. A short summary of what is needed may also be found in [Tri97],
Sect. 6. We use (2.73) later on. First we are interested in entropy numbers
of the compact embedding operator

(2.74) id: Fply (M, g™) — B2 (M, g™*)

of Proposition 2.2.16.

2.4.2. THEOREM. Let n —1 € d < n. Let 2 be a connected bounded
d-domain as in Definition 2.1.3. Let (M, g) be the related non-compact hy-
perbolic manifold with the function spaces as given in Definition 2.2.6. Let
€ ]R, i & R,

—00 < 83 < §1 <00, O0<p <p<og,
(2.75) ’

0<gn oo, 0<g<0

(g1 = o0 if p1 = o0, dndqzzooifpgmoo) with
(2.76) §=(sl—~£—)—(sz——£-)>0, 3¢ =30 — 29 >0,

Then id in (2.74) is compact and for the related entropy numbers e = ey (id)
we have

(2.77) e ~ k(samsa)/n k€N, if s> 8d/n,

(2.78) e ~ kTGP e N if 5 < Sd/n.

2.4.3. Comment. The proof given below is based on the quarkonial de-
composition of Theorem 2.3.4 and the technique developed in [Tri97]. Based
on these results, (2.73) paves the way to a related spectral theory described
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in the next subsection. It is of interest to compare the above theorem with
a corresponding theory with the replacement of

(2.79) Fo (M, g*) by Fo(R',w.), w.(z)=(1+ |z

The results are very similar. As in the above behaviour of ey in (2.77), (2.78)
there is also a splitting point which is then 2¢ = §. First results were obtained
in [HaT94], which may also be found in [ET96], 4.3.2, pp. 170-171. The state
of art in this euclidean setting may be found in [Har98] and [Har99] where
special attention is paid to just these limiting cases. In the above hyperbolic
setting 3¢ = 8d/n corresponds to this limiting case which we avoided so far.
By comparison with the euclidean case it should alsc be possible to extend
(2.75) to some cases with ps < p;.

2.5. Spectral theory
2.5.1. Preliminaries. Let A > 0,0 <y <1, and
(2.80) b(-, D) € ¥, }(R™)

be a pseudodifferential operator in R® in the Hérmander class indicated. Let
1<r €00,1 <1 <00, and

(281) bl = L'r1 (Rn)wxl)) bz € L'I‘z (Rn>wxz)a M € Ra My € R)

3 == 31 + 363 > (0. Based on [HaT94*] we developed in [ET96], 5.4, a spectral
theory of the degenerate psendodifferential operator

(2.82) B = byb(-, D)by

with the euclidean counterpart of Theorem 2.4.2 as starting point. More
recent results in this direction may be found in [Har98]. In [Tri97], Ch. 5,
we discussed a corresponding spectral theory for fractal pseudodifferential
operators. Armed with Theorem 2.4.2 one can try to extend this theory
from the euclidean case to the above hyperbolic manifolds, Pseudodifferen-
tial operators on manifolds with bounded geometry and positive injectivity
radius, especially the Laplace—Beltrami operator, have been considered in
[Dav89], [Tay89], [Shu92], [Stu93], [Skro8*], [Tri88], [Tri92], Ch. 7. Especially
the mapping properties proved there can be taken as the starting point for
a spectral theory of the hyperbolic counterpart of (2.82). This will not be
done here. We restrict ourselves to a special case which is physically relevant
in the euclidean setting.

2.5.2. The set-up. Let (M, g} be the manifold as in 2.1.1. The related
Laplace-Beltrami operator —A, is self-adjoint in L,(M) with the Sobolev
space H*(M) = Ff ,(M) as domain of definition. Furthermore,

{2.83) spec{—A, + pid) C [1,00) for some ¢ € R
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In addition we have the isomorphic mappings described in (2.43) and The-
orem 2.2.13(i). The necessary references are given in 2.2.12 and 2.5.1. Let

(2.84) Hg=—-A;, +pid—Bg™*, x>0, 8>0.
By Theorem 2.2.13,

(2.85) B=(—-4;+pid) tog™™

is an isomorphic map from Lo(M) onto

(2.86) H2(M,¢") = F2,(M, ).

Furthermore, B, considered as an operator in Ly( M), is compact. This fol-
lows from Theorem 2.4.2 in the case of d-domains. But this qualitative as-
sertion also holds without this additional assumption. Hence, Hz is a self-
adjoint relatively compact perturbation of -4, + pid. Then the essential
spectra of Hg and ~4, + pid coincide ([EdE87], Theorem 2.1 on p. 418).
We ask about the behaviour of the number of negative eigenvalues

(2.87) Np = f{spec(Hg) N (—c0,0]} as f — oo.

At least in the euclidean setting problems of this type attracted a lot of
attention. In quantum mechanics one considers the semi-classical limit A — 0
(the admittedly tiny Planck’s constant 5 has the miraculous property of
tending to zero). Physical reasoning (euclidean case) creates problems of
type (2.84), (2.87) with 8 ~ A2,

2.5.3. THEOREM. Let n — 1 < d < n. Let 1, or likewise (M, g), be a
connected bounded d-domain as in Definition 2.1.3. Let H s and Ng be given
by (2.84) and (2.87). Then

(2.88) N~ Y% if 0< 3c < 2d/n, B — oo,
(2.89) Ng~ B2 4f 3> 2d/n, B — co.

2.5.4. REMARK. Here “~” must be understood as explained in 2.1.1 with
respect to 3, B > By, where §; is a sufficiently large positive number. As
already mentioned, the problem of the “negative spectrum” has been widely
discussed in the cuclidean setting. One finds background information and
references in [ET96], Ch. 5. Related problems for degenerate elliptic prob-
lems have been treated in [HaT94*], [ET96], 5.4.7-5.4.9, pp. 236-242, and
[Har98] (limiting cases). For fractal potentials we refer to [Tri97], Sect. 31.
In any case, (2.89) is the expected “Weyl behaviour”. Qur interest in the
above theorem is twofold. First, we wished to find out what is the appropri-
ate problem for hyperbolic manifolds. Secondly, what is the influence of the
invisible fractal boundary of this hyperbolic world?

2.5.5. Hydrogen-like atoms in (M, g). It is well known that the euclidean
version of (2.84) in R™ has physical relevance, at least if n — 3. With clz|in
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place of ¢g™*(z) it describes the hydrogen atom. From this point of view it is
desirable to replace the smooth “potential” g=*(z) by potentials admitting
local singularities. This can be done by extending the “euclidean” technique
developed in [ET96], Ch. 5, to the above hyperholic case. Then one needs
the full power of Theorem 2.4.2. This will not be done here. But we look at
the special case of hydrogen-like atoms in the hyperbolic world of d-domains.
We fix an off-point in {2, say 0 € 2, where the nucleus is located. Assume
that locally the Coulomb potential is proportional to |z];*, where |z, is the
Riemannian distance of z € {2 to 0. As will be proved in 3.7 there are two
continuous functions m(z) and M(z) in 2, bounded from above and from
below by positive constants,

(2.90) m(z)~1 and M(z)~1, =zl
such that

(2.91) glz) = M(z)2m@lels i > 1,
or

(2.92) zlg ~ logg(z), |zly = 1.

Hence, measured against |z, the potential g~*(z) in (2.84) is of exponential
decay (as it should be in hyperbolic worlds). At least from the mathematical
point of view and in analogy to the euclidean case the Coulomb potential
for hydrogen-like atoms in the hyperbolic world should behave off the origin
like g™**(x) for some 3¢ > 0 or like g~*{z)(log g(x))”. Whether there is any
physical reasoning to specify » and o is not clear. We take the simplest case
»x=1and o = 0. Then we modify Hg in (2.84) by

(2.93) HP = — A, + gid —B{gmin(1, |z|,)) 7 .
At least if n > 3 then the counterpart of B in (2.85) is compact in Ly(M).
Hence
(2.94) NP = §{spec(H?) N (—0,0]}, B>,
is finite.

2.5.6. COROLLARY. Let 2 < n~1 < d < n. Let 2, or (M,g), be
a connected bounded d-domain as in Definition 2.1.3. Let H? and NP be
given by (2.93) and (2.94). Then
(2.95) N~ e = oo

2.5.7. REMARK. As already mentioned, H”® in (2.93) should be consid-
ered as an example. The technique indicated allows one to incorporate local
perturbations belonging to L};’C(M ) for some p > 1. More interesting are
global perturbations of type L,(M, g7} or a replacement of g7 in (2.84)
by g~*{log g)°. For this purpose one needs hyperbolic counterparts of the
euclidean techniques in [HaT94*}, [ET96], Ch. 5, and [Har98].
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3. PROOFS

3.1. Proof of Theorem 2.2.8

STEP 1. Let (M, g) be the manifold introduced in 2.1.1. According to
[Tri88], 2.3.1, it is a complete connected Riemannian manifold with bounded
geometry and positive injectivity radius. For the Riemannian background we
refer to [Tri92], 7.2.1, pp. 281-285, but this is not really needed here since
we reduce everything to the euclidean case. Let

31  seR, 0<p<co, 0<g<oo (withg=coifp=00),

and let {jm} be the resolution of unity given by (2.29)-(2.31). Let tem-
porarily z/™ be the centres of the balls Bjn, in (2.30). Then Fy, (M) is the
collection of all f € D'(£2) such that

o0 MJ’
» : i/p
(3.2) (323" lesmf)ia - +a9m) | B, )])
j=0m=1
is ﬁl.lite. By [Tri88], 2.4.4, this definition is independent of the chosen res-
olution of unity (up to equivalent quasi-norms) and can be taken as an

equivalent quasi-norm in F; (M), originally introduced in [Tri92], 7.2.2, pp.

285-286, via geodesic coordinates.

STEP 2. Let p, ¢, and s be restricted by (2.34). Let B, be the ball of
radius A > O centred at the origin in R™. Let

(3.3) h e Fg (R} with supph ¢ By and 0 < X < 1.
Then
(3.4) IR(A) | Fpg (R™)F ~ X577 || | By (R,

where “~” means independence of k with (3.3) and of A. We refer to [Triog],
3.9, formula (3.80). We apply this equivalence to (3.2) with A = ¢2~7 and
obtain
(3.5 7o S —i{s=n/p) 1/p

5 IELMD~ (303 29 1 Fg )

J=0m=1

Th;slproves (2.35) with » = 0. Let p, q, and s be again restricted by (2.34)
and let

(3.6) neC®(By), D) <ea, qeng.
Then for h given by (3.3),
(3.7) Inh | Fog(R™)[| < c||h | Fp(R™)1],

where ¢ is %ndependent of b and A (but depends on finitely many ¢.,). We
refer to [Tri98], 3.9, formulas (3.81), (3.82). If f € Fp. (M, g*) then we have
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(3.5) with g*f in place of f. We apply the translated inequality (3.7) to
h = @;mf and n = 2777g* or n = 2/%¢g™* and obtain

(3.8) g7t | Fpg(R) ~ 27 [lojm f | Fpg (R,

where again ~ is independent of j and m. Here the needed estimates in
(3.6) are covered by (2.1). This completes the proof of (2.35) under the
assumption (2.34). If p, g and s are restricted by (2.33) then one can use the
same duality arguments as in [Tri98], 3.9(iii), or directly the homogeneity
assertions and pointwise multiplier properties proved there.

3.2. Proof of Theorem 2.2.10. By (2.35) we have
o M 1/p
(39)  IFIELGLe ) ~ (303 lesmf | F®P)
Since 2 is bounded and C® we obtain part (i) from [Tri88}, Theorem 2.2.2.
Now part (i) is a special case of [Tri98], Theorem 2.4.2. Finally, part (iii) is
a consequence of [Tri98], Theorem 2.3.3 and (3.9).

3.3. Proof of Proposition 2.2.16

STEP 1. Let § > 0 and 3r > 3. We wish to prove (2.51). We may assume
in addition that both p1, g1, s1 and pa, gz, 52 satisfy (2.34): the general case
can be reduced to this special case by iterative use of the lifts in (2.45).
Then it follows by (2.48) and (3.4) that

(3.10) 2730 n/e gy £ Faz, (RP)]| < c27 70 g f | By, (R

D2g2
where ¢ is independent of j,m, and f. Then (2.51) is a consequence of
s > s and (2.35). If, in addition, § > 0, then we have (2.50). If 50, > 325
we see by the same reduction that the embedding (2.51) is even compact.

STEP 2. Assume that the embedding {2.51) is continuous, resp. compact.
Then, by 2.2.15, § > 0, resp. § > 0. Again by (3.4) and the above assumption
that p1, 01, 81 and pz, go, 52 satisfy (2.34) we have

(311)  27ilamn/malgy | B (RE)| ~ 279 g, [ B (RP)))

P2ga
where we may assume that ~ is independent of j and m. But then it follows
that for continuity, resp. compactness, s = 3o, TesSp. 21 > 313, is necessary.

3.4. Proof of Theorem 2.3.4. As indicated in 2.3.7, for » = s —n/p
(2.35) reduces to (2.52). Then we can argue as in [Tri98], 3.13, which proves
the theorem in this special case. However, in general we have simply to take
the factors 2k(<—s+n/#) in (2.35) into account. This has been done in (2.64).
The rest is unchanged compared with [Tri98], Theorem 2.5.7, and its proof
in [Trio8], 3.13.
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3.5. Proof of Theorem 2.4.2
STEP 1. We outline the proof of

(3.12) ey < ck~(s1-82)/n, k€N, if s > §d/n,

(3.13) ey < ck /NPt | e N, if s < dd/n,

for some ¢ > 0. By Theorem 2.2.13 we may assume that Theorem 2.3.4 can
be applied to the spaces involved. Then we have the quarkonial decomposi-
tion {2.67), (2.68) with the y-quarks (yqu)jm () given by (2.64). This brings
us in the same position as in [Tvi97], Proposition 20.5, pp. 162-165, First we
remark that by the arguments given there the values of ¢y and g in (2.75)
are unimportant (we avoid limiting cases). Hence we may assume g1 = p;
and g; = py. Then we are in the B-scale and we can apply directly the
arguments in [Tri97]. The crucial point of the proof in [Tri97], pp. 163-165,
is the reduction

(3.14) er <ecep(id), keN,
where in our case
(3.15) id 1 o292 My, (274EN Y] — Lo 22217M g, (£50Y)]

is a comipact embedding between the sequence spaces indicated. These spaces
have been considered in Sect. 9 of [Tri97}, including equivalence relations for
the related entropy numbers eg(id). For details we refer to [Tri97], Sects. 8
and 9. But we have to explain what is meant in our context by the ingredients
in (3.15). The numbers g, and po originate from p in (2.68) which can be
chosen arbitrarily large. As in [Tri97] we may assume

(3.16) g1 > 02> 0 large,

otherwise these numbers are immaterial. Furthermore, E‘;‘; stands for an L.-
dimensional £, -space, interpreted as a block in the matrix space £,,, (2’”"!3;?1")
with r € Ng. Here 3 > 0 has the same meaning as in (2.76). Crucial for
the estimate of ex(id) in (3.14) is the knowledge of L,. By the technique
developed in [Tri97] we have to compare the normalising factors of the -
quarks (2.64) with respect to the two spaces (2.74) involved. The quotient
of these two factors is of interest. Then both § and s from (2.76) are coming
in. To fix ideas we may assume by Theorem 2.2,13 that s == 0 and hence
3 = 3 > 0. If r € Ny then we have to estimate the number L, of balls K.,
given by (2.57) with

(3.17) dist(Kjm,002) ~278  fori=0,...,7,
and
{3.18) T~ L+ (5 —1)4.
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Here we used I < j according to Remark 2.3.6 without restriction of gen-
erality. Hence L, is the number of those balls K, where the quotient of
the normalising factors of the related y-quarks (2.64) is ~ 27, For fixed !

with I = 0,...,r we have to estimate the number I of balls K, of radius
~ 277 which, say, intersect {2 given by (2.3) and satisfying (3.18). Hence
(3.19) L}~ (vol 2)297 ~ g lin—dgin , oldy(r=binx/s,
We used (2.6). Summation over r yields
ks

(320) Ly ~ ogran/s Z 2I(d—nx/6).

=0
‘We obtain
(3.21) Lp o278 if d > nae/é,
(3.22) L, ~ 277508 if d < nac/d.

Now the entropy numbers of the compact embedding id in (3.15) follow from
[Tri97], Theorem 9.2, p. 47,

(3.23)  ex(id) ~ g/ a1/ pe=1/m

and

(3.24)  ex(id) ~ kO/mI/Paml/m = - (ormaal/n

Together with (3.14) we obtain (3.12) and (3.13).
STEP 2. The main aim of Step 1 was to find out how the arguments given

in [Tri97) must be changed if the y-quarks in {2.64) have now the additional

factor 2~ k{ze—stn/P) This is the point where both the Riemannian metric

and the weights g* are coming in. We obtain (3.21) and (3.22). On this

basis and (3.23), (3.24) one can now prove inequalities inverse to (3.12) and
(3.13) in the same way as in [Tri97], pp. 167-168.

EeN, if s < 8d/n,

k€N, if » > 6d/n.

3.6. Proof of Theorem 2.5.3

STEP 1. As mentioned in 2.5.2, with H?(M) as domain of definition, Hg
in {2.84) is self-adjoint in Lo{M). As remarked there, B in (2.85) is compact
and hence the essential spectra of Hg and —4, + ¢id coincide. We assume
(2.83). To estimate Ng in (2.87) (under the conditions of Theorem 2.5.3)
from above we use the entropy version of the Birman-Schwinger principle
as described in [Txi97], 31.1, p. 243. We obtain

(3.25) Ng <#{k € N:v28ex(B) > 1}.

Here ey(B) are the entropy numbers of the compact operator B. By the
above explanations we have

(3.26) ex(B) ~ ex(id), keEN,
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with
(3.27) id : H?(M,g™) — Ly(M).

By Theorem 2.4.2 with 81 = p1 = pa = 2, s = 20 = 0 and » = 29 we
obtain

(3.28) ep(id) ~ k™%, R eN, if 0 < x < 2d/n,
(3.29) ex(id) ~ E72/", k€N, if 2 > 2d/n.

We insert (3.28), resp. (3.29), via (3.26) in (3.25) to obtain
(3.30) Np < ef¥* if 0 < 2 < 2d/n,
(3.31) Ng < ef™? i 2 > 2d/n.

STeP 2. Recall that Hp is self-adjoint in Ly(M). This is needed now to
prove the inverse inequalities to {3.30) and (3.31). We modify the scheme of
[Tri97], p. 250, and shift the problem to quadratic forms and the Max-Min
principle. By (2.84) the related quadratic form is given by

(332)  (Hgf, Fraqy ~ |F | HY O = Bllg™/2F | Lo(M)|*
= |lf [HH(M)|? — Bl f | L2(M, g7/*)|1%.
Let r € N. We apply the arguments in 3.5, Step 1, to
(3.33)  HY(M)=Fyo(M) and Lo(M,g ") = F},(M,g7"/?).
In particular we have § = 1 and »/2 in place of s in (3.18) and (3.21),
(8.22). Then we find an orthonormal system {@jm} in H(M), related to

the balls K, in (3.17), consisting of L, elements with pairwise disjoint
supports such that

(3.34) g | La (B, g=*/2)|| ~ 27772,

We choose 8 = c27 with ¢ > 0 small (but independent of r € N) and insert
finite linear combinations of these functions @, in (3.32). We find that for
these functions the quadratic form is always negative. Hence (H, 8 Fy )L
with 8 = ¢2™ is negative on a subspace of H!(M) of dimension L:.. B;f(th()a
Max-Min principle (see [EAE87], pp. 489-492), it follows that

(3.35) Ng > Lp, where f =27
With 6 =1 and 5¢/2 in place of s it follows by (3.21) and (3.22) that
(3.36) Ng > ;27 = ¢, g4/ if 0 < 3¢ < 2d/n,

(3.37) Np > 27™/2 = ¢u 7/ if 5c > 2d/m,

where ¢, and ¢; are positive numbers. Together with (3.30), (3.31 i
iprig oy (3.30), (3.31) we obtain
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3.7. Proof of (2.91). By (2.2) and (2.3) the Riemannian width of each
slice £2; is ap‘proximately 1. If one starts from an outer point z € {2 with,
say, g{z) ~ 27, then one needs approximately j steps of Riemannian length
1 to reach a given inner point, say, 0 € {2. Hence
(3.38) glz) ~ 9f o gm(@)iels

with a suitable function m(z) bounded from above and from below by pos-
itive constants. This proves (2.91) with (2.90).

3.9. Proof of Corcllary 2.5.6, Since n > 3 we always have

(3.39) n<2(n—1) <24
Hence with » = 1 we have
(340) Nﬁ ~ ,Bd: ﬁ — OGO,

in Theorem 2.5.3. Tt remains to check that the local perturbation in H A in
(2.93) does not influence this assertion. But this is essentially a euclidean
matter. It is covered by [ET96], Theorem 5.4.8, p. 239, and its proof.
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