Contents of Volume 135, Number 1

K. Y. Guo, Normal Hilbert modules over the ball algebra A(B) ... ... ... 1-12
C. CeccHINI, Canonical functional extensions on von Nenmann algebras . . .. 13-24
¥. Copos, P. FERNANDEZ-MARTINEZ and A. MARTINEZ, Interpolation of the

measure of non-compactness by the real method .. ... ... ... .. ... 25-38
R. LaTaka, Tail and moment estimates for some types of chaos .. .. .. ... 39-563
H. N. SanAs, Supercyclicity and weighted shifts ... ... .......... ... 55-74
A. JIMBNEZ-VARGAS, J. F. MENA-JURADO, R. Nagum and J. C. NAVARRO-

PAscUAL, Averages of uniformly continuous retractions . . ... ... .. .. 75-81
V. FARMAKI, On spreading cp-sequences in Banach spaces ... ..... .. ... 83-102

STUDIA MATHEMATICA
Ezecutive Editors: Z. Ciesielski, A. Petcayniski, W. Zelazko

The journal publishes original papers in English, French, German and Russian, mainly
in functional analysis, abstract methods of mathematical analysis and probability theory.
Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and
correspondence concerning editorial work should be addressed to

X STUDIA MATHEMATICA
Sniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6283997
E-mail: studia@impan.gov.pl

Subscription information (1999): Vols. 132137 (18 issues); $33.50 per issue.

Correspondence concerning subscription, exchange and back numbers should
be addressed to

Institute of Mathematics, Polish Academy of Sciences
Publications Department
8niadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6203997
E-mail: publ@impan.gov.pl

© Copyright by Instytut Matematyczny PAN, Warszawa 1899

Published hy the Institute of Mathematics, Polish Academy of Sciences
Typeset using TEX at the Institute
Printed and bound by

<l e e . e
Tren-xmnaans & Tacw-amnan

BPRLKA CYWILKA
LL. JAKDBINGW 23
k. 0:20) BEkS6TEs T8 B (AT f0-15) pa5-a5

PRINTED IN POLAND

. IS8N 0039-3223

icm

STUDIA MATHEMATICA 135 (1) (1099)

Normal Hilbert modules over the ball algebra A(B)
by

KUNYU GUO (Shanghai)

Abstract. The normal cohomology functor Extys is introduced from the category
of all normal Hilbert modules over the ball algebra to the category of A(B)-modules.
From the caleulation of Extar-groups, we show that every normal C(8B)-extension of a
normal Hilbert module (viewed as a Hilbert module over A{B)) is normal projective and
normal injective. It follows that there is a natural isomorphism between Hom of normal
Shilov modules and that of their guotient modules, which is a new lifting theorem of
normal Shilov modules. Finally, these results are applied to the discussion of rigidity and
extensions of Hardy submodules over the ball algebra.

1. Introduction. During the past decade a systematic study of modules
in the context of operator theory was undertaken [6]. A mnatural function
algebra of holomorphic functions operating continuously on a module with
a Hilbert space structure captures many of the features of single operator
theory which provides a framework for investigating the multivariate case.
However any attempt to apply standard homological algebra methods to
the category of Hilbert modules immediately encounters some obstacles.
What seemns to make things most difficult is that the categories lack enough
projective or injective abjects. To avoid these obstacles, Douglas and Paulsen
introduced in [6, Chapter 4] hypo-projective Hilbert modules and succeeded
in characterizing the hypo-projectives and in using them to give a new proof
of the lifting theorem.

In the present paper, we are especially interested in the recent work
of Carlson and Clark [1, 2]. They began by introducing one of the central
concepts from homological algebra. the Ext-functor, to the categories of
Hilbert modules and using it to study problems from operator theory. But
to calculate homology invariants of Hilbert modules is often very difficult.
To overcome these difficulties, we begin by introducing the notion of normal
Hilbert modules and trying to describe cohomology and extensions of normal
Hilbert modules over the ball algebra A(B), called normal cohomology and
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2 K. Y. Guo

normal extensions. We expect that this kind of cohomology theory is a
fruitful object of study and a useful tool in operator theory.

In Section 2, we introduce some basic homological constructions and
notions which are necessary for the present paper. The proofs are similar to
those in [1] which are minor variations on arguments in [7]. In Section 3, we
consider a subclass, the normal Shilov modules over the balt algebra A(B),
which is a class of the most “natural” modules, and show that these modules
have injective presentations in the category of normal Hilbert modules. Qur
principal result shows that there exists a natural isomorphism between Hom
of normal Shilov modules and that of their quotient modules. Finally, these
results are applied to the discussion of the rigidity and extensions of Hardy
submodules over the ball algebra.

2. Homological preliminaries. Let B be the unit ball of C* and A(B)
be the so-called ball algebra, i.e., the set of all functions continuous on the
closure B of B and holomorphic in B. We say that a Hilbert space H is a
Hilbert module over A(B) if there exists a multiplication (f, h) — fh from
A(B) x H — H, making H into an A{B)-module and if, in addition, the
action is jointly continuous in the sup-norm on A(B) and the Hilbert space
norm on H. A Hilbert module map between two Hilbert modules Hj and
Hs is a bounded linear map L : H; — Hy which commutes with the action
of A(B).

A Hilbert module H over A(B) is called normal if for every h € H,
the map f — fh is continuous from the weak™ topology of L>°{8B,do)
restricted to A(B) to the weak topology on H, where do is the normalized
sphere area measure on the boundary 8B (= {£ ¢ C" | ||£|| = 1}) with
o(8B) = 1. Some obvious facts are that the category A of all normal Hilbert
modules over A(f3) is a proper subcategory of the category H of all Hilbert
modules, and A is full in M, which means that if Ny, N; € N, then the
set of all Hilbert maps from N; to Nz in A is the same as in #, that is,
Homy (N1, N2) = Homy (Ny, Np).

In the present paper, we work in the category A. For Ny, Ny in N, let
S{N3, N1} be the set of all short exact sequences in the category N,

E:0—N 5NN, o,

where o, 3 are Hilbert module maps. We call two such sequences E, E'
equivalent if there exists a Hilbert module map @ such that the diagram

E: 0 N 2oy 2o n, 0

‘]
BN,

E: 0 N 2 0
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commutes. The set of equivalence classes of S(Na, N7) under this relation is
defined to be the normal cohomology group, Extar(Nz, Ny). For the purpose
of this paper, we omit the superscript “1” on Exty, and write cls(E) for
the equivalence class of the short exact sequence F. The zero element of
Extpr(Na, Np) is the split extension

02N, >N &Ny — Ny, =0

where the middle term is the (orthogonal) direct sum of the two modules.
We first prove that Exta is a functor. Basically this amounts to showing
the existence of pullbacks and pushouts in the category N.

PROPOSITION 2.1. Pullbacks and pushouts exist in the category N.

Proof. We refer to [7] for a more complete description of pullbacks and
pushouts. For a pullback diagram
the pullback N’ is obtained by setting

N' = {(h‘la }32) ENLON, L Oél(h/]_) = ag(hg)}
and defining By from N’ to Ny by Bi(hy,ha) = h1, and 37 from N’ to Ns
by Ba(h1, ha) = hg. The module structure on N’ is derived from that on
the direct sum Ny & Na. The reader easily checks that N’ is in A, and
{N', 81, o} forms the pullback for the given diagram.

Let N be in N and f be in A(B). We write TﬁN) : N — N for the
linear map T}Mh = fh. Then we may consider N to be a Hilbert module
over A(B) (complex conjugates of elements in A(B)) by setting f-h =
T}N)*h, f € A(B), h € N. For emphasis, we denote this A(B)-module by
N.. It is easy to see that N, is also a normal Hilbert module over A(B)
(¢ L>®(8B,do)). If we use N to denote the category of all normal Hilbert
modules over A(B} (C L®(8B,ds)) then the opposite category of A is
naturally identified with N under the above defined relation. Similarly one
can verify that pullbacks exist in the category NV. By duality we see that
pushouts exist in N.

From Proposition 2.1, one can establish the functoriality of Exty. In
fact, if B : 0 — Ny —1+ N > Ny — 0 and if o : Nj — N, then o*(cls(E))
is defined to be the equivalence class of Fo which is the upper row of the
diagram

Foa: - Ny —2> N/ —2> N} 0
R
BE: 0—N—L>N—1N 0
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where {N’,d’, 17} is the pullback of the diagram in the lower right corner
and ' is given by +/(h) = (v(h),0) for h € Ni. Likewise, if #: Ny — Ny,
then SE is obtained by taking the pushout of E along B. We have thus
established the homomorphisms

ﬂ* : EXtN(Nz,Nl) —_ EXtN(Ng,N{),
o : Extpr (Na, N1) — Extar(Ny, N1),

where B.(cls(E}) = cls(8E), o*(cls(E)) = cls(Ea).

Using the standard methods from homological algebra {see [7]}, one can
prove that the induced maps a*, 3, satisfy o*f, = fua* and if &’ : NJ —
N, B : NI — NI are Hilbert module maps, then {ac’)* = & a" and
(8'8), = BLB«. Furthermore, one may naturally make Exta (N2, N1) into
an A(B)-module. The module action of A(B) on Extar (N3, Ny} is given by
the diagram for Tle)E, that is, f-cls(E) is defined to be cls(TfeNl)E). It is
easy to check that cls(ETj(,Nz)) = cls(T}Nl)E).

As we indicated above, we have shown the following:

PROPOSITION 2.2, Extar(—, ) is a bifunctor from N to the category of
A(B)-modules.

The next proposition is well known in the purely algebraic setting. In
the context of Hilbert modules it is proved in [1]. Its proof in the present
context is similar to that in [1].

PROPOSITION 2.3. Suppose that N1 and Ns are normal Hilbert modules
over A(B). Then

EXtN(NQ,Nl) & UN/BN

where Up = Upn{Na, N1} is the set of all continuous bilinear functions o :
A(B) x N3 — Ny such that fo(g,h)+ o(f,gh) =oc(fg,h} for f,g € A(B)
and b € Na, and, for every h &€ Ny, the map f — o(f, k) is continuous from
the weak™ topology of L™ (0B, do) restricted to A(B) to the weak topology
on Ni; By = By (Ny, Ni) is the subset of Uy consisting of those functions
o that can be expressed in the form o(f, h) = fL(h) — L{fh) for f € A(B),
h € N3y and for some bounded linear map I : Ny — Ny.

We call the elements of Ly normal cocycles and the elements of By
normal coboundaries. For o € - Upr, we use ¢ = ¢+ By to denote the normal
cohomology class of o. Let N1& N be the Hilbert space direct sum of N7 and
Ny with the module structure defined by f(h1, he) = (fhy + o(f, h2), fha),
f € A(B), hy € Ny, hy € No. Then the extension defined by ¢ is the exact
sequence

Ey: 0— Ny = Ny®N; 5 Ny — 0
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in the category V', where i(h1) = (h1,0) and 7 (hq, hy) == ha. The correspon-
dence in Proposition 2.3 is given by @ — cls(E, ). Moreover, if « : Ny — N
and 8 : Nj — Ny are Hilbert module maps, it can be seen that with
regard to pullbacks and pushouts the extensions aF, and E,8 are ¢’ €
Un (N3, Ni) and 6" € Uy (N}, N1), respectively, where o/ (f, h) = alo(f, h))
and o”(f, ") = o(f, B(h")) for f € A(B), h € Na, ' € N}.

Using these and Propositions 2.2 and 2.3 one can establish the following
Hom-Ext sequences whose proof is very similar to that for modules (see [7]):

PROPOSITION 2.4. If E : 0 — Ny — Ns A, N3y — 0 is an exact
sequence of normal Hilbert modules over A(B) and N is normal, then we
have the following Hom-Ext sequences:

0 — Homu (N, N1) =% Homu (N, Ny) B, Homys (N, N3)
& Bt (N, N1) 25 Bxtpr (N, Na) 25 Ext (N, N3)

where & is the connecting homomorphism given by 8(8) = cls(E6) for 6 :
N — Ng, and

0 — Homu(Na, N) 25 Homp (N, N) 25 Hompy (Ny, N)
&, Bxt (N3, N) 25 Bxtyr(Na, N) 25 Extpr(Ny, N)
where §(8) = cls(8E) for 6: Ny — N.

3. Normal Shilov modules over the ball algebra A(B). Let H be
a normal Hilbert module over the algebra C{8B) (C L*°(0B,dr)) of all
continuous functions on AB. By Kaplansky’s density theorem and a simpie
continuity argument, H can be extended to a normal Hilbert module over
L= (8B, do) without change of the module bound. Moreover, from {6] we
know that H is similar to a normally contractive Hilbert module over C'(9B).
Hence we concentrate on normally contractive Hilbert modules over C(8B).
Let N be a normally contractive Hilbert module over C(0B). A closed sub-
space M C N which is invariant for A(B) is called a normal Shilov module
for A(B) and N is called a normally contractive C(0B)-estension of M. A
normal Shilov module for A(B) is reductive if it is invariant for C(88), and
pure if no non-zero subspace of it is reductive.

The following proposition is basic for our analysis. It will help us to
calculate Exty~groups of some normal Hilbert modules over A(B).

PROPOSITION 3.1. For any N in N, the module action of A(B) on N
can be unigquely extended to H*(B) without change of the module bound of
N, making N into a normal H*(B)-Hilbert module, where H™ (B) denotes
the set of all bounded and holomorphic functions on B.
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Proof. By [5, Corollary 2.3], the unit ball of A(B) is weak*-dense in
the unit ball of A*(B). Also, since H>(B) is weak*-closed and the unit
ball of H*°(B) is weak*-compact and weak*-metrizable, a simple continuity
argument implies the assertion.

According to Proposition 3.1, the category A is essentially the same as
the category A of all normal Hilbert modules over H*°(B). We thus con-
clude that Propositions 2.1-2.4 are valid in the category N'°°, For Ny, N, €
N, since Extpr(Na, N1) is isomorphic to Extpree(Na, N1) as A(B)-modules,
this implies that Exta (N, N1) can be extended to an H*(B)-module.

From the preceding discussion and the theorem on the existence of inner
functions in the unit ball B of C" (see [12]), we are now in a position to
give the main result of this section. First of all, the following notation is
necessary. Let G be a semigroup. An invarient mean on G is a state u on
1°°(G) such that u(F) = u(,F), where (F(g’) := F(gg') for all g € G and
F € I*°(G). A basic fact is that every abelian semigroup has an invariant
mean (see [11]).

THEOREM 3.2. Let N be a normal C{9B)-Hilbert module (of course N €
N). Then for every normal Hilbert module K over A(B), we have

Exty(K,N)=0, Exty(N,K)=0.
Proof. By the discussion above, we only need to prove
Extaes (K,N) =0, Extyoe(N,K)=0

where N, K are regarded as normal Hilbert modules over H°°(B). Moreover,
N is also regarded as a normal Hilbert module over L*°(8B,do). For every
normal cocycle o : H®(B) x K — N, we therefore need to show that there
exists a bounded linear operator 7 : K — N such that o(f, k) = op(f,k) =
Tfk— fTk.

To do this, we write By(N, K) for all trace class operators from N to

K, B(K,N) for all bounded linear operators from K to N, and identify
B(K, N) with Bf(N, K) by setting

(I,C) = w(TC), TeB(K,N), CeB(N,K).
Let p be an invariant mean of the multiplication semigroup of all inner
functions in H°°(B). Define T' € B(K,N) = B}(N, K) by setting
(T,C) = s (T (), CY),

that is, (T,C) is the mean of the bounded complex function n

{T%N)a(n, -}, C) on the multiplication semigroup of all inner functions in
H<(B). For each inner function 7', we have

icm
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@7 -1, 0)
= (T, cT™ _ 1l®) ey

7’ 7
(T e (n, ), 0TSV — T 0y)
= p (T () = TV o (n, )T, €))
(T o, ) = T o (m', ) = T o (', ), C))
= tn({o(7,), O)) + (T o(m, ) = T oo, ), ©))
= (0(1',),0) + (T 0 (0, ), €)) = oy (T o', ), C))
= (o(n',),C)

for all C' & By(N,K), so that o(rf,-) = T T - TT4"). Since all inner
functions generate H°°(B) in the weak® topology (see [12]), we see that
¢ = op. This is just what is needed. Thus Ext (K, N} = 0.

The proof that Exta(N,K) is zero comes from the following fact.
Since Exta (N, K) is isomorphic to Extyy(K., N.) as groups by duality,
and N, is also a normal Hilbert module over C(8B), one can deduce that
Ext (K., N.) = 0. Thus Exty(N,K) = 0. This completes the proof of
Theorem 3.2.

For P € N, we say that P is normally projective if for each pair Ny, N2 €
N, and every pair of Hilbert module maps ¢ : P —» Ny and ¢ : Ny — Np
with ¢ onto, there exists a Hilbert module map ¢ : P — N; such that
P = qb{,/‘)‘. Also, for I € N, I is called normally injective if for every pair
N1, No € N and every pair of Hilbert module maps # : N1 — [ and ¢ :
Ny — N, with ¢ one-to-one and having closed range, there exists a Hilbert
module map % : Ny — I such that ¢ = 1b¢. Using Proposition 2.4 and
Theorem 3.2 we have

COROLLARY 3.3. Let N be a normal Hilberi module over C(OB). Then
N (viewed as an A(B)-Hilbert module) is normally projective and normally
injective.

REMARK 3.4. (1) In their book [6], Douglas and Paulsen asked whether
there is any function algebra, other than C(X), with a (non-zero) projective
module {see Problem 4.6). In [2], they proved that every unitary C(0D)-
Hilbert module (viewed as a Hilbert module over the disk algebra A(D))
is projective and injective, Xiaoman Chen and Kunyu Guo pointed out in
[4] that there exist non-zero projective modules over every unit modulus
algebra. Although we do not know if there is any non-zero projective module
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over the ball algebra A(B) (n > 1), Corollary 3.3 guarantees that there exist
normally projective modules and normally injective modules.

(2) In the purely algebraic setting, one knows from [7] that there is no
non-zero module which is preojective and injective over any principal ideal
domain {other than a field). Hence, Corollary 3.3 shows a very different
character of normal Hilbert modules.

COROLLARY 3.5. Let Ny be a normal Shilov module over A(B) and N bea
normally contractive C(0B)-extension of Ng. Then the following statements
are equivalent:

(1) Np is normally injective;

(2) N © Ny is normally progective;

(3) Ny is reductive;

(4) the short exact sequence Ey, : 0 — Ng — N 5 NO Ny — 0 4s
split, where i is the inclusion map and 7 the guotient map, that is, 7 is the
orthogonal projection Pygn, from N onto N & Ny. As usual, the action of
A(B) on N'© Ny is given by the formula f - h = Pyen T h for § € A(B)
and h e N a No.

Proof. It is easy to see that N being normally projective and normally
injective implies that (1), (2) and (4) are equivalent. From Corollary 3.3,
one can check that (3) leads to (1). To show that (4) implies (3), we may
regard Ny, N and N © Ny in the category N, If Ey, is split, then there is
a splitting map o : N© Ny — N such that no = Ingn,. Taking any £ € N

and any inner function 7, we write TE(N)E =&+ &2, &6 €N, E2 € N N,
Hence

£=TM6 + TiMg,
So
m(TiVEr) = TENONoNgy = 0,
This leads to
o(TFOME) = TiMo (&) = 0,
ie, (&) = 0. Since o is an injective Hilbert module map, we thus conclude
that & = 0. So Ny is reductive.

For a normal Hilbert module M, let N be any normally contractive
C(8B)-extension of M. We say that N is minimal if C(8B)- M is dense
in N. From [6, Corollary 2.14], one can show that the minimal normally
contractive C(9B)-extension of M is essentially unique.

LeMMA 3.6. Let M; be normal Shilov modules over A(B) and N; be
normally contractive C(0B)-extensions of M;, i = 1,2. Then each 0 €
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Homy (M, My) lifts to a C(OB)-Hilbert module map 6 : Ny — Na. Fur-
thermore, if N1 is minimal, then the lifting is unique.

Proof. By Proposition 3.1, we may regard M; as normally contractive
Hilbert modules over H*°(B) and N; as normally contractive Hilbert mod-
ules over L*(0B,do) for i = 1,2. Putting D = {Fh | h € M1, n are inner
functions}, it is easy to see that D is a linear subspace of Ny. Because all
inmer functions and their adjoints generate L (88, do) in the weak* topol-
ogy (see [12]), it follows that the closure D of D is an L™ (8B, do)-Hilbert
submodule of Ny. If we set §(7jh) = 78(h) for inner functions n and h € M,
then it is easy to check that 8" is well defined and can be continuously ex-
tended to an L*° (8B, do)-Hilbert module map from D to Ny. Hence if we
use &' to denote the L (9B, do)-Hilbert module map from Nj to N defined
by setting 8'(h) = 6" (k) for h € D, and &'(h) = 0for h € Ny& D, then §' is a
C(8B)-lifting of 8, In particular, if N7 is minimal, then the lifting is unique.

THEOREM 3.7. Let My, My be normal Shilov modules over A(B), and

Ny be a minimal normally contractive C(8B)-extension of My. If N3 is a
normally contractive C(0B)-extension of My, and Ms is pure, then

HomN(Ml,Mg) & Homp (N, © M1, No & Mp)

0s A(B)-modules. The isomorphism is given by 3(8) = Pn,oan8 | Niam, for
8 € Homp (M1, M), where 8' is uniquely determined from 0 by Lemma 3.6,
and Pryau, 18 the orthogonal projection from Na onto Nz © Mo,

Proof. The statement can be expressed as the following commutative
diagram:

0 My —2s N, -5 Ny © My —0
le la' lﬂ(ﬂ)
0 My iy N Lk No o My ——0

where i1, iy are the inclusion maps and 71, 7 the quotient maps. By Lemma
3.6, it is easy to see that

8 HOmN(Ml,Mz) — HOII]N(N1 & M,NoO Mz)

is an A(B)-module homomorphism, where the module structure of
Homu (Mi, My) is given by (f - 8)(h) = 6(f - h) for f € A(B), h € M,
and the definition of the module structure of Homp/(Ny & My, Ny © Ms)
is similar. Since Ma is pure, Lemma 3.6 also implies that f§ is injective.
Since Nj is normally projective, 8 is surjective. This completes the proof of
Theorem 3.7.

For Hardy subrmodules, Theorem 3.7 has a natural form. To state it, let
I be a subset of L2(8B,do). A Borel set E C B is said to be the support
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of I' (denoted by S(I")) if each function from I” vanishes on 8B — E, and for
any Borel subset £’ of F with o(F’) > 0, there exists a function f € I" such
that f|g # 0. For a Hilbert submodule M of L?(8B,do) over A(B), it is
not difficult to prove that x g L*(8B, do) is its minimal C(8B)-extension,
where xg(as) is the characteristic function of S{M). We also note that a

Hilbert submodule M’ of L?(8B, ds) is pure if and only if o{S(M'")) = 1.
Thus Theorem 3.7 implies the following:

COROLLARY 8.8, Let My and My be Hilbert submodules of L*{OB, do)
over A(B), and o(S(M:1)) = o(S(M;")) = 1. Then

Hom (M, M2) = Homy (L*(8B,do) © My, L(8B, do) & My).
The isomorphism is given by ¢ HQ[DM"}ILz(aB,dg)eMl, where H&MZ] is de-
fined by H f = Ppaom.anien (@f) for oll f € L*(8B,do).

ExAMPLE 3.9. Let H?(8B) be the usual Hardy module over A(B) and
H*(B)* (= L*(8B, do) © H2(dB)) be the corresponding quotient module.
By Corollary 3.8, one can obtain

Hom (H?(8B)*, H*(#B)*) = H*(B).
If we define a Hankel-type operator A¢ for f in L*(dB,do) by
Af(h) = Pr2apasyomsen)(fh), k€ L*(8B,do) o H*(8B),
then the cornmutant of {A,,,...,4,,} is equal to {A; | f € H®(B)}.

4. Applications to rigidity and extensions of Hardy submod-
ules. Let Ny be a normally Shilov module and N be any normally contrac-
tive C'(8B)-extension of Ny. It follows that we have a normally injective
presentation of Ny:

BEny: 0—Ng—+ NS NoNy— 0.
From Propositions 2.3, 2.4 and Theorem 3.2, we have

PRroPOSITION 4.1.

(1)  Extar(M, No) = coker(my : Homp (M, N) — Homp (M, N © No)).

The correspondence is given by 6(6) = 75 for 8 € Homp (M, N Na), where
Ty is the normal cohomology class of ro defined by ro(f,h) = PNDT}N)B(h),
Pry, is the orthogonal projection from N to No, and f € A(B), h€ M.
(2)  Exty (N © No, M) = coker(i* : Homu (N, M) — Homy (Ng, M)).

The correspondence is given by § (5) = oy for 8 € Homyp (Ng, M), where oy
is defined by oo(f, h) = 6(Py,T"'h), f € A(B), he N @ Np.

icm
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Proposition 4.1 provides a very useful method for calculating normal
cohomology groups of Hilbert modules in M. In particular, if M (or Ng) is
cyclic, then the characterizations of Exta (M, Ng) (Exty (N © Ny, M)) may
he summed up as the action of module maps on cyclic vectors.

‘We now return to the calculation of Exty-groups of Hardy submodules
over the ball algebra. For an A(B)-Hilbert submodule N of L*(8B,do)}, we
define a function space B(N) as follows. A function ¢ € L*(8B, do) is said
to be in B(N) if the densely defined Hankel operator H(S,N) : H*(8B) —
L*(8B,dc)® N can be continuously extended to H?(8B), where HQ(,N)f =
Praop,anen{ef), f € A(B). It is easy to check that for every ¢ € B(N),
2 is a Hilbert module map from H2(AB) to L2(9B,do) © N, and each
Hilbert module map 8 from H?(8B) to L?(8B, do)© N has such a form, that
is, there exists a ¢ € B(N) such that § = I-L(PN). Furthermore, for a non-
zero Hardy submodule Ny (C H?(8B)), another function space B(Ng, N)
is defined by ¢ € B(N, N} if ¢ € B(N) and l_r_erlﬁlré,]\]J 2 Ny. From Propo-
gition 4.1 and Lemma 3.6, the following are immediate:

PROPOSITION 4.2.

(1) Exta (H2(8B),N) & B(N)/(L®(dB,ds) + N),
(2) Ext (H*(0B) & No, N) = B(Ny, N)/N.

REMARK 4.3. If B is the unit ball in C* with n > 1, then one can check
that Extp(H?(88), H*(8B)) # 0. This says that H?(dB) is never normally
projective. In the case n = 1, we have Exty (H?*(8D), H*(8D)) = 0 from
the Nehari theorem [1, 4]. However, we do not know if H2(8D} is normally
projective.

Let two Hardy submodules Ny, Ny satisfy 0 # N1 C No & H?(8B).
Hence 1 is in B(Ny, N3) and it follows that Exta (H?*(8B) © Ny, N») is not
zero. This indicates that for Hardy submodules Ny, Ny and Ny $ 0, if
Exta(H2(8B) © Ny, N3) = 0, then there is no proper Hardy submodule N3
such that N3 D N1 and Ny is similar to No. The next proposition gives us
some information on the rigidity of Hardy submodules.

PROPOSITION 4.4. Let B? be the unit ball of C* and let N be a Hordy

submodule of finite codimension in H*(8B2). Then
Exty (H*(0B?) o N,H?*(8B*) =0.

Proof. By [8], RN N is dense in N, and the set of common zeros (in
C?) of the members of RN N is finite and lies in B?, where R is the ring of
all polynomials on C2. For ¢ € B(N, H*(8.B?)), we have

#(RNN) C H*(8B?).
Using the harmonic extension of ¢ and the removable singularities theorem
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(see [9]), one easily checks that ¢ is in H%(§B2). Proposition 4.2 thus shows
that Extu (H2(8B%) & N, H?(8B?)) is zero. The proof is complete.

For a proper Hardy submodule N of finite codimension in H?(8B?), since
Exty (H?(8B2) © N,N) is never zero, it follows that N is never similar
to H?(8B?) by Proposition 4.4. We refer the reader to [3] for a further
consideration of the rigidity of Hardy submodules over the ball algebra.

REMARK 4.5. The main results of the present paper are also valid for
strongly pseudoconvex domains with smooth boundary by [5, 10].
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Canonical functional extensions on von Neumann algebras
by
CARLQ CECCHINI (Udine)

Abstract. The topology and the structure of the set of the canonical extensions of
positive, weakly continuous functionals from a von Neumann subalgebra Mp to a von
Neurnann algebra M are described.

1. Introduction. The aim of this paper is to give some results about
the structure of the set R(M, Mp) of the canonical extensions of positive,
weakly continuous functionals (called canonical functional extensions, c.f.e.)
from a von Neumann subalgebra My to a von Neumann algebra M (cf.
[3]-[5]). After the nccessary preliminaries in Section 2, Section 3 is devoted
to the intreduction of a set V(wp) of vectors in the Hilbert space of the
standard representation for M, canonically associated with R(M, M) in
the framework of the modular theory of von Neurann algebras. Section 4
contains some topological results on R(M, Mp) and V(wg). In Section 5
structural properties for different c.f.e. are compared and the possibility of
defining Radon—Nikodym derivatives for c.f.e. in the spirit of Connes’ type
cocycles for conditional expectations on von Neumann algebras (cf. [6]) is
considered. In Section 6 we consider the special situation in which a c.f.e. is
dominated (i.e. majorized by some mulsiple of another) in order to obtain
some further comparison results, and we conclude by giving a sufficient
condition for a given c.f.e. to dominate no other c.f.e.

9. Preliminaries and notations. Let A/ be a von Neumann algebra
acting on a Hilbert space H. We denote by S(M) (resp. S¢(M)) the set of
norma). (resp. normal faithful) states on M. For §{ in H and @ in M we set
we(a) = (£, at). Let ¢ and w be in (M.)T. We say that ¢ is dominated by
w (and denote by m(w) the set of such functionals) if it is majorized by
some positive multiple of w. If Mp is a von Neumann subalgebra of M we
set wp = w| My for all w in M,. For w in S(M) we denote by [e(w)] the w
conditional expectation from M to Mp introduced in [1] (see also [4], [5]).
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