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Free interpolation in Hardy—Orlicz spaces
by
ANDRFEAS HARTMANN (Bordeaux)

Abstract. We show that the Carleson conditicn is necessary and sufficient for free
interpolation in Hardy—Onrlicz spaces Hp on the unit disk I under certain conditions on

w, and we give a characterization of the trace space Hla if Ais a finite union of Carleson
sequences.

Introduction. Let Hol(ID} be the space of holomorphic funetions on the
unit disk D = {z € C: |2{ < 1} and T = &D. A sequence A = {An}nz1 CD
is called of free interpolation for a subspace X C Hol(I) if the trace space

t=Xla={fla:fe X}

is an ideal space, ie. if @ € l and b € €4 are such that [B(A) < |a(A},
A € 4, then b € [ (cf. for example {14] or [6)). We will also use the following
notation for the associated sequence space:

1) : X(4) ={(Ffa)nz1 - f € X}

The description of free interpolation sequences for the space H* = {f &
Hol(D) : sup,ep |f(2)| < 0o} was given by L. Carleson [1] and it was shown
by H. 8. Shapiro and A. L. Shields [19] that the free interpolation gequences
for H® are exactly the same as for the Hardy spaces

17 ;
HP(D) = {feHol(ID)) Dosup — S |f(re“)]-"dt<oo}, l1<p<oo
0<rel 27

(cf. also [10] for the case 0 < p < 1). Tt is well known that we may identify
HP() and HP(T) = {f € L*(T) : f(n) = (2m)71 S’:Wf(e"")e"‘i“‘ dt = 0,
n <0}

In the first section we give the definition of Hardy-Orlicz spaces H, and
various conditions that one may impose on the defining function ¢ to get

1991 Mathematics Subject Classification: 30E05, 46E30.
Key words ond phrases: free interpolation, Hardy-Orlicz spaces, interpolating se-
quences, Carleson condition.
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interesting results. Some of these conditions are rather classic, others are
introduced here for technical reasons.

The second section will be devoted to the proof of the necessity of the
Carleson condition for free interpolation in Hardy—Orlicz spaces H,. The
basic idea has been taken from the classical case of H? (cf. Shapiro and
Shields [19]). In fact, we interpolate the function a(A)xx € C*, where a(})
has to be chosen conveniently (and x, is the characteristic function of the
set {A}), by a function ¢» € H,. Factorizing this function into Bxh,, where
B, is the Blaschke product associated with the zero set A\ {A}, we get the
desired result if this factorization is compatible with the norm of the space,

In the third section, we will give an explicit description of the trace space
H,|a of the Hardy—Orlicz space H,, if A is a Carleson sequence. Using the
result of [7] (cf. also [5]), we extend the characterization of the trace space
H,|4 to finite unions of Carleson sequences in the last section.

1. Definitions. Tt was shown by L. Carleson [1] that for a sequence
A C D we have H®|y = I%°(A) = {a € T4 : supyeq la(N)] < oo} if and
only if

(2) jf [ BNz 6> 0,
HFEA

where
. _I_}i A—z
AT 1~z

is the Blaschke factor. A sequence satisfying condition (2) is called a
Carleson sequence, and in this case we write 4 € (C). It is well known
that Carleson sequences satisfy the Blaschke condition 37, - 4 (1 —[A]) < ce.
We remark that the condition H*|4 = [*°(A) is equivalent to H*|4 being
an ideal space.

In order to define Hardy—Orlicz spaces not only in the Banach space
case, we need the notion of strongly convex functions (see [16]):

DerFviTION 1.1. A function ¢ : R — R is called strongly conver if

(i) ¢ is convex,
(if) ¢ is nondecreasing,
(iif) ¢ > 0,
(iv) Hmy o0 @(t) /t = oo,
(v) for all ¢ > 0 there exist M, K > 0 such that ¢{t +c) < My(t) + K,
teR '

A list of examples of strongly convex functions may be found in [16]. Note
that (v) is equivalent to the famous Ay-condition. If ¢ is a strongly convex
function then the Hardy-Orlicz space H, is the set of functions £ € Hol(ID)
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such that (log™ | £(2)|) has a harmonic majorant on D. Here we use the
notation log™ z = max(0,logz). In view of the description of subharmonic
functions having a least harmonic majorant we get the following more con-
venient characterization of H,, (see [16])

DeFINITION 1.2. Let N* = {f € Hol(D) : f = fi/f2, f1, f2 € H® and
f2 outer} be the Smirnov class on I and ¢ a strongly convex function. Then

H, = {f € Nt: S p{log | f(e®)) dt < oo},
where f(e') is the nontangential boundary value of f at e € T, which
exists almost everywhere. We introduce two functionals on H,:

17 :
S GO
and

£, = mf{k > 0: |F/k|n, < k).

The space H, equipped with | - |5, is a complete metric space (cf. [12]
or [15]), and if ¢ o log is convex, it is in fact a Banach space. We remark
that if | f|2¢, = ¢ with some ¢ > 1 then |f/elr, <1fln, <cand hence

"
I#llrep = 8 {k >0 | p(log|f(e)/kl)dt < k} < o= Ifln,

There exists another approach to the definition of Hardy—-Orlicz spaces
(we will restrict ourselves to spaces on I and on T). We define the so-called
Orlicz classes Lg by

»
Lg = {f e M(T) : % S &{|f(e™)]) dt < oo},
-~
where M(T) is the space of measurable functions on T and & is a continuous,
strictly increasing function on [0, co) satisfying #(0) = 0. The corresponding
Orlicz spaces are given by Lg . = {f € M(T) : 3a > 0,af € Ls}.

The first approach—using the fact that the function p(log|f(2)!) is sub-
harmonic if f is holomorphic and ¢ is convex—is useful for complex-analytic
arguments and allows enlarging the definition of Hardy-Orlicz spaces to
non-locally convex spaces, the second one for geometric Banach space argu-
ments. As we are also interested in the non-locally convex case, we will keep
in mind the special structure ¢ = ¢ olog and we will skip between these two
definitions writing

$=polog.
We may reformulate condition (v} for &:
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(') The function & satisfies condition Aq if there exist d>1landty >0
such that
$(2t) < dB(t), t=>to
With this definition, if & satisfies A, (or equivalently ) then the Orlicz
class is just equal to the Orlicz space ([12]). Note that we may then identify

([12)
(3) H¢:L@’*HN+=L4§QN+.

In what follows we use the notations Hg = LN NT and || |1 = ||-l|=,

if & = polog and ¢ is strongly convex.
Let us add some supplementary conditions for strongly convex func-
tions ¢: -

(vi) The function ¢ satisfies condition V2 (cf. [12]) if there exist d > 1
and ty > 0 such that

2B(t) < B(dt), t> to.

(vii) The function & satisfies condition Vg (cf. [15] or [12]) if there exist

d > 1 and t5 > 0 such that

1
20(t) < Egﬁ(dﬁ), t>tp.

(viil) The function & is s-convez (0 < s < co) if there exists a convex
function ¢ such that
B(t) = ().
All these conditions have their analogous formulation for ¢.

NOTATION. If a function & (or equivalently ¢) satisfies condition Ao (V2,
V3) then we write @ € (Ag) (6 & (13), § € (V3), and ¢ € (Ag), etc.).

REMARK. 1) It is sufficient to assume (i)-(iil) only for ¢ > #5. Indeed,
by (iv) there exists t; > tg such that @(t1)/t; > 1. Let now my be the
right hand derivative of o at t;, which is greater than 1 (remember that ¢
is convex for ¢ > #g). Extend ¢ by @(t; )et™/@B)(E~4) for ¢ < ¢; and call
this new strongly convex function . In view of Corollary 4.1 of [8], we have
H, = Hp (cf. also [11]) and 7 satisfies the cited conditions on the whole
real line. We may also suppose that  is strictly increasing for if this not the
case, choose in the previous construction ¢y € R such that the right hand
derivative of ¢ at ¢y is different from zero. Finally, this justifies that we can
assume that @ = p olog is (right-) continuous at zero and limy .o $(¢t) = 0.

2) It is not hard to see that if $(¢*) is convex, then there exists s; (for
example s; = 2g) such that $(t1) satisfies V5. Let us show a kind of reverse
implication. A function f : [0,c0) — [0, 00) is called almost increasing if
there exist C' > 0 and o > 0 such that f(t2) > Cf(¢;) for all t > & = tp. If
we set p = log 2/logd, it is easily seen that the condition @ € (V3) implies
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that for'all A > 1 we have ®(At) > (A/d)?®(t). Take now f(t) = $(t'/7) and
verify that f(t)/t is almost increasing. But this condition now guarantees
Fhat the function y(t) = sup{g(t) : g < f, g convex}, which exists and
is convex, will be comparable to f. We deduce that & is comparable to a
p-convex function: y(#7)/e < &(t) < cy(¢P). This in view of [11] implies that
the corresponding Hardy-Orlicz spaces are equal, that is, if & () = y(t?) we
have
He =Hg.
(Note that, a priori, this result is in [11] for the case of & convex, but it
remains valid if ¢ € (Vo) and g is strongly convex). Set @(t) = g(et).
It is clear that & is still strongly convex (in particular we conserve the
Ap-property). In what follows we suppose that @ is an s-convex function
satisfying A,.
3) Let & € (V). If we choose n £ N such that 271 > d, then

1 n 1 n
S B((d)™) < Se((an)),

from which we deduce that &(t°) € (V) with s = n and this remains true
also for s > n.

4) In general, s = 1/p constructed in Remark 2 for convexity and
sz = n constructed in Remark 3 for V, do not coincide. But if we set

s =max(1l/p,n) we in fact obtain a convex function $(t°) satisfying Vs.

2B(1") < 250 8((dt)") =

ExampLEs. The following examples give a list of candidates for the ap-
plication of Corollary 2.3, Theorem 3.1 and Corollary 4.3 below.

1) The function &(x) = (1 + z)log(l + 1) — x is a convex function (and
p(t) = 9(e*) is strongly convex) satisfying As but not ¥y (cf. [15]). As it is
convex, we have $(¢?) € (Va). The corresponding Orlicz class Lg is just the
classical Zygmund space Llog L.

2) The functions &(¢) = 7, £ > 0, 0 < p < o0, satisfy (i)}~(vi).

3) The functions $(t) = tP(logt)™ ... (loglog...logt)™, t > ty, 0 < p <
00,y 20 (i=1,...,n), rn #0, satisfy (i)-(vi) (for appropriate ty, cf. also
Remark 1 above). Note that for any two different sequences p,71,.. ., 7, and
2,71, .., Tm We get two different Orlica spaces.

4) The function &(t) = 218" glgo satisfies (i}~(v1). The corre-
spending Orlicz space Lg is strictly contained between L' = Ly, where
@1 (t) = t and all the spaces L, where @5 is as in Example 3 with p = 1
and any finite sequence ry,...,ry, n € N.

2. The necessity of the Carleson condition. Throughout this
section, we suppose that A = {A,}n»1 satisfies the Blaschke condition
2oxea(l —{A]) < oo and hence the Blaschke product B = ], 4 bx exists.
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To prove the necessity of the Carleson condition, we use sirnilar argu-
ments to the case of classical Hardy spaces HP (cf. [19]). Observe that we
use a slightly more general definition of free interpolation (based on that
of [13] and [20]). As the method of Shapiro and Shields involves functional
analysis methods, we will have to study bounded maps. So let us first recall
that a bounded set in a topological space X is a set £ C X such that for
each neighbourhood V of 0 in X, there exists s > 0 such that & C sV.
We need a property for & that guarantees that bounded sets are exactly
| - |l#o-bounded sets (i.e. E C Hg is bounded if and only if there exists
R < oo such that supsc g || fll#. < R). In order to have this property in He
it is necessary and sufficient that & & (V3) (cf. [12]).

In view of the definition of the metric on Hg, multiplication by an inner
function @, i.e. @ € H® and |@| =1 a.e. on T, is an isometry on Hg. In
particular BHg is a closed subspace of Hg and consequently Hg/BHg is
a complete metric space. Set {ig)y = Ha|a (which, for the moment, will be
distinguished from the Orlicz sequence space lg that will be introduced in
Section 3) and define an operator R : Hg — {(s) by

R(f)=fla for feHs.

The space l(5) may be identified in a natural manner with Hg /BHg, and
thus we may endow l(g) with the quotient metric of Hg/BHg. This metric is
given by laly ) = inf sep14, 7y =a | fl11a > and (L), |- 1,4, ) 15 @ complete metric
space. Observe that if & € (V) then the quotient space [() inherits also the
important preperty from Hg that the bounded sets in 5y are exactly the
| - {i.sy-bounded ones.

The following result generalizes the setting of Theorem 0.1 of [13].

LEMMA 2.1. Let ¢ satisfy (1)-(vi). If Hals is an ideal space, then for all
a € Ligy and b € C* we have the following implication:

BA) < la(N)], Aed = bl < c{laliy,),
where ¢ : [0, 00) — [0, 00) is an increasing map.
Proof. For any u € [ = 1%°(4), define an operator T}, : lig) — l(#) by
Tu(a) = pa for a € lg),

where the product is defined pointwise: (ua){A) = u(A)a(A), A € A. By the
ideal property, T, is well defined. And as the evaluation map a — a{}),
A € A, is continuous (by the continuity of f — f(A), He — C, [12]), the
operator 17, is closed and hence bounded by the closed graph theorem.

We consider the family {7}, }| e <1 of contimious mappings. For a €
gy, we may define Tj, : I%° — Ig), 4 — ap. As before the closed graph
theorem shows that this operator is bounded. Hence the image of the unit
ball of I*° under T, is bounded in l(gs). But this implies that the orbit
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{T}{a,}““”mg = {Tait}ufee <1 is bounded in l(#). Applying the Banach-
Steinhaus theorem, we get the equicontinuity of the family T e <1
We have already mentioned that if & (V2), then the bounded su’gsé:t;in
li#) are exactly the | - |1;s,-bounded ones. Take now a | - |i¢g,-bounded set
B Cc{a€lg):lal,, <R} for some R < oo. Its images under the operators

Oﬁ Ehe fafmily {TH}H uli=e <1 are contained in one and the same bounded subset
[8) (F)> 1.e.

sup waly e <e(R)  for all R < co.
lalli= <1, lals 4, <R ey < () >
Hence if |6(A)| < la(A)], A € 4, and |lali gy < R, then [y < c(R). m
We now obtain the following

‘ TI».IEOREM 2.2. Let A= {\:}n>1 CD and let @ be a function satisfying
(1)~(vi). If Hsp|a is an ideal space then A € (O).

Let us give the general proof of this result which was mentioned for the
Banach case in [14] (p. 188).

Proof. Let E) : Hg — C be the point evaluation functional f = fx)
and set v(A) = ||Bx || = sup{|f(\)| : f € He} > 0. Clearly for every A € A
there is a function fy € Hg such that |fr(A)] = v()\)/2 and FllHe < 1.
As A is an interpolating sequence we get in view of Lemma 2.1 a function
gx € Mg such that gx(u) = 0, u # A, ga(A) = (), and |[ga[lns/mms <
([l fllrasBms) € ¢(1). Tn particular we may choose gy such that ligall <
2¢(1). S.et By = HméA bu. As gala\(ry = 0 we may divide g5 /By = hy € He
conserving the metric. Hence

37N A = laa)] = [BA)AA(N)] = [Ba(A)] - [Ea(ha)].

As the defining function ¢ was supposed to be s-convex, the metric || | #¢5
is equivalent to an s-homogeneous metric (cf. [12]). This implies || f{l, <

Ar®l|fllne, r 2 0, for some A < oo, and in particular ||(24¢(1))"2/*hy|ln,
< 1. We deduce

|85 (ha)| = (24¢(1))/° Bx((24c(1)) 7 *hy)| < (24e(1))M*(2).
Hence

570 < [BA(N)[(24c(1))/*(N).
This obviously gives the Carleson condition. w
As @ € (Ap) we have H®Mg C Mg (cf. [8]). This and the fact that
H™|y = ["°(A) provided that 4 € {C) imply that Hs|4 is an ideal space if
A € (C) (cf. also [14] and [6]). We now get

COROLLARY 2.3. Let A= {An}n>1 C D and let ¢ satisfy (i)-(vi). Then
He|a i9 on ideal space if and only if A satisfies the Carleson condition.
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3. Characterization of the trace space Hg|4, A € (C). Let us first
introduce a natural candidate for the trace space of He:

(4) o = {a e C*ilale = 3 (1= X2)B(a(N)]) < oo},

Aed
where A = {Ap}n>1 C D, This is just the Orlicz class Lg (D, u) for the
measure space (I, ) where =3, (1 — |A?|)6, and 6, is the point mass
at A € D. Again, as € (Ag), we identify Ls(D, ) = L (D, u).

THEOREM 3.1. Let @ satisfy (i)~(vi) and A = {A}nz1 CD. If A € (O)
then

Hols =Hels = lp.

REMARK. 1) As the proof is based on interpolation between LP-spaces,
and for the inclusion H?|4 C IP(1-[X?|) = {a € C* : 37, (1~ |A?)]a(A)[P
< oo} to hold, it is sufficient for 4 to be a finite union of Carleson sequences,
the same holds true for Hardy—Orlicz spaces.

2) Note that we do not suppose that the function @ is convex and that
hence the theorem remains true for non-locally convex spaces (for instance
HP, 0 <p<l,cf [10]).

Proof (of Theorem 3.1) For convenience, let us return to the ini-
tial condition ¢ € (V3). In view of Remark 4 of the first section, there
exists s > 0 such that $(¢*) is convex and satisfies V,. Suppose first
s = 1. But now, as & is a convex function satisfying A, and V, we may
apply Theorem 4.1 of [2]. In fact, if (X, ) is a o-finite measure space,
the cited theorem shows the existence of 1 < 7 < pp < oo such that
Le(X, i) = {f measurable : §x @(17]) dps < o0} is an interpolation space be-
tween LP2 (X, i) and L (X, 1), We have already mentioned that Lg(T,m)N
N* = Hg, where m denotes the normalized Lebesgue measure on T
(cf. [12]). Remember that lg = Lg (D, ).

Let P, : Z§=u N Gnz™ Ef:o anz” be the usual Riesz projection
which is bounded on the spaces I#(T,m), 1 < p < oo. For a function
f € HP(T) (the usual Hardy space on T, see the introduction) write ffor
its holomorphic extension to the disk V. Define now, for 1 < p < oo,

A DT m) = P(L= M), f o (B
This operator is bounded for 1 < py < py < oo, and hence (Theorem 4.1 of
[2], see also [18]) it is bounded from L (T, m) to lp. But Hg = Lg N N+ =
{Pyf:f e Le(T,m)} and thus we get Ha|a C s, '
Censider the inverse inclusion. For a function f in the classical Hardy

space HP(D) on the unit disk, let bf be the boundary function in H? (T) C
LP(T). There exists a continuous interpolation operator Int from 71— |A\?|)
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to H?(D) (cf. e.g. [9]). Hence, the operator T : IP(1 — [X%]) — LP(T,m) de-
fined by T'(a) = b(Int(a)) is continuous. Again [2] shows that 7" is continuous
from lg to Ls(T,m) and hence it is continuous from lg to He, which shows
the inclusion lg C Ha) 4.

It remains to show the result for an arbitrary function & satisfying
(i)-(vi). Let s be as at the beginning of the proof. Define (t) = &(¢°).
In view of what has been proved before we get Hg = {z. Let now f € Hgp.
We have to show that Poaeall = X3S £ < oo. It is sufficient to do
this for the outer part F of f. Note that F has no zeros in I and thus we
can define g = F/9. Ag g € Hg we obtain gl € Iz and hence

2= IXN(F ) < S (- NNS(FN)]) = 2 (1-INDS(lg(M)]) < oo.

A€A AEA AEA

Conversely, suppose that a € I5. Define b(A) = a5, X € A. Then
b€ lz = Hgzla Hence there exists g € Hg such that g|4 = b. Let G be the
outer part of g, which is still in Hgz. This implies A = G* € Hg and

] = B = lg()I* < 1GNP =10, Ae 4.

In view of Corollary 2.3 we see that He| 4 is an ideal space, and this implies
the existence of f € My such that f|; =a. m

It is now clear that we may identify l5 = lia)-

Using again Corollary 2.3 and the fact that Ig is an ideal space, we get
the following result.

COROLLARY 3.2. Let ¢ satisfy (i)—(vi) and A = {Antns1 € D. Then A
is of free interpolation for He if and only if A € (C), and in this case we
have Hela = ls.

REMARK. The usual method (using the closed graph theorem) shows
that the description of the trace space Hg|y = Ig directly implies the norm
estimates of Lemma 2.1, from which one deduces the necessity of the Car-
leson condition. It is also clear that Hp|4 = g implies that the trace space
Map|a 1y ideal. Corollary 3.2 actually asserts that the a priori weaker con-
dition for Hgls to be an ideal space is already sufficient to have () and
hence Ha |4 = lp.

4. Finite unions of Carleson sequences. Let A = Uf__l Ay Ay € (C).
In [7] we have introduced the following notion of stability.

Derinrrion 4.1. Let X C Hol(ID). The space X is called (C)-stable if
for all pairs of Carleson sequences 4 = {Ap}n>1 and 4 = {A,}n>1 satisfying
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(5) sup b, (Aa)l < 1,
nzl

we have

(6) X(4) = X(A).

A sequence A satisfying (5) with 77 = sup, > |ba., (IR)L will be called 7-shifted
with respect to A (cf. also [22]).
It is a simple observation (cf. [23]) that
/P el Wk
1+n ~1—ju = 1-7n

loalp <n =

Hence if (5) is satisfied, then the weights (1 — [A2[}nz1 and (1—{A2|)n>1 are
equivalent and we get
Ha(4) = {a.c O 301~ PEDB(aal) < o0}
n>1
= {ae @ 3 (1= [R2)e(lanl) < 0} = Ha(d).
n>l
In order to describe the trace space of Hg on a finite union of Carleson

sequences we need divided differences with respect to the pseudohyperbolic
metric.

DeFNITION 4.2 ([21]). Let ¢ = {Agtaz1 C D and f : ¢ — C. Set
AR = (Xg, ..., M) and A*FD = (AB) X, 1), We define
ALFOE) = F(n),
fAz) = (M)
b)\l()\Q) ,
Akf(A(k-!—l)) — Al (zhk——lf()\(k:«wl)1 ))(/\ka Ak+1)-
By Ay we have H®Hg C Hg ([8]). But now all the conditions of The-

orem 1.4 of {7] are satisfied and we get the following Sobolev space type
description of Hs|.

AFOD)

COROLLARY 4.3. If ¢ satisfies the conditions (i)-(vi) and A = Ufil As
C B, A; € (C), then there esists a decomposition A = |J 5, 0n, on =

i t2l lon] < N (lon) is the cardinality of ov), such that

Hola={aeCh: 0~ PINS sup |4 1a(P)]) < oc},

n>1 =1,

where )\,(,,k) = (An1;-- o Angkc)-
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Eigenvalue problems with indefinite weight
by

ANDRZEJ SZULKIN (Stockholm)
and MICHEL WILLEM (Louvain-la-Neuve)

Abstract. We consider the linear eigenvalue problem —Au = M\V{z)u, u £ Dé'z(ﬂ),
and its nonlinear generalization —Apu = AV(z)|uf’ %u, v € Dé’p(ﬂ). The set {2 need
not be bounded, in particular, 2 = R is admitted. The weight function ¥V may change

sign and may have singular points. We show that there exists a sequence of eigenvalues
An — CO.

1. Introduction. In this paper we shall be concerned with the linear
eigenvalue problem

(1) —Au= MV (2)u, ueDy?(),
2 open in RY, N > 3, and its nonlinear generalization
(2) —Agu = AV(2)|ulP%u, u e DyF(N),

where Apu = div(|Vul|P~2Vu) is the p-Laplacian, 1 < p < N, and 2
is open in RM. Observe that {2 may be unbounded, and in particular, it
may be equal to RY. We assume that V € LL (2), V= V* -V~ (as
usual, VE(z) := max{+V(z),0}) and V1 =V} + Vg, where V3 € LV/P(2),
|£|PVa(z)} ~ 0 as |5| — oo and for each y € {2, |z — y|?Va(x) » Dasz — y
(in the linear case (1), p = 2 in the conditions on V'*). Under these hy-
potheses we show that (1) and (2) have a sequence of eigenvalues A, — oc.
This generalizes several earlier results. In particular, for 2 = RV it was
shown in [3, 4] that (1) has a principal eigenvalue X; if V is sufficiently
smooth and satisfies an appropriate condition at infinity, and in [1] exis-
tence of infinitely many eigenvalues A, — oo of (1) was established under
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