New examples of effective formulas for holomorphically contractible functions

by
MAREK JARNICKI (Kraków) and PETER PFLUG (Oldenburg)

Abstract

Let $G \subset \mathbb{C}^{n}$ and $B \subset \mathbb{C}^{m}$ be domains and let $\Phi: G \rightarrow B$ be a surjective holomorphic mapping. We characterize some cases in which invariant functions and pseudometrics on G can be effectively expressed in terms of the corresponding functions and pseudometrics on B.

0. Introduction. It is well known that holomorphically contractible families of functions or pseudometrics give very useful and powerful tools in complex analysis. Recall that a family $\left(d_{G}\right)_{G}$ of functions $d_{G}: G \times G \rightarrow$ \mathbb{R}_{+}(where G runs through all domains in \mathbb{C}^{n} with arbitrary n) is called holomorphically contractible if

- $\tanh d_{E}=$ the hyperbolic distance on the unit disc E,
- $d_{G_{2}}(F(a), F(z)) \leq d_{G_{1}}(a, z)$ for all $F \in \mathcal{O}\left(G_{1}, G_{2}\right)$ and $a, z \in G_{1}$.

A family $\left(\delta_{G}\right)_{G}$ of pseudometrics $\delta_{G}: G \times \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$(i.e. $\delta_{G}(a ; \lambda X)=$ $\left.|\lambda| \delta_{G}(a ; X), a \in G \subset \mathbb{C}^{n} \ni X, \lambda \in \mathbb{C}\right)$ is called holomorphically contractible if

- $\delta_{E}=$ the hyperbolic pseudometric on E,
- $\delta_{G_{2}}\left(F(a) ; F^{\prime}(a)(X)\right) \leq \delta_{G_{1}}(a ; X)$ for all $F \in \mathcal{O}\left(G_{1}, G_{2}\right)$ and $a \in G_{1} \subset$ $\mathbb{C}^{n_{1}} \ni X$.

For simplicity, each d_{G} (resp. δ_{G}) will be called an invariant function (resp. invariant pseudometric); cf. [Jar-Pfl].

Frequently, the following problem appears. We are given a holomorphically contractible family $\left(d_{G}\right)_{G}$ of functions (e.g. the family of the pluricomplex Green functions). We want to verify certain holomorphic properties of a domain G via corresponding properties of d_{G}. Consequently, we have to check whether d_{G} satisfies some conditions, e.g. whether d_{G} has a restricted
growth near the boundary. However, for a given domain G, it is in general difficult to describe d_{G} by an effective formula. Therefore, usually one could proceed as follows. First, we approximate G by more elementary domains G^{\prime} such that $d_{G^{\prime}}$ can be calculated. Next, using limit procedures, we try to estimate d_{G}. It is clear that what we need for such an approach is a large (up to a biholomorphic equivalence) class of "elementary" domains for which at least some of the invariant functions and pseudometrics can be calculated.

Recall that in the case of one complex variable the formulas are known only in the case of the unit disc or an annulus (cf. [Jar-Pfl], Ch. V). In the case of several variables the formulas are known for example for all norm balls in \mathbb{C}^{n} with transitive group of automorphisms (i.e. the unit polydisc E^{n}, the Euclidean ball \mathbb{B}_{n}, and the Lie ball \mathbb{L}_{n}; cf. [Jar-Pff], $\S 8.3$). Besides these classical domains, the only class for which effective descriptions of invariant functions are known, is the class of elementary Reinhardt domains of the form

$$
G:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{1}\right|^{\alpha_{1}} \cdot \ldots \cdot\left|z_{n}\right|^{\alpha_{n}}<1\right\}
$$

where $\alpha_{1}, \ldots, \alpha_{n}>0$ (cf. [Jar-Pfl], §4.4, [Pfl-Zwo], [Edi-Zwo 2]).
The aim of the paper is to generalize results of [Jar-Pfl] and to obtain a larger class of domains for which we can produce effective formulas. More precisely, suppose that $\Phi: G \rightarrow B$ is a surjective holomorphic mapping, where $B \subset \mathbb{C}^{m}$ is a domain for which d_{B} is known. We are interested (Theorem 1) in those cases in which

$$
d_{G}(a, z)=\left(d_{B}(\Phi(a), \Phi(z))\right)^{1 / r(a)},
$$

where $r(a):=\operatorname{ord}_{a}(\Phi-\Phi(a))$ denotes the order of vanishing. In the special case where $B=B_{1} \times \ldots \times B_{m}$ we also discuss (Proposition 3) some situations in which

$$
d_{G}(a, z)=\max \left\{\left(d_{B_{j}}\left(\Phi_{j}(a), \Phi_{j}(z)\right)\right)^{1 / r_{j}(a)}: j=1, \ldots, m\right\},
$$

where $r_{j}(a):=\operatorname{ord}_{a}\left(\Phi_{j}-\Phi_{j}(a)\right), j=1, \ldots, m$.
We also present (Propositions 4 and 5) some characterizations of proper and biholomorphic mappings between domains from Theorem 1.

1. Notation. Let $G \subset \mathbb{C}^{n}$ be a domain. We will consider the following invariant functions and pseudometrics (cf. [Jar-Pfi]).

The k th Möbius function:

$$
\begin{aligned}
m_{G}^{(k)}(a, z):=\sup \left\{|f(z)|^{1 / k}: f \in \mathcal{O}(G, E), \operatorname{ord}_{a} f \geq\right. & k\} \\
& a, z \in G, k \in \mathbb{N} .
\end{aligned}
$$

The k th Reiffen pseudometric:

$$
\begin{array}{r}
\gamma_{G}^{(k)}(a ; X):=\sup \left\{\left|\frac{1}{k!} f^{(k)}(a)(X)\right|^{1 / k}: f \in \mathcal{O}(G, E), \operatorname{ord}_{a} f \geq k\right\} \\
a \in G, X \in \mathbb{C}^{n}, k \in \mathbb{N} .
\end{array}
$$

The pluricomplex Green function with poles P and weights ν (cf. [Lel]):

$$
\begin{aligned}
g_{G}(P ; \nu ; z):=\sup \{u(z): \log u & \in \mathcal{P S H}(G,[-\infty, 0)), \\
\exists_{M>0}: u(w) & \left.\leq M\|w-a\|^{\nu(a)},(a, w) \in P \times G\right\}, \quad z \in G,
\end{aligned}
$$

where P is a finite subset of G, and $\nu: P \rightarrow(0, \infty)$.
The pluricomplex Green function:

$$
g_{G}(a, z):=g_{G}(\{a\} ; 1 ; z), \quad a, z \in G .
$$

The Azukawa pseudometric:

$$
A_{G}(a ; X):=\limsup _{0 \neq \lambda \rightarrow 0} \frac{g_{G}(a, a+\lambda X)}{|\lambda|}, \quad a \in G, X \in \mathbb{C}^{n}
$$

Let V be an analytic subset of an open set $\Omega \subset \mathbb{C}^{n}$. Recall that an upper semicontinuous function $u: V \rightarrow[-\infty, \infty)$ is said to be plurisubharmonic if for any holomorphic mapping $\phi: E \rightarrow V$ the function $u \circ \phi$ is subharmonic on E (cf. [For-Nar]).

We say that V has the plurisubharmonic Liouville property if any function plurisubharmonic and bounded from above on V is constant.

Observe that if V has the plurisubharmonic Liouville property, then V has the Liouville property, i.e. any function holomorphic and bounded on V is constant.
2. Main results. The main result of the paper is the following theorem.

Theorem 1. Let $\Omega \subset \mathbb{C}^{n}$ be open, $\Phi \in \mathcal{O}\left(\Omega, \mathbb{C}^{m}\right)(m<n)$, and let $B \subset$ $\Phi(\Omega)$ be a domain. Put $G:=\Phi^{-1}(B)$. For $a \in G$ let $r(a):=\operatorname{ord}_{a}(\Phi-\Phi(a))$. Assume that there exists a thin relatively closed subset S of B such that for any $\xi \in B \backslash S$,
(C1) $\Phi^{-1}(\xi)$ has the plurisubharmonic Liouville property,
(C2) $\exists_{a \in \Phi^{-1}(\xi)}: \operatorname{rank} \Phi^{\prime}(a)=m$.
Then G is a domain and the following formulas hold:
(a) We have

$$
\begin{align*}
& m_{G}^{(1)}(a, z)=m_{B}^{(1)}(\Phi(a), \Phi(z)), \quad a, z \in G, \tag{1}\\
& \gamma_{G}^{(1)}(a ; X)=\gamma_{B}^{(1)}\left(\Phi(a) ; \Phi^{\prime}(a)(X)\right), \quad a \in G, \quad X \in \mathbb{C}^{n} . \tag{2}
\end{align*}
$$

(b) If $a \in G$ is such that the analytic set dimension satisfies

$$
\begin{equation*}
\operatorname{dim}\left(\left\{X \in \mathbb{C}^{n}: \Phi^{(r)}(a)(X)=0\right\}\right)=n-m \tag{*}
\end{equation*}
$$

where $r:=r(a)$, then

$$
\left.\begin{array}{c}
m_{G}^{(k)}(a, z)=\left(m_{B}^{(\ell)}(\Phi(a), \Phi(z))\right)^{\ell / k}, \quad z \in G, \\
\gamma_{G}^{(k)}(a ; X)= \begin{cases}\left(\gamma_{B}^{(k / r)}\left(\Phi(a) ; \frac{1}{r!} \Phi^{(r)}(a)(X)\right)\right)^{1 / r} & \text { if } k / r \in \mathbb{N}, \\
0 & \text { if } k / r \notin \mathbb{N}\end{cases} \\
g_{G}(a, z)=\left(g_{B}(\Phi(a), \Phi(z))\right)^{1 / r}, \quad z \in G,
\end{array}\right\} \begin{aligned}
& \quad \begin{array}{l}
n \in \mathbb{N},
\end{array} \\
& A_{G}(a ; X)=\left(A_{B}\left(\Phi(a) ; \frac{1}{r!} \Phi^{(r)}(a)(X)\right)\right)^{1 / r}, \quad X \in \mathbb{C}^{n}, \tag{5}
\end{aligned}
$$

where $\ell=\ell(a, k):=\mu(k / r)$ and $\mu(t):=-($ the integer part of $(-t))$.
(c) If $P \subset G$ is a finite set such that $(*)$ is satisfied for every $a \in P$,
then

$$
\begin{equation*}
g_{G}(P ; \nu ;, z)=g_{B}(\Phi(P) ; \widetilde{\nu} ; \Phi(z)), \quad z \in G, \tag{7}
\end{equation*}
$$

where

$$
\widetilde{\nu}(\xi):=\max \left\{\nu(a) / r(a): a \in P \cap \Phi^{-1}(\xi)\right\}, \quad \xi \in \Phi(P)
$$

Conditions $(\mathrm{C} 1),(\mathrm{C} 2),(*)$ are always satisfied if $m=1$ and Φ is a primitive polynomial (cf. Remark 7). Consequently, if Φ is a primitive polynomial, then formulas (1)-(7) are true.

The proof of Theorem 1 will be given in $\S 3$.
Remark 2. (a) The case where Φ is a monomial and $B=E$ has been studied in [Jar-Pfl], §4.4, and [Edi-Zwo 2].
(b) If $\operatorname{rank} \Phi^{\prime}(a)=m$ or $m=1$, then $(*)$ is satisfied.
(c) If $(*)$ is not satisfied, then formulas (3)-(7) need not be true (cf. Proposition 3).

Let $\alpha_{j}=\left(\alpha_{j, 1}, \ldots, \alpha_{j, n}\right) \in\left(\mathbb{Z}_{+}\right)^{n} \backslash\{0\}, j=1, \ldots, m(m \geq 2)$, and

$$
G:=\left\{z \in \mathbb{C}^{n}:\left|z^{\alpha_{j}}\right|<1, j=1, \ldots, m\right\} .
$$

Fix an $a \in G$ with $a^{\alpha_{j}}=0, j=1, \ldots, m$. Assume that

$$
a=\left(a_{1}, \ldots, a_{s}, 0, \ldots, 0\right)
$$

with $a_{1} \ldots a_{s} \neq 0$ and $1 \leq s \leq n-1$. Put

$$
A:=\left[\alpha_{j, k}\right]_{\substack{j=1, \ldots, m \\
k=1, \ldots, n}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\right], \quad \widetilde{A}:=\left[\alpha_{j, k}\right]_{\substack{j=1, \ldots, m \\
k=s+1, \ldots, n}}=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right] .
$$

Notice that $r_{j}:=\operatorname{ord}_{a} z^{\alpha_{j}}=\left|\beta_{j}\right|>0, j=1, \ldots, m$.

Proposition 3. The following conditions are equivalent:

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{rank} \widetilde{A} \tag{i}
\end{equation*}
$$

(ii)

$$
g_{G}(a, z)=\max \left\{\left|z^{\alpha_{j}}\right|^{1 / r_{j}}: j=1, \ldots, m\right\}, \quad z \in G
$$

(iii)

$$
g_{G}(a, z)=\sup \left\{\left|z^{\alpha}\right|^{1 / r}: \alpha \in\left(\mathbb{Z}_{+}\right)^{n},\left|z^{\alpha}\right|<1 \text { in } G,\right.
$$

$$
\left.r=\operatorname{ord}_{a} z^{\alpha}>0\right\}, \quad z \in G
$$

(iv) $g_{G}\left(a,\left(z^{\prime}, \lambda z^{\prime \prime}\right)\right)=|\lambda| g_{G}(a, z), \quad z=\left(z^{\prime}, z^{\prime \prime}\right) \in G \subset \mathbb{C}^{s} \times \mathbb{C}^{n-s}, \lambda \in \bar{E}$;
(v) $\forall_{k \in \mathbb{N}}:\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in G: \limsup _{\theta \rightarrow 0+} \frac{1}{\theta} m_{G}^{(k)}\left(a,\left(z^{\prime}, \theta z^{\prime \prime}\right)\right)<\infty\right\}$ is not thin.

The proof of Proposition 3 will be given in $\S 4$.
Recall that a bounded domain $D \subset \mathbb{C}^{n}$ is called hyperconvex if it admits a negative plurisubharmonic exhaustion function.

Proposition 4. Let $\Omega_{j} \subset \mathbb{C}^{n_{j}}, \Phi_{j} \in \mathcal{O}\left(\Omega_{j}, \mathbb{C}^{m_{j}}\right)$, and $S_{j} \subset B_{j} \subset$ $\Phi_{j}\left(\Omega_{j}\right)$ be such that $\left(\Phi_{j}, B_{j}, S_{j}\right)$ satisfies (C1) and (C2) from Theorem 1 and B_{j} is bounded. Put $G_{j}:=\Phi_{j}^{-1}\left(B_{j}\right), j=1,2$, and let $F: G_{1} \rightarrow G_{2}$ be a holomorphic mapping. Then there exists a holomorphic mapping $\widetilde{F}: B_{1} \rightarrow$ B_{2} such that

$$
\Phi_{2} \circ F=\widetilde{F} \circ \Phi_{1}
$$

Moreover,

- if F is biholomorphic, then so is \widetilde{F};
- if $n_{1}=n_{2}=: n, m_{1}=m_{2}=: m, B_{1}$ is hyperconvex, and F is proper, then \widetilde{F} is proper.

The case where Φ_{j} is a monomial and $B_{j}=E, j=1,2$, has been studied in [Edi-Zwo 2].

Proposition 5. Let $\Phi_{j}=\left(Q_{j, 1}, \ldots, Q_{j, m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a homogeneous polynomial with $\operatorname{deg} Q_{j, 1}=\ldots=\operatorname{deg} Q_{j, m}=: d_{j} \geq 2$. Let $S_{j} \subset B_{j} \subset$ $\Phi_{j}\left(\mathbb{C}^{n}\right)$ be such that $\left(\Phi_{j}, B_{j}, S_{j}\right)$ satisfies $(\mathrm{C} 1)$ and $(\mathrm{C} 2)$ (for example, $m=1$ and Φ_{j} is a primitive homogeneous polynomial), B_{j} is bounded, and $0 \in B_{j}$. Put $G_{j}:=\Phi_{j}^{-1}\left(B_{j}\right), j=1,2$.
(a) If G_{1} and G_{2} are biholomorphic, then the following conditions are equivalent:
(i) for any biholomorphic mapping $F: G_{1} \rightarrow G_{2}$ we have $F(0)=0$;
(ii) $\operatorname{ord}_{a}\left(\Phi_{2}-\Phi_{2}(a)\right)<d_{2}$ for any $a \neq 0$.
(b) Assume additionally that B_{1} and B_{2} are balanced (consequently, G_{1} and G_{2} are balanced). Then the following conditions are equivalent:
(i) G_{1}, G_{2} are biholomorphic;
(ii) there is a linear isomorphism $L: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $L\left(G_{1}\right)=G_{2}$.

In particular, if $\Phi_{1}(z)=z^{\alpha}, \Phi_{2}(z)=z^{\beta}$ are primitive monomials, $G_{1}:=\left\{\left|z^{\alpha}\right|<1\right\}$, and $G_{2}:=\left\{\left|z^{\beta}\right|<1\right\}$, then G_{1} and G_{2} are biholomorphic iff $\alpha=\beta$ up to permutation (cf. [Edi-Zwo 2]).

The proofs of Propositions 4 and 5 will be given in $\S 5$.

3. Proof of Theorem 1

Proposition 6. (a) Let $D \subset \mathbb{C}^{d}$ be a domain having the plurisubharmonic Liouville property and let V be a connected pure d-dimensional analytic subset of $D \times \mathbb{C}^{n-d}$ such that the natural projection

$$
V \ni(z, w) \stackrel{\pi}{\mapsto} z \in D
$$

is proper. Then V has the plurisubharmonic Liouville property.
(b) Any connected pure d-dimensional algebraic subset of \mathbb{C}^{n} has the plurisubharmonic Liouville property.

Proof. (a) We may assume that V is irreducible. Let u be plurisubharmonic on V with $c_{0}:=\sup _{V} u<\infty$. Define

$$
\widetilde{u}(z):=\max \{u(z, w):(z, w) \in V\}, \quad z \in D
$$

Using the standard methods (cf. [For-Nar], the proof of Lemma 5.1), we prove that $\widetilde{u} \in \mathcal{P S H}(D)$. Since D has the plurisubharmonic Liouville property, $\widetilde{u}=\mathrm{const}=c_{0}$.

To prove that $u \equiv$ const it suffices to show that $u=c_{0}$ on a dense subset of V. Let $\Delta \subset D$ be an analytic set such that $\pi: V \backslash \pi^{-1}(\Delta) \rightarrow D \backslash \Delta$ is a holomorphic covering. We show that $u=c_{0}$ on $V_{0}:=V \backslash \pi^{-1}(\Delta)$. Notice that $V_{0}=\operatorname{Reg}(V) \backslash \pi^{-1}(\Delta)$, where $\operatorname{Reg}(V)$ denotes the set of all regular points of V. We know that $\operatorname{Reg}(V)$ is connected (because V is irreducible). Thus V_{0} is connected.

Let $\widetilde{V}_{0}:=\left\{(z, w) \in V_{0}: u(z, w)=c_{0}\right\}$. Then $\widetilde{V}_{0} \neq \emptyset$ and \widetilde{V}_{0} is closed in V_{0}. Moreover, by the maximum principle, \widetilde{V}_{0} is open. Thus $\widetilde{V}_{0}=V_{0}$, i.e. $u=c_{0}$ on V_{0}.
(b) follows from (a) and the fact that for an algebraic subset V of \mathbb{C}^{n}, after a linear change of coordinates, the projection π is proper; cf. [Chi].

Remark 7. (a) Recall that a polynomial P of n complex variables is primitive iff P cannot be represented in the form $P=f(Q)$, where f is a polynomial of one complex variable of degree ≥ 2 and Q is a polynomial of n complex variables (cf. [Cyg]).

In particular, a homogeneous polynomial P is primitive iff P cannot be written as $P=Q^{p}$, where $p \geq 2$ and Q is a homogeneous polynomial.

A monomial z^{α}, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}, n \geq 2$, is primitive iff the numbers $\alpha_{1}, \ldots, \alpha_{n}$ are relatively prime.
(b) It is known (cf. [Cyg]) that if P is a primitive polynomial, then the fibers $P^{-1}(\xi)$ are connected except for a finite number of ξ.
(c) If P is a polynomial, then the set $P\left(\left\{z \in \mathbb{C}^{n}: P^{\prime}(z)=0\right\}\right)$ is finite.
(d) Properties (b) and (c) and Proposition 6(b) show that if Φ is a primitive polynomial, then (C1), (C2) are satisfied with a finite set $S \subset B$.
(e) Let $\Phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}(m<n)$,
$\Phi\left(z_{1}, \ldots, z_{m}, z_{m+1}, \ldots, z_{n}\right)=\Phi\left(z_{1}, \ldots, z_{m}, z^{\prime}\right):=\left(z_{1}\left(z^{\prime}\right)^{\beta_{1}}, \ldots, z_{m}\left(z^{\prime}\right)^{\beta_{m}}\right)$,
where $\beta_{1}, \ldots, \beta_{m} \in\left(\mathbb{Z}_{+}\right)^{n-m}$. Then for any $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in\left(\mathbb{C}_{*}\right)^{m}$ $\left(\mathbb{C}_{*}:=\mathbb{C} \backslash\{0\}\right)$ we have the global parametrization

$$
\left(\mathbb{C}_{*}\right)^{n-m} \ni \lambda \mapsto\left(\xi_{1} / \lambda^{\beta_{1}}, \ldots, \xi_{m} / \lambda^{\beta_{m}}, \lambda\right) \in \Phi^{-1}(\xi) .
$$

Hence, (C1) and (C2) are satisfied with $S:=\left\{\left(\xi_{1}, \ldots, \xi_{m}\right): \xi_{1} \cdot \ldots \cdot \xi_{m}\right.$ $=0\}$.

Proof of Theorem 1. First we prove that G is a domain. Observe that

$$
G=\Phi^{-1}(B \backslash S) \cup \Phi^{-1}(S)=: G_{0} \cup S_{0}
$$

Since S_{0} is a thin relatively closed subset of G, it suffices to prove that G_{0} is a domain. Suppose that $G_{0}=U_{1} \cup U_{2}$, where U_{1}, U_{2} are open, disjoint, and non-empty. Let $B_{j}:=\left\{\xi \in B \backslash S: \Phi^{-1}(\xi) \subset U_{j}\right\}, j=1,2$. By (C1) we have $B_{1} \cup B_{2}=B \backslash S$. Obviously, B_{1}, B_{2} are disjoint and non-empty. Fix $\xi^{0} \in B_{j}$. By (C2) there exists $a \in \Phi^{-1}\left(\xi^{0}\right)$ such that $\operatorname{rank} \Phi^{\prime}(a)=$ m. We may assume that $\operatorname{rank}\left[\partial \Phi_{j} / \partial z_{n-m+k}(a)\right]_{j, k=1, \ldots, m}=m$. By the implicit mapping theorem, the equation $\Phi\left(z^{\prime}, z^{\prime \prime}\right)=\xi$ (where $\left(z^{\prime}, z^{\prime \prime}\right) \in$ $\left.\mathbb{C}^{n-m} \times \mathbb{C}^{m}\right)$ is equivalent in a neighborhood of $\left(a, \xi^{0}\right)$ to $z^{\prime \prime}=\phi\left(z^{\prime}, \xi\right)$, where ϕ is holomorphic. In particular, $\left(a^{\prime}, \phi\left(a^{\prime}, \xi\right)\right) \in U_{j} \cap \Phi^{-1}(\xi)$ for ξ in a neighborhood W of ξ_{0}. Hence, by (C1), $W \subset B_{j}$. Consequently, B_{j} is open, $j=1,2$; a contradiction.

Formulas (2), (4), and (6) follow from (1), (3) and (5), respectively, and from properties of $\gamma_{G}^{(k)}$ and A_{G} (cf. [Jar-Pf1], §4.2). Formula (5) follows from (7). In formulas (1), (3), and (7) the inequalities \geq follow directly from the definitions. Therefore we only need to prove the opposite inequalities.

Let $f \in \mathcal{O}(G, E), \operatorname{ord}_{a} f \geq k$. By (C1) there exists a function \tilde{f} : $B \backslash S \rightarrow E$ such that $f=\tilde{f} \circ \Phi$ on $G \backslash \Phi^{-1}(S)$. Condition (C2) and the implicit mapping theorem imply that $\widetilde{f} \in \mathcal{O}(B \backslash S)$. Now, by the Riemann theorem, \tilde{f} extends holomorphically to B (we denote the extension by the same symbol) and $f=\tilde{f} \circ \Phi$ in G. Obviously, $\widetilde{f}(\Phi(a))=0$. In particular, if $k=1$, then we get (1).

Assume that (*) is satisfied.

Let L be an m-dimensional vector subspace of \mathbb{C}^{n} such that

$$
L \cap\left\{X \in \mathbb{C}^{n}: \Phi^{(r)}(a)(X)=0\right\}=\{0\}
$$

It is clear that there exist $\varrho>0$ and $C>0$ such that
(+)

$$
\|\Phi(a+X)-\Phi(a)\| \geq C\|X\|^{r}, \quad X \in L \cap B(\varrho)
$$

Now one can easily prove that there exist neighborhoods $U \subset B(\varrho)$ of 0 and $V \subset \mathbb{C}^{m}$ of $\Phi(a)$ such that the mapping $L \cap U \ni X \mapsto \Phi(a+X) \in V$ is proper (in particular, surjective).

For $\xi \in V$ let $X(\xi) \in L \cap U$ be such that $\Phi(a+X(\xi))=\xi$. Then, by (+), we get

$$
\begin{aligned}
|\widetilde{f}(\xi)| & =|f(a+X(\xi))| \leq \mathrm{const}\|X(\xi)\|^{k} \leq \mathrm{const}\|\Phi(a+X(\xi))-\Phi(a)\|^{k / r} \\
& =\mathrm{const}\|\xi-\Phi(a)\|^{k / r}, \quad \xi \in V .
\end{aligned}
$$

Hence $\operatorname{ord}_{\Phi(a)} \tilde{f} \geq \mu(k / r)$, and therefore,

$$
m_{B}^{(\ell)}(\Phi(a), \Phi(z)) \geq|\widetilde{f}(\Phi(z))|^{1 / \ell}=|f(z)|^{1 / \ell}
$$

which implies that

$$
m_{B}^{(\ell)}(\Phi(a), \Phi(z)) \geq\left(m_{G}^{(k)}(a, z)\right)^{k / \ell}
$$

and so the proof of (1) and (3) is complete.
We turn to the proof of (7). Let $u: G \rightarrow[0,1)$ be such that $\log u \in$ $\mathcal{P S H}(G)$ and $u(w) \leq M\|w-a\|^{\nu(a)}$ for any $(a, w) \in P \times G$. By (C1) there exists a function $\widetilde{u}: B \backslash S \rightarrow[0,1)$ such that $u=\widetilde{u} \circ \Phi$ on $G \backslash \Phi^{-1}(S)$. Condition (C2) and the implicit mapping theorem imply that $\log \widetilde{u} \in \mathcal{P S H}(B \backslash S)$. Now, by the Riemann type theorem for plurisubharmonic functions, \widetilde{u} extends to a log-plurisubharmonic function on B (we denote the extension by the same symbol). By the identity principle for plurisubharmonic functions we get $u=\widetilde{u} \circ \Phi$ in G.

Fix $a \in P$, let $r:=r(a), \nu:=\nu(a)$, and let $X(\xi), \xi \in V$, be as above. Then

$$
\begin{aligned}
\widetilde{u}(\xi) & =u(a+X(\xi)) \leq M\|X(\xi)\|^{\nu} \leq \mathrm{const}\|\Phi(a+X(\xi))-\Phi(a)\|^{\nu / r} \\
& =\mathrm{const}\|\xi-\Phi(a)\|^{\nu / r}, \quad \xi \in V .
\end{aligned}
$$

Hence

$$
\widetilde{u}(\xi) \leq \widetilde{M}\left|\xi-\xi_{0}\right|^{\widetilde{\nu}\left(\xi_{0}\right)}, \quad\left(\xi_{0}, \xi\right) \in \Phi(P) \times B
$$

Thus

$$
g_{B}(\Phi(P) ; \widetilde{\nu} ; \Phi(z)) \geq \widetilde{u}(\Phi(z))=u(z),
$$

which implies that

$$
g_{B}(\Phi(P) ; \widetilde{\nu} ; \Phi(z)) \geq g_{G}(P ; \nu ; z)
$$

The last part of the theorem follows from Remark 7(d).
4. Proof of Proposition 3. $(\mathrm{i}) \Rightarrow$ (ii). Let

$$
L(z):=g_{G}(a, z), \quad R(z):=\max \left\{\left|z^{\alpha_{j}}\right|^{1 / r_{j}}: j=1, \ldots, m\right\}, \quad z \in G
$$

The inequality $L \geq R$ follows from the definition of g_{G}. To prove that $L \leq R$ it suffices to show that $L(z) \leq R(z)$ for any $z \in G_{0}:=G \cap\left(\left(\mathbb{C}_{*}\right)^{s} \times \mathbb{C}^{n-s}\right)$.

By (i), for any $k=1, \ldots, s$, the system of equations

$$
\alpha_{j, s+1} x_{s+1}+\ldots+\alpha_{j, n} x_{n}=-\alpha_{j, k}, \quad j=1, \ldots, m
$$

has a rational solution $\left(Q_{s+1, k} / \mu_{k}, \ldots, Q_{n, k} / \mu_{k}\right)$ with $Q_{s+1, k}, \ldots, Q_{n, k} \in \mathbb{Z}$, $\mu_{k} \in \mathbb{N}$. Put $Q_{k, k}:=\mu_{k}$ and $Q_{j, k}:=0, j, k=1, \ldots, s, j \neq k$. Then

$$
\alpha_{j, 1} Q_{1, k}+\ldots+\alpha_{j, n} Q_{n, k}=0, \quad j=1, \ldots, m, k=1, \ldots, s
$$

Let

$$
Q_{j}:=\left(Q_{j, 1}, \ldots, Q_{j, s}\right) \in \mathbb{Z}^{s}, \quad j=1, \ldots, n .
$$

Define $F:\left(\mathbb{C}_{*}\right)^{s} \times \mathbb{C}^{n-s} \rightarrow\left(\mathbb{C}_{*}\right)^{s} \times \mathbb{C}^{n-s}$ by

$$
\begin{aligned}
F(\xi, \eta):= & \left(\xi^{Q_{1}}, \ldots, \xi^{Q_{s}}, \xi^{Q_{s+1}} \eta_{1}, \ldots, \xi^{Q_{n}} \eta_{n-s}\right) \\
= & \left(\xi_{1}^{\mu_{1}}, \ldots, \xi_{s}^{\mu_{s}}, \xi^{Q_{s+1}} \eta_{1}, \ldots, \xi^{Q_{n}} \eta_{n-s}\right) \\
& \quad(\xi, \eta)=\left(\xi_{1}, \ldots, \xi_{s}, \eta_{1}, \ldots, \eta_{n-s}\right) \in\left(\mathbb{C}_{*}\right)^{s} \times \mathbb{C}^{n-s} .
\end{aligned}
$$

Observe that F is surjective. Indeed, for $z=\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathbb{C}_{*}\right)^{s} \times \mathbb{C}^{n-s}$, take an arbitrary $\xi_{j} \in\left(z_{j}\right)^{1 / \mu_{j}}, j=1, \ldots, s$, and define $\eta_{j}:=z_{s+j} / \xi^{Q_{s+j}}$, $j=1, \ldots, n-s$.

Moreover, if $z=F(\xi, \eta)$, then by (\dagger) we get

$$
z^{\alpha_{j}}=\xi^{\alpha_{j, 1} Q_{1}+\ldots+\alpha_{j, n} Q_{n}} \eta^{\beta_{j}}=\eta^{\beta_{j}}, \quad j=1, \ldots, m .
$$

Let

$$
D:=\left\{\eta \in \mathbb{C}^{n-s}:\left|\eta^{\beta_{j}}\right|<1, j=1, \ldots, m\right\}
$$

Using (\ddagger) we get the equality $F\left(\left(\mathbb{C}_{*}\right)^{s} \times D\right)=G_{0}$.
Fix a $\xi_{0} \in\left(\mathbb{C}_{*}\right)^{s}$ such that $a=F\left(\xi_{0}, 0\right)$. Then, for any $z=F(\xi, \eta) \in G_{0}$, we have

$$
\begin{aligned}
g_{G}(a, z) & =g_{G}\left(F\left(\xi_{0}, 0\right), F(\xi, \eta)\right) \\
& \leq g_{\left(\mathbb{C}_{*}\right)^{s} \times D}\left(\left(\xi_{0}, 0\right),(\xi, \eta)\right)=g_{D}(0, \eta) \\
& =\max \left\{\left|\eta^{\beta_{j}}\right|^{1 / r_{j}}: j=1, \ldots, m\right\} \\
& =\max \left\{\left|z^{\alpha_{j}}\right|^{1 / r_{j}}: j=1, \ldots, m\right\} .
\end{aligned}
$$

The implications $(\mathrm{ii}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{iv}) \Rightarrow(\mathrm{v})$ are trivial.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$. Suppose that $\operatorname{rank} \widetilde{A}<\operatorname{rank} A$. We may assume that

$$
2 \leq t:=\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{t}
\end{array}\right], \quad \operatorname{rank}\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{t}
\end{array}\right]<t
$$

Then there exist $c_{1}, \ldots, c_{t} \in \mathbb{Z}$ such that $c_{1} \beta_{1}+\ldots+c_{t} \beta_{t}=0$ and $\left|c_{1}\right|+$ $\ldots+\left|c_{t}\right|>0$. We may assume that $c_{1}, \ldots, c_{u} \geq 0, c_{u+1}, \ldots, c_{t}<0$ for some $1 \leq u \leq t-1$. Let

$$
\begin{aligned}
d & :=a^{c_{1} \alpha_{1}+\ldots+c_{t} \alpha_{t}} \\
r & :=c_{1} r_{1}+\ldots+c_{u} r_{u}=-\left(c_{u+1} r_{u+1}+\ldots+c_{t} r_{t}\right), \\
f(z) & :=\frac{z^{c_{1} \alpha_{1}+\ldots+c_{u} \alpha_{u}}-d z^{-\left(c_{u+1} \alpha_{u+1}+\ldots+c_{t} \alpha_{t}\right)}}{1+|d|}, \quad z \in G .
\end{aligned}
$$

Observe that $f \in \mathcal{O}(G, E), \operatorname{ord}_{a} f \geq r+1$, and $f \not \equiv 0$ (because $\alpha_{1}, \ldots, \alpha_{t}$ are linearly independent). Fix $b=\left(b^{\prime}, b^{\prime \prime}\right) \in G \subset \mathbb{C}^{s} \times \mathbb{C}^{n-s}$ with $f(b) \neq 0$. Observe that $f\left(b^{\prime}, \theta b^{\prime \prime}\right)=\theta^{r} f(b), 0 \leq \theta \leq 1$. Thus we get

$$
\begin{aligned}
\frac{1}{\theta} m_{G}^{(r+1)}\left(a,\left(b^{\prime}, \theta b^{\prime \prime}\right)\right) & \geq \frac{1}{\theta}\left|f\left(b^{\prime}, \theta b^{\prime \prime}\right)\right|^{1 /(r+1)} \\
& =\theta^{-1 /(r+1)}|f(b)|^{1 /(r+1)} \underset{\theta \rightarrow 0+}{\longrightarrow} \infty
\end{aligned}
$$

a contradiction.

5. Proofs of Propositions 4 and 5

Proof of Proposition 4. By (C1) (for $\left(\Phi_{1}, B_{1}, S_{1}\right)$) there exists a mapping $\widetilde{F}: B_{1} \backslash S_{1} \rightarrow B_{2}$ such that $\Phi_{2} \circ F=\widetilde{F} \circ \Phi_{1}$. By (C2), \widetilde{F} is holomorphic. The Riemann extension theorem implies that \widetilde{F} extends holomorphically to a mapping $\widetilde{F}: B_{1} \rightarrow \bar{B}_{2}$ (we use the same symbol for the extension). By the identity principle we have $\Phi_{2} \circ F=\widetilde{F} \circ \Phi_{1}$ on B_{1}. In particular, $\widetilde{F}: B_{1} \rightarrow B_{2}$.

It is clear that if F is biholomorphic, then so is \widetilde{F}.
Now, assume that B_{1} is hyperconvex and F is proper. Since F is proper, there exists $b \in G_{2}$ such that

- $\Phi_{2}^{\prime}(b) \neq 0$,
- $\operatorname{rank} F^{\prime}(a)=n$ for any $a \in P:=F^{-1}(b)$ (note that P is finite),
- $\operatorname{rank} \Phi_{1}^{\prime}(a)=m$ for any $a \in P$.

By (7) and [Lár-Sig] (see also [Edi-Zwo 1]) we get

$$
\begin{aligned}
\prod_{\xi_{0} \in \Phi_{1}(P)} g_{B_{1}}\left(\xi_{0}, \Phi_{1}(z)\right) & \leq g_{B_{1}}\left(\Phi_{1}(P) ; 1 ; \Phi_{1}(z)\right) \\
& =g_{G_{1}}(P ; 1 ; z)=g_{G_{2}}(\{b\} ; 1 ; F(z)) \\
& =g_{G_{2}}(b, F(z))=g_{B_{2}}\left(\Phi_{2}(b), \Phi_{2}(F(z))\right) \\
& =g_{B_{2}}\left(\Phi_{2}(b), \widetilde{F}\left(\Phi_{1}(z)\right)\right), \quad z \in G_{1}
\end{aligned}
$$

Hence, since B_{1} is hyperconvex, we obtain

$$
\liminf _{\xi \rightarrow \partial B_{1}} g_{B_{2}}\left(\Phi_{2}(b), \widetilde{F}(\xi)\right) \geq 1,
$$

which implies that \widetilde{F} is proper.

Remark 8. Under the assumptions of Proposition 4 let $F: G_{1} \rightarrow G_{2}$ be biholomorphic. Let $\xi \in B_{1}$ and let $\eta:=\widetilde{F}(\xi)$. Then $\Phi_{1}^{-1}(\xi)$ satisfies (C1) (resp. (C2)) iff $\Phi^{-1}(\eta)$ satisfies (C1) (resp. (C2)).

In particular, a set $S_{1} \subset B_{1}$ is singular for $\left(\Phi_{1}, B_{1}\right)$ iff $\widetilde{F}\left(S_{1}\right)$ is singular for $\left(\Phi_{2}, B_{2}\right)$.

Moreover, for any $a \in G_{1}$ we have

$$
\operatorname{ord}_{a}\left(\Phi_{1}-\Phi_{1}(a)\right)=\operatorname{ord}_{F(a)}\left(\Phi_{2}-\Phi_{2}(F(a))\right) .
$$

REmark 9. Observe that if Q is a homogeneous polynomial of n complex variables and $Q^{(k)}(a)=0$, then by the Euler identity, $Q^{(k-1)}(a)=0$, $\ldots, Q(a)=0$.

Let $Q=\left(Q_{1}, \ldots, Q_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a homogeneous polynomial mapping with $\operatorname{deg} Q_{1}=\ldots=\operatorname{deg} Q_{m}=: d \geq 2$,

$$
Q(z)=\sum_{|\alpha|=d} a_{\alpha} z^{\alpha}
$$

Then the following conditions are equivalent:

$$
\begin{gather*}
\exists_{a \in \mathbb{C}^{n} \backslash\{0\}}: Q(z+a)=Q(z), z \in \mathbb{C}^{n} ; \tag{i}\\
\exists_{a \in \mathbb{C}^{n} \backslash\{0\}}: \operatorname{ord}_{a}(Q-Q(a))=d ; \tag{ii}\\
\exists_{a \in \mathbb{C}^{n} \backslash\{0\}}: Q^{(d-1)}(a)=0 ; \\
\operatorname{rank}\left[\left(\beta+e_{k}\right)!a_{j, \beta+e_{k}}\right]_{|\beta|=d-1, j=1, \ldots, m}<n,
\end{gather*}
$$

where

$$
e_{k}:=(0, \ldots, 0, \underset{k \text { th position }}{1}, 0, \ldots, 0), \quad k=1, \ldots, n .
$$

Moreover, conditions (i), (ii), and (iii) are also equivalent when the point a is fixed.

Proof of Proposition 5. (a) Suppose that $F_{0}: G_{1} \rightarrow G_{2}$ is a fixed biholomorphic mapping.

Assume that (i) holds (in particular, $\left.F_{0}(0)=0\right)$ and suppose that $\operatorname{ord}_{a}\left(\Phi_{2}-\Phi_{2}(a)\right)=d_{2}$ for some $a \neq 0$. We may assume that $a \in G_{2}$. Hence, by Remark 9, the translation $z \stackrel{T}{\mapsto} z+a$ maps G_{2} onto G_{2}. Then $F:=T \circ F_{0}: G_{1} \rightarrow G_{2}$ is a biholomorphic mapping with $F(0)=T(0)=$ $a \neq 0$; a contradiction.

Now, assume that (ii) holds and suppose that $F: G_{1} \rightarrow G_{2}$ is a biholomorphic mapping with $a:=F(0) \neq 0$. Then, by Remark 8 , we get

$$
\begin{aligned}
\operatorname{ord}_{a}\left(\Phi_{2}-\Phi_{2}(a)\right) & =\operatorname{ord}_{0} \Phi_{1}=d_{1} \\
& \geq \operatorname{ord}_{F^{-1}(0)}\left(\Phi_{1}-\Phi_{1}\left(F^{-1}(0)\right)\right)=\operatorname{ord}_{0} \Phi_{2}=d_{2}
\end{aligned}
$$

a contradiction.
(b) It is known (cf. [Jar-Pfl], Corollary 3.5.7) that if $F(0)=0$, then the mapping $L:=e^{i \vartheta} F^{\prime}(0)$ (with a suitable $\vartheta \in \mathbb{R}$) satisfies the required condition.

Assume that $a:=F(0) \neq 0$. Then by (a) we have $\operatorname{ord}_{a}\left(\Phi_{2}-\Phi_{2}(a)\right)=d_{2}$. Hence, by Remark 9, the translation $z \stackrel{T}{\mapsto} z+a$ maps G_{2} onto G_{2}. Taking $T \circ F$, we reduce the problem to the case $F(0)=0$.

Acknowledgements. The authors thank P. Tworzewski for helpful discussions.

References

[Chi] E. M. Chirka, Complex Analytic Sets, Kluwer, 1989.
[Cyg] E. Cygan, Factorization of polynomials, Bull. Polish Acad. Sci. Math. 40 (1992), 45-52.
[Edi-Zwo 1] A. Edigarian and W. Zwonek, Invariance of the pluricomplex Green function under proper mappings with applications, Complex Variables 35 (1998), 367-380.
[Edi-Zwo 2] —, 一, Proper holomorphic mappings in some class of unbounded domains, Kodai Math. J., to appear.
[For-Nar] J. E. Fornæss and R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47-72.
[Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math. 9, Walter de Gruyter, 1993.
[Lár-Sig] F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, preprint.
[Lel] P. Lelong, Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl. 68 (1989), 319-347.
[Pfl-Zwo] P. Pflug and W. Zwonek, Effective formulas for invariant functions-case of elementary Reinhardt domains, Ann. Polon. Math. 69 (1998), 175-196.

Institute of Mathematics
Jagiellonian University Reymonta 4
30-059 Kraków, Poland
E-mail: jarnicki@im.uj.edu.pl

Carl von Ossietzky Universität Oldenburg
Fachbereich Mathematik
Postfach 2503
D-26111 Oldenburg, Germany
E-mail: pflug@mathematik.uni-oldenburg.de

