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Asymptotics for multifractal conservation laws

by

P I O T R B I L E R (Wroc law), G R Z E G O R Z K A R C H (Wroc law) and
W O J B O R A. W O Y C Z Y N S K I (Cleveland, Ohio)

Abstract. We study asymptotic behavior of solutions to multifractal Burgers-type
equation ut + f(u)x = Au, where the operator A is a linear combination of fractional
powers of the second derivative −∂2/∂x2 and f is a polynomial nonlinearity. Such equa-
tions appear in continuum mechanics as models with fractal diffusion. The results include
decay rates of the Lp-norms, 1 ≤ p ≤ ∞, of solutions as time tends to infinity, as well as
determination of two successive terms of the asymptotic expansion of solutions.

1. Motivation and results. The goal of this paper is to study the
large-time behavior of solutions of the Cauchy problem for a class of equa-
tions, called here multifractal conservation laws:

(1.1) ut + f(u)x = Au,

where x ∈ R, t ≥ 0, u : R × R
+ → R, f(u) is a polynomially bounded

nonlinear term, and

(1.2) A = c0
∂2

∂x2
−

N∑

j=1

cj

(
−

∂2

∂x2

)αj/2

,

with c0, cj ≥ 0, is the diffusion operator including fractional powers of order
αj/2, 0 < αj < 2, of the square root of the second derivative with respect
to x, related to Lévy stochastic processes (see, e.g., [26], [15]). The problem
(1.1)–(1.2) is a generalization of the one-dimensional Burgers equation (see,
e.g., [6])

(1.3) ut + 2uux = uxx.

The classical Burgers equation (1.3) has been used in various physical
contexts, where shock creation is an important phenomenon. These appli-
cations vary from growth of molecular interfaces ([14]), through simplified
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hydrodynamic models ([1]), to the mass distribution in the large scale of the
Universe ([18]). For a general overview, see [25], and [29] for the Burgers
turbulence problem.

Nonlocal Burgers-type equations similar to (1.1)–(1.2) appeared as
model equations simplifying the multidimensional Navier–Stokes system
with modified dissipativity ([1]), describing hereditary effects for nonlinear
acoustic waves ([27]), and modeling interfacial growth mechanisms which
would include trapping surface effects ([17], [28]). A variety of physically
motivated linear fractal differential equations with applications to hydro-
dynamics, statistical physics and molecular biology can be found in [21]
and [24]. An introduction to the fractional derivatives calculus and frac-
tal relaxation models are in [20]. Nonlinear wave equations with fractional
derivatives terms describing dispersive effects have been used and rigorously
studied even earlier than those with fractal diffusion (see, e.g., [22], [19], [5]
and [8]).

The well-known Hopf–Cole formula permits one to simplify the classical
Burgers equation (1.3) reducing it to the linear heat equation. This leads,
e.g., to a rapid determination of large time asymptotics of solutions to (1.3)
described by source-type solutions (see comments below Theorem 1.1). Such
a simplification is no longer available when nonlocal equations (1.1) are
studied.

The recent paper [2] dealt with basic mathematical issues of existence,
uniqueness and asymptotics of solutions to multidimensional versions of
(1.1) with purely fractal diffusion. The methods used there include weak so-
lutions and energy estimates, mild solutions approach in Morrey and Besov
spaces and a self-similar solution analysis.

Our aim in this paper is to describe the long time behavior of solutions to
(1.1) in a manner more precise than the one employed in [2]. In particular,
we study the influence of various dissipative terms −(−∂2/∂x2)αj/2u in (1.1)
on time asymptotics of solutions; the latter turns out to be different from
that for the usual Brownian diffusion described by the term uxx.

The technical tools used here include those applied in [30] and [7] to
parabolic type equations, and those developed in [13] for a completely dif-
ferent class of equations featuring dispersive effects as well as dissipation.
We expect that these versatile methods would be useful in a further study
of nonlinear Markov processes and propagation of chaos associated with
fractal Burgers equation (see [12]). There, as well as in [4] and [3], the
reader may find more motivations to study stochastic aspects of nonlocal
evolution equations with fractal diffusion, and their finite particle systems
approximations.

To focus attention on an equation simpler than (1.1), consider the Cauchy
problem for the fractal Burgers-type equation
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(1.4) ut − uxx + Dαu + 2uux = 0

with initial condition

(1.5) u(x, 0) = u0(x),

where Dα = (−∂2/∂x2)α/2 is the fractional symmetric derivative of order

α ∈ (0, 2) defined via the Fourier transform by ̂(Dαv)(ξ) = |ξ|αv̂(ξ), and the
nonlinear term corresponds to f(u) = u2. Note that the fractional derivative
∂α/∂xα studied in [20], [21] has a different meaning than our Dα. Equation
(1.4) is, however, representative of the general class of equations (1.1) with
Brownian diffusion, one (N = 1) fractal diffusion term and a genuinely
nonlinear f such that f(0) = f ′(0) = 0, f ′′(0) 6= 0. Indeed, scaling u, x, and
t, we may get rid of all unimportant constants c0, c1, f

′′(0). Comments on
the general case with N ≥ 2 and polynomially bounded nonlinearities f can
be found in the last Section 6.

Our functional framework for (1.1) is that of Lebesgue Lp(R) spaces.
However, there are other, more general, function spaces suitable for studying
(1.1) (see e.g. [2]), and we refer the reader to [9] for a recent work on the
classical Burgers equation (1.3) with irregular initial data.

The results of the paper give the first two terms of the large-time asymp-
totics for the solutions of (1.4)–(1.5) and can be summarized as follows.

Theorem 1.1. Let 0 < α < 2. Assume that u is a solution to the Cauchy
problem (1.4)–(1.5) with u0 ∈ L1(R) ∩ L∞(R). For every p ∈ [1,∞] there
exists a constant C such that

(1.6) ‖u(t)− etA ∗ u0‖p ≤ C





t−(1−1/p)/α−2/α+1 for 1 < α < 2,
t−(1−1/p)/α−1/α log(1 + t) for α = 1,
t−(1−1/p)/α−1/α for 0 < α < 1,

for all t > 0. Here etA denotes the (integral kernel of the) semigroup gener-
ated by the operator A = ∂2/∂x2 −Dα, so that v = etA ∗u0 solves the linear
equation vt = vxx − Dαv with the initial condition v(0) = u0.

In other words, the first term of the asymptotic expansion of solution is
given by the solution to the linear equation. Note (see e.g. [11]) that the
asymptotics of solutions to the Cauchy problem for the Burgers equation
(1.3) is described by the relation

t(1−1/p)/2‖u(·, t) − UM (·, t)‖p → 0 as t → ∞,

where

UM (x, t) = t−1/2 exp(−x2/(4t))

(
K +

1

2

x/(2
√

t)\
0

exp(−ξ2/4) dξ

)−1
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is the so-called source solution such that
T
R

UM (x, 1) dx = M (to each M > 0
there corresponds a constant K). Thus, the long time behavior of solutions
to the classical Burgers equation is genuinely nonlinear, i.e., it is not deter-
mined by the asymptotics of the linear heat equation.

The second term of the asymptotics of a solution u to (1.4) has a different
form in each of the three cases: 1 < α < 2, α = 1 and 0 < α < 1.

Theorem 1.2. Assume that u0 ∈ L1(R) ∩ L∞(R) and that p ∈ [1,∞].

(i) If 1 < α < 2 then

(1.7) t(1−1/p)/α+2/α−1
∥∥∥u(t)−etA∗u0 +

t\
0

∂xpα(t−τ)∗(Mpα(τ))2 dτ
∥∥∥

p
→ 0

as t → ∞, where M =
T
R

u0(x) dx and

(1.8) pα(x, t) = (2π)−1/2
\
R

e−t|ξ|α+ixξ dξ

is the kernel of the semigroup solving the linear equation vt = −Dαv.

(ii) If α = 1 then

(1.9)
t2−1/p

log t
‖u(t) − etA ∗ u0 + (log t)M2(2π)−1∂xp1(t)‖p → 0

as t → ∞.

(iii) If 0 < α < 1 then

(1.10) t(1−1/p)/α+1/α
∥∥∥u(t)−etA ∗u0 +

( ∞\
0

\
R

u2(y, τ) dy dτ
)

∂xpα(t)
∥∥∥

p
→ 0

as t → ∞.

Observe that, in general (if
T
R

u0(x) dx 6= 0), the estimates in Theo-

rems 1.1–1.2 cannot be improved because ‖∂xpα(t)‖p = Ct−(1−1/p)/α−1/α.

The subsequent sections deal with an analysis of the linearized equation
(Section 2), solvability of the problem (1.4)–(1.5) and decay of solutions
(Section 3), and the proofs of Theorem 1.1 (Section 4) and Theorem 1.2
(Section 5). Finally, Section 6 deals with the general multifractal conserva-
tion laws (1.1).

Throughout this paper we use the notation ‖u‖p for the Lebesgue Lp(R)-
norms of functions. The constants independent of solutions considered and
of t will be denoted by the same letter C, even if they may vary from line
to line. For a variety of facts from the theory of parabolic type equations
and interpolation inequalities we refer to [16].
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2. Analysis of the linear equation. The goal of this section is to
gather several properties of solutions to the linear Cauchy problem

ut − Au ≡ ut − uxx + Dαu = 0,(2.1)

u(x, 0) = u0(x).(2.2)

These properties will be used in the proof of asymptotic results for the full
fractal Burgers equation (1.4).

Using the Fourier transform we immediately deduce that, with suffi-
ciently regular u0, each solution to (2.1)–(2.2) has the form

(2.3) u(x, t) = pα(t) ∗ p2(t) ∗ u0(x) ≡ etA ∗ u0(x),

where pα is defined in (1.8). Here we identify the analytic semigroup etA

with its kernel pα ∗p2, a smooth function, decaying like |x|−1−α for |x| → ∞
(cf., e.g., [15]). Note that for α = 2, the heat kernel

p2(x, t) = (4πt)−1/2 exp(−|x|2/(4t))

decays exponentially in x. It is easy to see (by a change of variables in (1.8))
that pα has the self-similarity property:

pα(x, t) = t−1/αpα(xt−1/α, 1).

Recall that pα(x, 1), ∂xpα(x, 1) ∈ L1(R) ∩ L∞(R) for every 0 < α ≤ 2.
Moreover, ‖pα(·, t)‖1 = 1 for all t > 0.

Our first lemma determines exponents γ in the Lq-Lp estimates

‖etA ∗ u0‖p ≤ Ct−γ‖u0‖q

for the semigroup etA associated with (2.1).

Lemma 2.1. For every p ∈ [1,∞], there exists a positive constant C
independent of t such that

(2.4) ‖etA‖p = ‖p2(t) ∗ pα(t)‖p ≤ C min{t−(1−1/p)/2, t−(1−1/p)/α}

and

‖∂xetA‖p = ‖∂x(p2(t) ∗ pα(t))‖p(2.5)

≤ C min{t−(1−1/p)/2−1/2 , t−(1−1/p)/α−1/α}

for every t > 0.

P r o o f. The proof is elementary and based on the Young inequality

(2.6) ‖h ∗ g‖p ≤ ‖h‖q‖g‖r ,

valid for all p, q, r ∈ [1,∞] satisfying 1+1/p = 1/q +1/r, and all h ∈ Lq(R),
g∈Lr(R). Additionally, one uses the self-similarity of pα and the well-known
property of convolution: ∂x(p2 ∗ pα)= (∂xp2) ∗ pα = p2 ∗ (∂xpα).

Next we give a decomposition lemma which can be used for approxima-
tions and expansions of etA (see Corollaries 2.1, 2.2 below).
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Lemma 2.2. For each nonnegative integer N there exists a constant C
such that for every h ∈ L1(R, (1 + |x|)N+1 dx), g ∈ CN+1(R) ∩ W 1,N+1(R),
and p ∈ [1,∞] we have

(2.7)

∥∥∥∥h ∗ g(·) −

N∑

k=0

(−1)k

k!

(\
R

h(y)yk dy
)
∂k

xg(·)

∥∥∥∥
p

≤ C‖∂N+1
x g‖p‖h‖L1(R,|x|N+1 dx).

P r o o f. The result is obtained by a straightforward application of the
Taylor expansion of g(x− y) and the Young inequality (2.6). This lemma is
a particular case of a more general result proved in [10].

Corollary 2.1. For every p ∈ [1,∞] there exists C > 0, independent
of t , such that

‖etA − pα(t)‖p ≤ ‖∂xpα(t)‖p‖p2(t)‖L1(|x| dx)(2.8)

≤ Ct−(1−1/p)/α+1/2−1/α

and

(2.9) ‖∂x(etA − pα(t))‖p ≤ Ct−(1−1/p)/α+1/2−2/α

for all t > 0.

P r o o f. Apply (2.7) with N = 0, h(x) = p2(x, t) (remember thatT
R

p2(x, t) dx = 1), and g(x) = pα(x, t) to show (2.8). To get (2.9), put
g(x) = ∂xpα(x, t).

Corollary 2.2. Assume that u0 ∈ L1(R) and set M =
T
R

u0(x) dx. For
every p ∈ [1,∞] there exists a nonnegative function η ∈ L∞(0,∞) satisfying
limt→∞ η(t) = 0 and such that

(2.10) ‖etA ∗ u0 − Mpα(t)‖p ≤ t−(1−1/p)/αη(t) for all t > 0.

P r o o f. The obvious inequality

‖etA ∗ u0 − Mpα(t)‖p ≤ t−(1−1/p)/α(C‖u0‖1 + M)

can be improved to show that

t(1−1/p)/α‖etA ∗ u0 − Mpα(t)‖p → 0 as t → ∞.

Indeed, first consider u0 ∈ L1(R, (1 + |x|) dx). Using (2.7) we immediately
obtain

(2.11) ‖pα(t) ∗ u0 − Mpα(t)‖p ≤ Ct−(1−1/p)/α−1/α‖u0‖L1(|x| dx).

Now

t(1−1/p)/α‖etA ∗ u0 − Mpα(t)‖p ≤ t(1−1/p)/α‖etA − pα(t)‖p‖u0‖1

+ t(1−1/p)/α‖pα(t) ∗ u0 − Mpα(t)‖p.
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Applying (2.11) and (2.8) we can easily see that the right-hand side tends to
0 as t → ∞. By a standard density argument, this result extends to every
u0 ∈ L1(R).

3. Existence of solutions and preliminary estimates. By a so-
lution to the Cauchy problem for the fractal Burgers equation (1.4)-(1.5)
we mean a mild solution, i.e., a function u ∈ C([0, T ]; X) satisfying the
Duhamel formula

(3.1) u(t) = etA ∗ u0 −

t\
0

∂xe(t−τ)A ∗ u2(τ) dτ

for each t ∈ (0, T ). Here X is a suitable Banach space such that etA acts as
a strongly continuous semigroup in X. However, our preferred choice is X =
L1(R)∩L∞(R), which leads to a small modification of the above definition.
Because of poor properties of etA on L∞(R) (cf. a similar situation in [2]), we
need u to belong to a larger space C([0, T ]; X) of weakly continuous functions
with values in X.

Theorem 3.1. Assume that 0 < α < 2. Given u0 ∈ L1(R) ∩ L∞(R),
there exists a unique mild solution u = u(x, t) to the problem (1.4)–(1.5) in
the space C([0,∞); L1(R) ∩ L∞(R)). This solution satisfies the inequalities

‖u(t)‖1 ≤ ‖u0‖1,(3.2)

‖u(t)‖2 ≤ C(1 + t)−1/(2α),(3.3)

for all t > 0 and a constant C > 0.

P r o o f. We define the operator

N(u)(t) = etAu0 −

t\
0

∂xe(t−τ)A ∗ u2(τ) dτ

and the Banach space

XT = L∞((0, T ); L1(R) ∩ L∞(R))

equipped with the norm ‖u‖XT
= sup0<t<T ‖u(t)‖1 + sup0<t<T ‖u(t)‖∞.

Now the local-in-time mild solution to (1.4)–(1.5) is obtained, via the Banach
contraction theorem, as a fixed point of N in the ball BR = {u ∈ XT :
‖u‖XT

≤ R}, for sufficiently large R and small T > 0. This is an immediate
consequence of the inequalities

‖N(u)‖XT
≤ CR2T 1/2,

‖N(u) − N(v)‖XT
≤ CRT 1/2‖u − v‖XT

,

valid for any u, v ∈ BR. Here we used L1- and L∞-bounds for the linear
semigroup etA from Lemma 2.1.
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The classical regularity result allows us to prove that

u ∈ C((0, T ); W 2,p(R)) ∩ C1((0, T ); Lp(R))

for every p ∈ (1,∞). Indeed, we have ut−uxx = −Dαu−uux ∈ W−α,p(R)∩
W−1,p(R), so by repeated use of [16, Chapter 3], the regularity of solutions
follows. Weak continuity of u(t) at t = 0 is a standard consequence of
properties of etA on X.

Note that, since our L1 ∩L∞ mild solutions do fit into the framework of
Sobolev spaces in [16], from now on we may use energy estimates which are
standard for weak solutions.

The local solution constructed above may be extended to a global one
provided the following estimate holds:

(3.4) sup
t∈[0,T∗)

(‖u(t)‖1 + ‖u(t)‖∞) < ∞,

where T∗ is the maximal time of existence of u(t). We are going to prove
that this is actually our case.

First, inequality (3.2) is obtained by multiplying (1.4) by sgn u and in-
tegrating over R with respect to x. Details are given in [2, Thm. 3.1].

After multiplying (1.4) by u, a similar calculation gives

(3.5) ‖u(t)‖2 ≤ ‖u0‖2.

By Lemma 2.1 and (3.5), we have

‖etA ∗ u0‖p ≤ ‖u0‖p,

‖∂xe(t−τ)A ∗ u2(τ)‖p ≤ ‖∂xe(t−τ)A‖p‖u
2(τ)‖1

≤ C(t − τ)−(1−1/p)/2−1/2‖u0‖
2
2

for all p ∈ [1,∞]. Now, computing the Lp-norm of (3.1) for p ∈ [1,∞) we
obtain

‖u(t)‖p ≤ ‖etA ∗ u0‖p +

t\
0

‖∂xe(t−τ)A ∗ u2(τ)‖p dτ(3.6)

≤ ‖u0‖p + Ct1/(2p)‖u0‖
2
2

for every t ∈ [0, T∗) (by the way, this inequality will be improved below; cf.
the proof of Theorem 1.1). Next, we use (3.6) for p = 4 to show that

‖u(t)‖∞ ≤ ‖etA ∗ u0‖∞ +

t\
0

‖∂xe(t−τ)A ∗ u2(τ)‖∞ dτ(3.7)

≤ ‖etA ∗ u0‖∞ +

t\
0

(t − τ)−3/4(‖u0‖4 + Cτ1/8‖u0‖
2
2)2 dτ

≤ C(1 + t1/2).

Finally, combining (3.2) with (3.7) we get (3.4).
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The proof of the L2-decay estimate (3.3) is based on the Fourier split-
ting method introduced in [23]; it can be found in [2, Thm. 4.1]. An al-
ternative approach to the L2-decay estimates for parabolic equations might
follow [11].

For α ≥ 1 we have a better L∞-bound for u.

Proposition 3.1. Under the assumptions of Theorem 3.1 with α ≥ 1
the maximum principle

(3.8) ess inf u0 ≤ u(x, t) ≤ ess sup u0

holds for the solution u to the problem (1.4)–(1.5).

P r o o f. Set v+ = max{v, 0} and m = ess sup u0. Given ε > 0, we
multiply (1.4) by g = (u − m − ε)+ and integrate over R to get

(3.9)
\
R

utg dx +
\
R

(−uxx + Dαu)g dx +
\
R

guux dx = 0.

Now note that ut = gt and ux = gx on the support of g so that
T
R

utg dx =T
R

gtg dx and
T
R

guux dx =
T
R

g(g+m+ε)gx dx = 0. Next, using the relation
Dα1 = 0 for α ≥ 1 and the Plancherel identity we obtain\

R

gDαu dx =
\
R

gDαg dx =
\
R

(Dα/2g)2 dx.

Inserting this into (3.9) and integrating over [0, t] we get\
R

g2(x, t) dx + 2

t\
0

\
R

((Dα/2g(x, s))2 + (gx(x, s))2) dx ds ≤ 0,

so, in particular,
T
R

g2(x, t) dx = 0 follows. Since ε was arbitrary, we con-
clude that (u − m)+ = 0. Repeating the argument above with the function
g = (u+m+ε)− = min{u+m+ε, 0}, where m = − ess inf u0, we obtain (3.8).

Obviously, this proof extends to general nonlinearities f .

Note that the above proof does not apply to the case 0 < α < 1 because,
e.g., Dα1(x) = Cα|x|

−α 6≡ 0 (cf. [20] and [21]). In fact, we cannot expect
that the maximum principle holds for solutions of arbitrary multifractal
conservation laws (1.1) and more general initial conditions u0 ∈ L∞(R).
Indeed, for c0 = 0 in (1.2) the results in [2, Section 5] on the nonexistence
of traveling waves suggest that the maximum principle fails for solutions to
(1.1) with u0 merely in L∞(R).

These difficulties are connected with the fact that for 0 < α < 1 and
u0 ∈ L∞(R) the linear problem (2.1)–(2.2) is not, in general, equivalent
to (2.3). For instance, etA∗1≡1 but u≡1 does not satisfy (2.1) if 0<α < 1.
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4. The first order term of asymptotics for fractal Burgers equa-

tion. We begin by proving that the asymptotics of solutions to (1.4) is, in
the first approximation, linear. First, we formulate

Lemma 4.1. Under the assumptions of Theorem 1.1, for every p ∈ [1,∞],
there exists a nonnegative function η ∈ L∞(0,∞) satisfying limt→∞ η(t) = 0
and such that

(4.1) ‖u(t) − etA ∗ u0‖p ≤ (1 + t)−(1−1/p)/αη(t) for all t > 0.

P r o o f. From the construction of solutions to (1.4) we have
sup0<t<T ‖u(t)‖p < ∞ for every T < ∞. Moreover, (2.4) implies that
‖etA ∗ u0‖p ≤ ‖etA‖1‖u0‖p = ‖u0‖p. Hence, to prove Lemma 4.1, it suffices
to consider large t and show that

(4.2) t(1−1/p)/α‖u(t) − etA ∗ u0‖p → 0 as t → ∞.

To do this, note that by the integral equation (3.1), it remains to estimate
the Lp-norm of

(4.3)

t\
0

∂xe(t−τ)A ∗ u2(τ) dτ =

t/2\
0

. . . dτ +

t\
t/2

. . . dτ

for t ≥ 1.

For τ ∈ [0, t/2], we use the Young inequality, (2.5) and (3.3) as follows:

‖∂xe(t−τ)A ∗ u2(τ)‖p ≤ ‖∂xe(t−τ)A‖p‖u
2(τ)‖1

≤ C(t − τ)−(1−1/p)/α−1/α(1 + τ)−1/α.

Hence, we have

(4.4)
∥∥∥

t/2\
0

∂xe(t−τ)A ∗ u2(τ) dτ
∥∥∥

p

≤ C

t/2\
0

(t − τ)−(1−1/p)/α−1/α(1 + τ)−1/α dτ

≤ C(t/2)−(1−1/p)−1/α

t/2\
0

(1 + τ)−1/α dτ

≤ C

{
t−(1−1/p)/α−2/α+1 for 1 < α < 2,
t−(1−1/p)/α−1/α log(1 + t) for α = 1,
t−(1−1/p)/α−1/α for 0 < α < 1.

Now, it is easy to see that t(1−1/p)/α‖
Tt/2

0
. . . dτ‖p → 0 as t → ∞.



Multifractal conservation laws 241

To deal with the integrand over [t/2, t], we consider first p ∈ [1,∞).
Using (2.5) and (3.3) we have

‖∂xe(t−τ)A ∗ u2(τ)‖p ≤ ‖∂xe(t−τ)A‖p‖u
2(τ)‖1

≤ C(t − τ)−(1−1/p)/2−1/2(1 + τ)−1/α.

Hence, as before,
∥∥∥

t\
t/2

∂xe(t−τ)A ∗ u2(τ) dτ
∥∥∥

p
≤ C

t\
t/2

(t − τ)−(1−1/p)/2−1/2(1 + τ)−1/α dτ

≤ Ct1/(2p)−1/α.

Now, for p ∈ [1,∞), using the assumption 0 < α < 2, we see that

t(1−1/p)/α
∥∥∥

t\
t/2

. . . dτ
∥∥∥

p
→ 0 as t → ∞.

To handle the case p = ∞, note that it follows from (4.2) (already proved
for p ∈ [1,∞)) and from (2.4) that

(4.5) ‖u(t)‖p ≤ ‖u(t) − etA ∗ u0‖p + ‖etA ∗ u0‖p ≤ C(1 + t)−(1−1/p)/α

for 1 ≤ p < ∞. Using this estimate for p = 4 and applying (2.5) we prove
that ∥∥∥

t\
t/2

∂xe(t−τ)A ∗ u2(τ) dτ
∥∥∥
∞

≤

t\
t/2

‖∂xe(t−τ)A‖2‖u
2(τ)‖2 dτ

≤ C

t\
t/2

(t − τ)−3/4(1 + τ)−3/(2α) dτ

≤ Ct1/4−3/(2α).

Since 1/4 − 3/(2α) < −1/α, this concludes the proof of Lemma 4.1.

Proof of Theorem 1.1. To get (1.6), we use the decomposition (4.3).
Note that the integral over [0, t/2] is already estimated in (4.4). For the
second integral, we use (4.5) as follows:

∥∥∥
t\

t/2

∂xe(t−τ)A) ∗ u2(τ) dτ
∥∥∥

p
≤

t\
t/2

‖∂xe(t−τ)A‖1‖u(τ)‖2
2p dτ

≤ C(t/2)−(1−1/p)/α−1/α
t\

t/2

‖∂xe(t−τ)A‖1 dτ.

Now, for 1 < α < 2, we have immediately
t\

t/2

‖∂xe(t−τ)A‖1 dτ ≤ C

t\
t/2

(t − τ)−1/α dτ ≤ Ct1−1/α.
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For 0 < α ≤ 1, using (2.5), we obtain

t\
t/2

‖∂xe(t−τ)A)‖1 dτ ≤ C

t−1\
t/2

(t − τ)−1/α dτ + C

t\
t−1

(t − τ)−1/2 dτ.

It is easy to see that, if 0 < α < 1, both integrals on the right-hand side are
uniformly bounded for t ≥ 1. However, for α = 1, the first of them grows
as log(1 + t).

Remark 4.1. In the sequel, we will often use the estimate

‖u2(t) − (etA ∗ u0)2‖p ≤ C‖u(t) − etA ∗ u0‖p(‖u(t)‖∞ + ‖etA ∗ u0‖∞)(4.6)

≤ C(1 + t)−(1−1/p)/α−1/αη(t),

where η satisfies the assumptions in Lemma 4.1. It follows immediately from
(4.1) and (4.5). Moreover, if we use (2.10), then (4.6) may be reformulated as

(4.7) ‖u2(t) − (Mpα(t))2‖p ≤ Ct−(1−1/p)/α−1/αη(t).

5. The second order term of asymptotics for fractal Burgers

equation. In this section we find the second term of the asymptotic expan-
sion of solutions to (1.4). This term reflects nonlinear effects.

Proof of Theorem 1.2(i). Let 1 < α < 2. By the integral representation
(3.1) of solutions to (1.4)–(1.5), it suffices to estimate the Lp-norm of the
difference

t\
0

∂xe(t−τ)A ∗ u2(τ) dτ −

t\
0

∂xpα(t − τ) ∗ (Mpα(τ))2 dτ

=

t\
0

∂xe(t−τ)A ∗ (u2(τ) − (Mpα(τ))2) dτ

+

t\
0

∂x(e(t−τ)A − pα(t − τ)) ∗ (Mpα(τ))2 dτ

≡ I1(t) + I2(t).

Now, as in the proof of Theorem 1.1, we split the range of integration in I1(t)
and in I2(t) into two parts: [0, t/2] and [t/2, t]. Next, the Young inequal-
ity, combined with (2.4), (2.5) and (4.7), is applied to obtain appropriate
estimates of the integrands in I1(t) and I2(t).

First we estimate I1(·). By (4.7), the Lp-norm of the integrand can be
bounded either by

‖∂xe(t−τ)A‖p‖u
2(τ) − (Mpα(τ))2‖1 ≤ C(t − τ)−(1−1/p)/α−1/ατ−1/αη(τ),
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or by

‖∂xe(t−τ)A‖1‖u
2(τ) − (Mpα(τ))2‖p ≤ C(t − τ)−1/ατ−(1−1/p)/α−1/αη(τ).

Consequently, by the change of variables τ = st, it follows that for p ∈ [1,∞],

t(1−1/p)/α−(1−2/α)‖I1(t)‖p ≤ C

1/2\
0

(1 − s)−(1−1/p)/α−1/αs−1/αη(st) ds

+ C

1\
1/2

(1 − s)−1/αs−(1−1/p)/α−1/αη(st) ds.

By the Lebesgue Dominated Convergence Theorem, the right-hand side of
the above expression tends to 0 as t → ∞.

A similar argument applies to I2(·). Indeed, for τ ∈ [0, t/2], we use (2.9)
to bound the integrand in I2(t) by

‖∂x(e(t−τ)A−pα(t−τ))‖p‖(Mpα(τ))2‖1 ≤ C(t−τ)−(1−1/p)/α+1/2−2/ατ−1/α.

When τ ∈ [t/2, t], the integrand is bounded by

‖e(t−τ)A − pα(t − τ)‖1‖∂x((Mpα(τ))2)‖p

≤ C(t − τ)1/2−1/α(1 + τ)−(1−1/p)/α−2/α.

Using these two estimates, it is easy to prove that

t(1−1/p)/α+2/α−1‖I2(t)‖p → 0 as t → ∞,

for every p ∈ [1,∞]. Now Theorem 1.2(i) is proved.

Proof of Theorem 1.2(ii). Let α = 1. Recall that p1(x, 1) is the well-
known Cauchy distribution p1(x, 1) = (π(1 + x2))−1. We begin the proof of
Theorem 1.2(ii) by showing that

(5.1) lim
t→∞

1

log t

t−1\
0

\
R

u2(y, τ) dy dτ =
M2

2π
.

Indeed, since by (4.5),

1\
0

\
R

u2(y, τ) dy dτ +

t\
t−1

\
R

u2(y, τ) dy dτ ≤ C
( 1\

0

+

t\
t−1

)
(1 + τ)−1 dτ ≤ C

with C independent of t, it is sufficient to prove that

1

log t

t\
1

\
R

u2(y, τ) dy dτ →
M2

2π
as t → ∞.

Moreover, using the self-similarity of p1(x, t) = t−1p1(xt−1, 1), one can easily
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show that

1

log t

t\
1

\
R

p2
1(y, τ) dy dτ =

\
R

p2
1(y, 1) dy =

1

2π
.

Hence, applying (4.7), we immediately obtain

1

log t

t\
1

\
R

|u2(y, τ) − (Mp1(y, τ))2| dy dτ ≤ C
1

log t

t\
1

τ−1η(τ) dτ → 0

as t → ∞. The proof of (5.1) is complete.
Now we are ready to prove (1.9). Analogously to the proof of (1.7), it

suffices to show that

(5.2)
t2−1/p

log t

∥∥∥
t\
0

∂xe(t−τ)A ∗ u2(τ) dτ − (log t)M2(2π)−1∂xp1(t)
∥∥∥

p
→ 0

as t → ∞. To do this, note first that, by (2.5) and (4.5),

∥∥∥
t\

t−1

∂xe(t−τ)A ∗ u2(τ) dτ
∥∥∥

p
≤ C

t\
t−1

(t − τ)−1/2τ−2+1/p dτ ≤ Ct−2+1/p.

Moreover, by (2.9), we have

∥∥∥
t−1\
0

∂x(e(t−τ)A − p1(t − τ)) ∗ u2(τ) dτ
∥∥∥

p

≤ C

t−1\
0

(t − τ)−2+1/p−1/2(1 + τ)−1 dτ ≤ Ct−2+1/p−1/2 log(1 + t).

Hence, we may replace
Tt
0
∂xe(t−τ)A ∗ u2(τ) dτ by

Tt−1

0
∂xp1(t− τ) ∗ u2(τ) dτ

in (5.2). Moreover, it follows immediately from (5.1) that

t2−1/p

log t

∥∥∥
( t−1\

0

\
R

u2(y, τ) dy dτ − (log t)M2(2π)−1
)
∂xp1(t)

∥∥∥
p
→ 0

as t → ∞. Therefore the proof of (5.2) will be completed by showing that

(5.3)
t2−1/p

log t

∥∥∥
t−1\
0

\
R

(∂xp1(· − y, t − τ) − ∂xp1(·, t))u2(y, τ) dy dτ
∥∥∥

p
→ 0

as t → ∞. To prove (5.3), we fix δ > 0 and we decompose the integration
range into three parts: [0, t − 1] × R = Ω1 ∪ Ω2 ∪ Ω3, where

Ω1 = [0, δt] × [−δt, δt],

Ω2 = [0, δt] × ((−∞,−δt] ∪ [δt,∞)),

Ω3 = [δt, t − 1] × R.
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First we estimate the integral over Ω1. The change of variables, the self-
similarity of p1(x, t), and continuity of translations in Lp imply that given
ε > 0 there is 0 < δ < 1 such that

t2−1/p sup
|y|≤tδ
τ≤tδ

‖∂xp1(· − y, t − τ) − ∂xp1(·, t)‖p

= sup
|z|≤δ
s≤δ

‖∂xp1(· − z, 1 − s) − ∂xp1(·, 1)‖p ≤ ε.

In view of this remark, we obtain

t2−1/p

log t

∥∥∥
\\
Ω1

(∂xp1(· − y, t − τ) − ∂xp1(·, t))u2(y, τ) dy dτ
∥∥∥

p

≤
Cε

log t

δt\
0

‖u(τ)‖2
2 dτ ≤

Cε

log t

δt\
0

(1 + τ)−1 dτ ≤ Cε.

To deal with the integral over Ω2, we first prove that

(5.4)
1

log t

\\
Ω2

u2(y, τ) dy dτ → 0 as t → ∞.

Indeed, as in the proof of (5.1), it may be assumed that the integration in
(5.4) with respect to τ is only over [1, δt]. Moreover, we have

T
R
|y|p2

1(y, τ) dy
= C, with C independent of τ . Hence there is a number C independent of
t such that

δt\
1

\
|y|≥δt

p2
1(y, τ) dy dτ ≤

δt\
1

\
R

∣∣∣∣
y

δt

∣∣∣∣p2
1(y, τ) dy dτ = Ct−1

δt\
1

dτ ≤ C.

Moreover, using (4.7), it may be concluded that

1

log t

δt\
1

\
|y|≥δt

|u2(y, τ) − (Mp1(y, τ))2| dy dτ ≤
C

log t

δt\
1

τ−1η(τ) dτ → 0

as t → ∞. Combining these facts, we obtain (5.4).

Now, it follows immediately from (5.4) that

t2−1/p

log t

\\
Ω2

‖∂xp1(·, t)‖p|u(y, τ)|2 dy dτ ≤
C

log t

\\
Ω2

|u(y, τ)|2 dy dτ → 0

and
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t2−1/p

log t

\\
Ω2

‖∂xp1(· − y, t − τ)‖p|u(y, τ)|2 dy dτ

≤
t2−1/p

log t

\\
Ω2

(t − τ)−2+1/p|u(y, τ)|2 dy dτ

≤
C(1 − δ)−2+1/p

log t

\\
Ω2

|u(y, τ)|2 dy dτ → 0

as t → ∞. This proves (5.3) with [0, t − 1] × R replaced by Ω2.
For p ∈ [1,∞], the Lp-norm of the integral in (5.3) over Ω3 is estimated

in a straightforward way by the following quantity:

(5.5)

t−1\
δt

‖∂xp1(t − τ) ∗ u2(τ)‖p dτ + ‖∂xp1(t)‖p

t−1\
δt

‖u(τ)‖2
2 dτ.

By (4.5), we immediately see that the second term in (5.5) is bounded by

Ct−2+1/p
t\
δt

τ−1dτ ≤ Ct−2+1/p.

To estimate the first term in (5.5) we first note that it follows from the
properties of etA that

(5.6)

t−1\
δt

‖∂xp1(t − τ) ∗ (eτA ∗ u0)2‖p dτ

≤

t−1\
δt

‖p1(t − τ)‖1‖e
τA ∗ u0‖p‖∂xeτA ∗ u0‖∞ dτ

≤ C

t−1\
δt

τ−3+1/p dτ ≤ Ct−2+1/p.

Moreover, by (4.6), we have

(5.7)

t−1\
δt

‖∂xp1(t − τ) ∗ (u2(τ) − (eτA ∗ u0)2)‖p dτ

≤

t−1\
δt

‖∂xp1(t − τ)‖1‖u
2(τ) − (eτA ∗ u0)2‖p dτ

≤ C

t−1\
δt

(t − τ)−1τ−2+1/pη(τ) dτ ≤ Ct−2+1/p(log t)η(t),

where η(t) ≡ supτ∈[δt,t−1] |η(t)| → 0 as t → ∞. Combining (5.6) with (5.7)
we obtain
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t2−1/p

log t

t−1\
δt

‖∂xp1(t − τ) ∗ u2(τ)‖p dτ → 0 as t → ∞.

Now the proof of Theorem 1.2(ii) is complete.

Proof of Theorem 1.2(iii). Let 0 < α < 1. As in the proof of (i) and (ii),
we need to show that

(5.8) t(1−1/p)/α+1/α
∥∥∥

t\
0

∂xe(t−τ)A ∗ u2(τ) dτ

−
(∞\

0

\
R

u2(y, τ) dy dτ
)
∂xpα(t)

∥∥∥
p
→ 0 as t → ∞.

Our first step is to prove that

(5.9) t(1−1/p)/α+1/α
∥∥∥

t\
t/2

∂xe(t−τ)A ∗ u2(τ) dτ
∥∥∥

p
→ 0 as t → ∞.

Indeed, by (1.6) in Theorem 1.1 and (4.5), we have

‖u2(τ) − (eτA ∗ u0)2‖p ≤ C‖u(τ) − eτA ∗ u0‖p(‖u(τ)‖∞ + ‖eτA ∗ u0‖∞)

≤ Cτ−(1−1/p)/α−2/α

for all τ > 0, and a constant C > 0 independent of τ . Hence

(5.10)
∥∥∥

t\
t/2

∂xe(t−τ)A ∗ (u2(τ) − (eτA ∗ u0)2) dτ
∥∥∥

p

≤

t\
t/2

‖∂xe(t−τ)A‖1‖u
2(τ) − (eτA ∗ u0)2‖p dτ

≤ C

t\
t/2

(t − τ)−1/2τ−(1−1/p)/α−2/α dτ = Ct−(1−1/p)/α−2/α+1/2.

Moreover, a similar argument gives

(5.11)
∥∥∥

t\
t/2

∂xe(t−τ)A ∗ (eτA ∗ u0)2 dτ
∥∥∥

p

≤ 2

t\
t/2

‖e(t−τ)A‖1‖∂xeτA ∗ u0‖∞‖eτA ∗ u0‖p dτ

≤ C

t\
t/2

τ−(1−1/p)/α−2/α dτ = Ct−(1−1/p)/α−2/α+1.

Since 0 < α < 1, combining (5.10) with (5.11), we immediately obtain (5.9).
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In the next step, using (4.5), we obtain

(5.12)
∥∥∥
( ∞\

t/2

\
R

u2(y, τ) dy dτ
)
∂xpα(t)

∥∥∥
p

≤ Ct−(1−1/p)/α−1/α
∞\
t/2

‖u(τ)‖2
2 dτ ≤ Ct−(1−1/p)/α−2/α+1.

Moreover, applying Corollary 2.2, we see that

(5.13)
∥∥∥

t/2\
0

∂x(e(t−τ)A − pα(t − τ)) ∗ u2(τ) dτ
∥∥∥

p

≤ C

t/2\
0

(t − τ)−(1−1/p)/α−1/αη(t − τ)‖u(τ)‖2
2 dτ

≤ Ct−(1−1/p)/α−1/αη(t)

∞\
0

‖u(τ)‖2
2 dτ.

Here η(t) = sups∈[t/2,t] |η(s)|, and it is clear that limt→∞ η(t) = 0.
Now it follows immediately from (5.9), (5.12) and (5.13) that (5.8) will

be proved provided

(5.14) t(1−1/p)/α+1/α
∥∥∥

t/2\
0

\
R

(∂xpα(· − y, t − τ)

− ∂xpα(·, t))u2(y, τ) dy dτ
∥∥∥

p
→ 0

as t → ∞. From now on the reasoning is completely analogous to that in
the proof of Theorem 1.2(ii); therefore we omit the details. Given δ > 0 we
decompose the integration range [0, t/2] × R = Ω1 ∪ Ω2 ∪ Ω3, where

Ω1 = [0, δt] × [−δt1/α, δt1/α],

Ω2 = [0, δt] × ((−∞,−δt1/α] ∪ [δt1/α,∞)),

Ω3 = [δt, t/2] × R.

Now a slight change in the proof of (5.3) gives (5.14). In fact, we only need
to replace the estimate ‖u(τ)‖2

2 ≤ C(1 + τ)−1 by ‖u(τ)‖2
2 ≤ C(1 + τ)−1/α

in that reasoning, and we should remember that 0 < α < 1. Moreover, the
counterpart of (5.4) is\\

Ω2

u2(y, τ) dy dτ ≤

∞\
0

\
|y|≥δt1/α

u2(y, τ) dy dτ.

The integral on the right-hand side tends to 0 as t → ∞, because the integralT∞
0

T
R

u2(y, τ) dy dτ converges. Theorem 1.2(iii) is now proved.
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6. General multifractal conservation law asymptotics. Here we
indicate how results proved in the preceding sections can be extended to the
case of a general multifractal conservation law (1.1).

First, observe that the decay estimates from Lemma 2.1 play a central
rôle in the proof of the results formulated in Section 1. Analogous results
can be proved in the case of the semigroup of linear operators generated by
(1.2), which is given by convolution with the kernel

etA = p2(c0t) ∗ pα1
(c1t) ∗ . . . ∗ pαN

(cN t).

Indeed, a repeated use of the Young inequality (2.6), combined with the
property ‖pαj

(cjt)‖1 = 1 for j = 0, 1, . . . ,N (here α0 = 2), gives immedi-
ately inequalities (2.4) and (2.5) for the operator A of the form (1.2) and
for

α = min{α1, . . . , αN}.

Now the proof of the existence of a global-in-time mild solution to the prob-
lem

ut + f(u)x = Au,(6.1)

u(x, 0) = u0(x) ∈ L1(R) ∩ L∞(R),(6.2)

for either 0 < α < 1 and f(u) = u2, or 1 ≤ α < 2 and f of polynomial
growth, is completely analogous to that given in Section 2. It is important
that such a solution satisfies preliminary estimates (3.2), (3.3), and the
maximum principle (3.8). Moreover, assuming that f(0) = f ′(0) = 0, we
immediately obtain the estimate

|f(u(x, t))| ≤ u2(x, t) sup
|y|≤‖u0‖∞

|f ′′(y)|/2,

which is the core of the proof of the fact that the first order term of the
asymptotic expansion of solutions to (6.1)–(6.2) is given by etA ∗u0. Indeed,
repeating the argument used in the proof of Lemma 4.1, one can show that

t(1−1/p)/α‖u(t) − etA ∗ u0‖p → 0 as t → ∞.

The second order term depends essentially on the behavior of the integralT
R

f(u(y, t)) dy as t → ∞. If f ′′(0) 6= 0, it is an immediate consequence of
the Taylor expansion that

(6.3) t1/α

∣∣∣∣
\
R

f(u(y, t)) dy −
1

2
f ′′(0)

\
R

u2(y, t) dy

∣∣∣∣ → 0 as t → ∞.

Applying (6.3), and repeating the reasoning from the proof of Theo-
rem 1.2(i), (ii), one can easily show that for 1 < α ≤ 2,

t(1−1/p)/α+2/α−1

∥∥∥∥u(t)−etA∗u0 +
1

2
f ′′(0)

t\
0

∂xpα(t−τ)∗(Mpα(τ))2 dτ

∥∥∥∥
p

→ 0
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as t → ∞. However, for α = 1 we have

t2−1/p

log t

∥∥∥∥u(t)− etA ∗u0 + (log t)
1

2
f ′′(0)M2(2π)−1∂xp1(t)

∥∥∥∥
p

→ 0 as t → ∞.

Now let us look more closely at the case when f ′′(0) = 0. By the Taylor
expansion, we have

|f(u(y, τ))| ≤ |u(y, τ)|3 sup
|y|≤‖u0‖∞

|f ′′′(y)|/3,

which implies
∞\
0

\
R

|f(u(y, τ))| dy dτ ≤ C

∞\
0

\
R

|u(y, τ)|3 dy dτ(6.4)

≤ C

∞\
0

(1 + τ)−2/α dτ < ∞

for every α ∈ [1, 2). Now, as a straightforward consequence we obtain
the second order term of the asymptotic expansion of solutions to (6.1)–
(6.2). Indeed, it follows from (6.4) and from the reasoning in the proof of
Theorem 1.2(iii) that

t(1−1/p)/α+1/α
∥∥∥u(t) − etA ∗ u0 +

∞\
0

\
R

f(u(y, τ)) dy dτ∂xpα(t)
∥∥∥

p
→ 0

as t → ∞ for every α ∈ [1, 2). This asymptotics is different from that in the
case f(u) = u2 (cf. Theorem 1.2(i), (ii)).
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