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Distributional fractional powers of the Laplacean.

Riesz potentials

by

C E L S O MART Í N E Z, M IGUE L SANZ
and FRANC I S CO PER I AGO (València)

Abstract. For different reasons it is very useful to have at one’s disposal a duality
formula for the fractional powers of the Laplacean, namely, ((−∆)αu, φ) = (u, (−∆)αφ),
α ∈ C, for φ belonging to a suitable function space and u to its topological dual. Unfortu-
nately, this formula makes no sense in the classical spaces of distributions. For this reason
we introduce a new space of distributions where the above formula can be established. Fi-
nally, we apply this distributional point of view on the fractional powers of the Laplacean
to obtain some properties of the Riesz potentials in a wide class of spaces which contains
the Lp-spaces.

1. Introduction. Throughout this paper we consider complex func-
tions defined on R

n. We denote by D the space of functions of class C∞

with compact support and by S the Schwartz space, both endowed with
their usual topologies. Given a topological vector space Y , its topological
dual will be denoted by Y ′. If T : D(T ) ⊂ Y → Y is a linear operator and
X ⊂ Y is a linear subspace of Y , we denote by TX the operator in X with
domain D(TX) = {x ∈ X ∩D(T ) : Tx ∈ X} and defined by TXx = Tx for
x ∈ D(TX). If X = Lp we write Tp instead of TLp .

It is known that the restriction of the negative distributional Laplacean,
−∆, to Lp-spaces is a non-negative operator. Hence, we can calculate its
fractional powers in these spaces. However, just as the duality identity

(∆u, φ) = (u,∆φ) for φ ∈ D and u ∈ D′

gives a meaning to ∆f for a non-classically differentiable function, it would
be desirable that the fractional power of exponent α, with Reα > 0, of this
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operator satisfied an analogous relation, namely

((−∆)αu, φ) = (u, (−∆)αφ)

for φ belonging to a suitable function space T and u to its topological
dual T ′. The distributional space T ′ must include the Lp-spaces, 1 ≤ p ≤
∞, and the fractional power (−∆)α must be understood in the sense of
the classical theory of fractional powers developed by A. V. Balakrishnan
and H. Komatsu in Banach spaces and by C. Mart́ınez, M. Sanz and V.
Calvo in locally convex spaces. We solve this problem in Section 3. It
is not possible to take T = D or T = S. For this reason we introduce an
appropriate function space.

For a complete theory of fractional powers and its applications we refer
the reader to [1, 3–5, 8–13, 18], for instance. In Section 2 we establish,
in locally convex spaces, some specific facts of this theory that we need
later.

In Section 4 we apply this distributional point of view on the fractional
powers of −∆ to the study of Riesz potentials. Given a complex number α
such that 0 < Reα < n/2, the Riesz potential Rα acting on a function f
locally integrable on R

n is defined by

(Rαf)(x) =
Γ (n/2 − α)

πn/222αΓ (α)

�

Rn

|x− y|2α−nf(y) dy

whenever this convolution exists. This always happens if f ∈ Lp with 1 ≤
p < n/(2Reα), since the function

ψα(x) = |x|2α−n, x ∈ R
n, x 6= 0,

belongs to L1 + Lq for n/(n− 2Reα) < q ≤ ∞.

If we take the Fourier transform of the Riesz potential Rα with 0 <
Reα < n/2, we find that

(Rαf)∧(x) = (2π|x|)−2αf̂(x) for f ∈ S.

On the other hand, since ((−∆)f)∧(x) = (2π|x|)2f̂(x), it is natural to think
that a “good” definition of the fractional power of −∆ has to satisfy

((−∆)αf)∧(x) = (2π|x|)2α f̂(x)

for f ∈ S and Reα 6= 0. For this reason it is common to identify the
operator Rα with the fractional power (−∆)−α. However, the identity
Rαf = (−∆)−αf has only been proved for f ∈ S and therefore, the identity
Rα = (−∆)−α (as operators in Lp) has only a “formal” meaning.

In this paper we study the operator (−∆)−α in the context of the clas-
sical theory of fractional powers and we obtain a relationship between this
operator and Rα in the context of the duality (T , T ′).
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As a consequence, we deduce some interesting properties of the operator
[Rα]p. Moreover, our distributional point of view on Riesz potentials allows
us to obtain some properties of Rα in other spaces.

Finally, we introduce the operator Bα,ε, ε > 0, by

(Bα,εf)(x) =
1

(4π)αΓ (α)

�

Rn

( ∞�

0

e−π|y|2/te−εt/(4π)t−n/2+α−1 dt
)
f(x− y) dy

which is similar to the Bessel potential (where ε = 1). We prove that

s-lim
ε→0+

[Bα,ε]p = [Rα]p, 1 < p <
n

2Reα
.

2. Previous results on fractional powers. In this section, X will be
a sequentially complete locally convex space endowed with a directed family
P of seminorms. The following definition was introduced in [13].

Definition 2.1. We say that a closed linear operator A : D(A) ⊂ X →
X is non-negative if ]−∞, 0[ is contained in the resolvent set %(A) and the
set {λ(λ + A)−1 : λ > 0} is equicontinuous, i.e., for all p ∈ P there is a
seminorm p0(p) ∈ P and a constant M = M(A, p) > 0 such that

p(λ(A+ λ)−1x) ≤Mp0(x), λ > 0, x ∈ X.

We denote by D(A) the domain of A and by R(A) the range of A. From
now on, α will be a complex number such that Reα > 0.

It is not hard to show that if A is a non-negative operator then

(1) lim
µ→0+

An[(A+ µ)−1]nx = x for x ∈ R(A) and n ∈ N.

Consequently, R(A) = R(An). This identity can be extended to exponents
α ∈ C with Reα > 0.

Lemma 2.1. We have the identity

R(A) = R(Aα), Reα > 0.

P r o o f. It is known (see [8] and [12]) that if 0 < Reα < n, n integer,
then the fractional power Aα is given by

(2) Aαx =
Γ (n)

Γ (α)Γ (n− α)

∞�

0

λα−1[(λ+A)−1A]nx dλ, x ∈ D(An).

Moreover, in [12, Theorem 4.1] we proved that

D(Aα) = {x ∈ X : Aα(1 +A)−nx ∈ D(An)}

and

(3) Aαx = (1 +A)nAα(1 +A)−nx for x ∈ D(Aα).
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From (2) it follows that R(Aα[(1 + A)−1]n) ⊂ R(A). Hence, by (3) we
conclude that R(Aα) ⊂ R(A).

On the other hand, by additivity (see [13]) we find that R(Aα) ⊃ R(An)
and consequently R(Aα) = R(A).

Remark 2.1. Balakrishnan and Komatsu defined the fractional power
of exponent α of A as the closure of the operator given by (2). Therefore,
the range of this fractional power is included in D(A) ∩R(A), which is a
proper subspace of R(A) if D(A) is non-dense. So, the property given in
the previous lemma is a specific property of the concept of fractional power
given by the authors in [11, 13].

From (1) one deduces that if R(A) is dense, then A is one-to-one. More-
over, the operator AR has dense range in R(A) (we write AR instead of
A

R(A)
). Since AR is non-negative in R(A) (as (A + λ)−1(R(A)) ⊂ R(A),

λ > 0), it easily follows that AR is one-to-one. It is also evident that if A
is a one-to-one, non-negative operator (with not necessarily dense range),
then A−1 is non-negative. In this case, the fractional power A−α is given
by A−α = (A−1)α. The operator A−α is closed since Aα is (see [12]).

Definition 2.2. Given n > Reα > 0, x = Any ∈ R(An), y ∈ D(An),
we define

(4) A−αx =
Γ (n)

Γ (α)Γ (n− α)

∞�

0

λn−α−1(λ+A)−nx dλ.

From (2) one deduces that A−αA
ny = An−αy. Moreover, with the

change λ 7→ λ−1 in (4), it is very easy to show that if A is one-to-one, then
A−αx = A−αx for x ∈ R(An). In this case, Aα is one-to-one and

(5) (Aα)−1 = A−α.

That is because AαA−αx = x for x ∈ R(An), and A−αAαx = x for x ∈
D(An). By (3) these identities also hold for x ∈ D(A−α) and x ∈ D(Aα),
respectively.

Proposition 2.2. A−α is closable and its closure is given by

(6) A−α = (AR)−α

Consequently , if A is one-to-one, then A−α is an extension of A−α. The

identity A−α = A−α holds if and only if R(A) is dense.

P r o o f. Given x = Any ∈ R(An) and µ > 0 we get

A(µ+A)−1A−αx = A−αA(µ+A)−1x

= (AR)−αA(µ+A)−1x = (AR)−αA(µ+A)−1x
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and taking limits as µ → 0, as (AR)−α is closed, we conclude that x ∈
D[(AR)−α] and (AR)−αx = A−αx. Hence, A−α is closable and (AR)−α is
an extension of A−α.

Let now x ∈ D[(AR)−α] and µ > 0. As An(A + µ)−nx ∈ R[(AR)n] it
follows that

An(µ+A)−n(AR)−αx = (AR)−αAn(µ+A)−nx = A−αA
n(µ+A)−nx

and taking limits as µ → 0 we conclude that x ∈ D(A−α) and A−αx =
(AR)−αx. This proves (6).

If A is one-to-one and R(A) is not dense, by choosing x 6∈ R(A), it is
evident that (A−1)n(A−1 + 1)−nx 6∈ R(A). By additivity one deduces that
A−αA−n+α(A+1)−nx 6∈ R(A). Consequently, A−α is a proper extension of
(AR)−α.

From (1) it is easy to show that if x ∈ R(A), then

(7) lim
µ→0+

µn(A+ µ)−nx = 0.

This result can be improved in this way:

Proposition 2.3. The operators Aα(µ+A)−α and µα(µ+A)−α are uni-

formly bounded for µ > 0. Moreover , given x ∈ X, the following assertions

are equivalent :

(i) x ∈ R(A).

(ii) limµ→0+ µα(µ+A)−αx = 0.

(iii) limµ→0+ Aα(µ+A)−αx = x.

P r o o f. First note that since (A + µ)−1 is bounded, so is (A + µ)−α.
Moreover, since D[(A + µ)α] = D(Aα) (see [13]) one deduces that
D(Aα(µ+A)−α) = X.

By additivity, we can restrict the proof of the first assertion to the case
0 < Reα < 1. In this case, given p ∈ P, as

(8) (µ+A)−αx =
sinαπ

π

∞�

0

λ−α(λ+ µ+A)−1x dλ, x ∈ X,

we find that

(9) p[(µ+A)−αx] ≤ µ−Re αc(α)Mp0(x), x ∈ X.

Hence, the operators µα(µ + A)−α, µ > 0, are uniformly bounded. In a
similar way, from (2), with n = 1, one deduces that Aα − (µ+ A)α can be
extended to a bounded operator, T, on X which satisfies

(10) p(Tx) ≤ µRe αk(M,α)p1(x), x ∈ X and p1 ∈ P.
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From (9) and (10) it follows that

(11) Aα(µ+A)−α − 1 = [Aα − (µ+A)α](µ+A)−α, µ > 0,

are uniformly bounded.

Let us now prove that (iii) implies (i). It is evident that (iii) implies that
x ∈ R(Aα) = R(A), according to Lemma 2.1.

To prove that (i) implies (ii) suppose that x = Ay ∈ R(A) and 0 <
Reα < 1. From (8) we obtain

(12) p[(µ+A)−αx] ≤ h0(α)Mp0(x) + h1(α)(M + 1)p2(y),

where p0, p2 ∈ P.

Therefore, limµ→0+ µα(µ + A)−αx = 0. As µα(µ + A)−α are uniformly

bounded for µ > 0, by additivity, this property also holds for x ∈ R(A) and
Reα ≥ 1.

Let us finally prove that (ii) implies (iii). If 0 < Reα < 1, by applying
the operator µ1−α(µ + A)−1+α we find that limµ→0+ µ(µ + A)−1x = 0.

Therefore x ∈ R(A), since x = A(µ+A)−1x+µ(µ+A)−1x. By (10)–(12) it
easily follows that (iii) holds for x ∈ R(A) and by density, also for x ∈ R(A).
Finally, if Reα ≥ 1 we take m ∈ N such that β = Reα/m < 1 and from

Aα(µ+A)−αx− x =
[
1 +

∑

1≤j≤m−1

Ajβ(µ+A)−jβ
]
[Aβ(µ+A)−βx− x]

we deduce that limε→0+ Aα(µ+A)−αx = x.

Proposition 2.4. The operator A−α satisfies

(13) s-lim
µ→0+

(A+ µ)−α = A−α.

P r o o f. Set T = s-limµ→0+(A+ µ)−α. If x ∈ D(T ), then

lim
µ→0+

µα(A+ µ)−αx = 0,

and by Proposition 2.3 we conclude that x ∈ R(A). Also by Proposition 2.3,
taking into account that R(A) = R(AR) and (AR + µ)−αx = (A + µ)−αx,
we have

lim
µ→0+

(AR)α(AR + µ)−αx = x.

Therefore, as (AR)α is closed, we deduce that Tx ∈ D[(AR)α] and (AR)αTx
= x. Hence, by (5) it follows that x ∈ D[(AR)−α = A−α] and A−αx = Tx.
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Conversely, if x ∈ D(A−α) then x = (AR)αy for some y ∈ D[(AR)α]. By
Proposition 2.3 we obtain

lim
µ→0+

(A+ µ)−αx = lim
µ→0+

(AR + µ)−α(AR)αy = y.

Therefore, x ∈ D(T ) and the proof is complete.

According to [3], if A has dense domain and range and τ ∈ R, the
imaginary power Aiτ is the closure of the closable operator

(14) Aiτx = A1+iτy, x = Ay ∈ D(A) ∩R(A).

It is evident that Aiτ and (A+ 1)−1 commute.

Proposition 2.5. Let A be a non-negative operator with dense domain

and range and τ ∈ R. Then Aα+iτ is an extension of AiτAα.

P r o o f. Let n > Reα be a positive integer. Given x ∈ D(Aα) such that
Aαx ∈ D(Aiτ ), by (14) and additivity we have

A(A+ 1)−nAiτAαx = AiτAAα(A+ 1)−nx = A1+iτAα(A+ 1)−nx

= AAα+iτ (A+ 1)−nx

and, as A is one-to-one,

(A+ 1)−nAiτAαx = Aα+iτ (A+ 1)−nx.

The identity (3) now implies that x ∈ D(Aα+iτ ) and Aα+iτx = AiτAαx.

As a straightforward consequence, we find that if Aiτ is bounded, then
D(Aα+iτ ) = D(Aα).

We conclude this section with a result which states that restriction to
subspaces commutes with fractional powers.

Proposition 2.6. Let Y be a sequentially complete locally convex space

and A : D(A) ⊂ Y → Y be a non-negative operator. Let X ⊂ Y be a linear

subspace of Y with the same topological properties of Y (but not necessarily

a topological subspace of Y ) and suppose that the restricted operator AX is

non-negative in X. If there exists a positive integer n > Reα such that

(15) Aαx = (AX)αx for all x ∈ D[(AX)n],

then

(16) [Aα]X = (AX)α.

In particular , (16) holds if the topology of X has the following property :

(p) If (xn)n∈N ⊂ X converges to x0 in the topology of X and also con-

verges to x1 in the topology induced by Y , then x0 = x1.
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P r o o f. It is evident that (1 + AX)−nx = (1 + A)−nx for all x ∈ X.
Therefore, given x ∈ D([Aα]X) we have

(AX)α(1 +AX)−nx = Aα(1 +A)−nx = (1 +A)−nAαx.

Taking into account that Aαx ∈ X one deduces that (AX)α(1 +AX)−nx ∈
D[(AX)n]. Hence, by (3) we conclude that x ∈ D[(AX)α] and (AX)αx =
Aαx.

In a similar way, given x ∈ D[(AX)α], as

Aα(1 +A)−nx = (AX)α(1 +AX)−nx = (1 +AX)−n(AX)αx

it follows easily that x ∈ D(Aα) and Aαx = (AX)αx ∈ X.

If X has the property (p), then it is evident that (15) holds. Therefore
(16) also holds.

3. Distributional fractional powers of −∆. From now on, if Y is
a vector space included in the general space of distributions, we denote by
∆Y the restriction to Y of the distributional Laplacean, i.e., ∆Y u = ∆u for
u ∈ D(∆Y ) = {u ∈ Y : ∆u ∈ Y }. If Y = Lp, we write ∆p instead of ∆Lp .

Proposition 3.1. Neither −∆D nor −∆S are non-negative.

P r o o f. Let φ : R
n → ]0,∞[, φ ∈ D, be non-identically vanishing. Given

λ > 0, if the operator λ−∆D : D → D were surjective, then the function

[(λ−∆D)−1φ](x) =

∞�

0

e−λt(Kt ∗ φ)(x) dt

=
�

Rn

(∞�

0

e−λtKt(x− y) dt
)
φ(y) dy

would vanish outside a compact set. However, for all x ∈ R
n this function

is positive and therefore (λ−∆D)−1φ 6∈ C∞
0 . Here we have denoted by Kt

the heat kernel, i.e.,

Kt(x) =
1

(4πt)n/2
e−|x|2/(4t), x ∈ R

n, t > 0.

On the other hand, also by means of the Fourier transform, it is very
easy to show that, for λ > 0, the operator λ−∆S : S → S is bijective and
its inverse (λ−∆S)−1 is continuous. Moreover, if φ ∈ S and x ∈ R

n then

[(λ−∆S)−1φ]∧(x) =
1

λ+ 4π2|x|2
φ̂(x).



Fractional powers of the Laplacean 261

Consequently, if −∆S were a non-negative operator, then given α ∈ C such
that 0 < Reα < 1, by (2) we would obtain

[(−∆S)αφ]∧(x) =

(
sinαπ

π

∞�

0

λα−1(−∆S)(λ−∆S)−1φdλ

)∧

(x)

=
sinαπ

π

∞�

0

λα−1[(−∆S)(λ−∆S)−1φ]∧(x) dλ

=

(
sinαπ

π

∞�

0

λα−1 4π2|x|2

λ+ 4π2|x|2
dλ

)
φ̂(x)

= (4π2|x|2)αφ̂(x),

where we have used the fact that the Fourier transform is a continuous
operator from S to itself and that the convergence in the usual topology of
S implies uniform convergence.

Therefore, the function (4π2|x|2)αφ̂(x) would belong to S, which in gen-
eral is not true.

This proposition justifies the introduction of a new space, to study the
Laplacean, instead of the spaces D or S.

Definition 3.1. We denote by T the space of functions φ : R
n → C of

class C∞ such that any partial derivative belongs to L1 ∩ L∞. We endow
this space with the natural topology defined by the seminorms

|φ|m = max{‖Dβφ‖1, ‖D
βφ‖∞ : β ∈ N

n, |β| ≤ m}, φ ∈ T , m ∈ N.

Remark 3.1. It is very easy to show that T endowed with the increasing
countable family {| · |m : m ∈ N} of seminorms is a Fréchet space. However,
this space is non-normable. If it were normable, there would be an index m0

and a constant km0
≥ 0 such that |φ|m0+1 ≤ km0

|φ|m0
for all φ ∈ T . Thus,

if we take a multi-index β such that |β| = m0 +1 and a function ψ ∈ T with
Dβψ non-identically vanishing, for φ(x) = ψ(rx) (r > 1 constant) we have

rm0+1‖Dβψ‖∞ = ‖Dβφ‖∞ ≤ km0
|φ|m0

≤ km0
rm0 |ψ|m0

,

and taking limits as r → ∞ we conclude that ‖Dβψ‖∞ = 0, which is a
contradiction.

Remark 3.2. It is evident that T ⊂ Lp (1 ≤ p ≤ ∞) and also that
S ⊂ T . Moreover, it is very easy to show that the induced topology of
S is weaker than the usual topology of this space, and that D is dense in
(T , | · |m, m ∈ N). It is also easy to prove that, for all multi-indices β,
lim|x|→∞Dβφ(x) = 0 for φ ∈ T .

Lemma 3.2. If f ∈ Lp (1 ≤ p ≤ ∞) and φ ∈ T , then the convolution

f ∗ φ exists, belongs to C∞ and satisfies Dβ(f ∗ φ) = f ∗Dβφ for all multi-
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indices β. In particular , the convolution Rαφ = ψα ∗ φ is well defined if

0 < Reα < n/2 and φ ∈ T . Moreover , Rαφ ∈ C∞. If f ∈ L1, then

f ∗ φ ∈ T and the operator φ 7→ f ∗ φ is continuous in T .

P r o o f. This is an immediate consequence of the Hölder and Young
inequalities. The convolution Rαφ = ψα ∗ φ exists since ψα can be decom-
posed as ψα = µα + vα, where µα = ψαχB(0,1) ∈ L1 (χB(0,1) denotes the
characteristic function of the ball of radius 1, centered at the origin) and
vα = ψα − µα ∈ Lq with n/(n− 2Reα) < q ≤ ∞.

Theorem 3.3. The operator ∆T , restriction of the Laplacean to the space

T , is continuous and it is also the infinitesimal generator of the heat semi-

group, which is a contractive semigroup of class C0. Consequently , −∆T is

a non-negative operator.

P r o o f. It is evident that ∆T is continuous. On the other hand, as
Kt ∈ L1 and ‖Kt‖1 = 1, from the preceding lemma one deduces that Ptφ =
Kt ∗ φ ∈ T for all φ ∈ T , and

|Ptφ|m ≤ ‖Kt‖1|φ|m = |φ|m, m = 0, 1, 2, . . .

Now, by the theorem on approximations to the identity we conclude that
T -limt→0 Ptφ = φ.

A simple calculation shows that, for t, s > 0,

PtPsφ = Kt ∗ (Ks ∗ φ) = (Kt ∗Ks) ∗ φ = Kt+s ∗ φ = Pt+sφ.

Hence, we conclude that {Pt : t > 0} is a contractive semigroup of class C0.

Let A be its infinitesimal generator. We now prove that A = ∆T . Given
t0 > 0 and φ ∈ D(A) we have

T -lim
δ→0

[δ−1(Pt0+δφ− Pt0φ) − Pt0Aφ] = 0

and hence,

∂

∂t

∣∣∣∣
t=t0

[(Ptφ)(x)] = (Pt0Aφ)(x) for all x ∈ R
n.

On the other hand, as the function u(x, t) = (Ptφ)(x) is a solution of the
heat equation,

∂

∂t

∣∣∣∣
t=t0

[(Ptφ)(x)] = (∆Pt0φ)(x) = (Pt0∆φ)(x).

So, we deduce that Pt0∆φ = Pt0Aφ, and taking limits as t0 → 0 we conclude
that ∆φ = Aφ.

As in Banach spaces, it is not hard to show (see [20, Th. 1, p. 240]) that
if A is the infinitesimal generator of an equicontinuous semigroup of class
C0, then −A is a non-negative operator.
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Finally, we prove that D(A) = T . To do this it is sufficient to prove that
1 −∆T is one-to-one. Indeed, for every φ ∈ T there exists ψ ∈ D(A) such
that (1 − A)ψ = (1 −∆T )φ, since 1 − A is surjective, due to the fact that
−A is non-negative. Since ψ ∈ D(A),

(1 −A)ψ = (1 −∆T )ψ = (1 −∆T )φ

and as 1 −∆T is one-to-one we conclude that φ = ψ ∈ D(A).
To prove that 1 −∆T is one-to-one it is sufficient to take Fourier trans-

forms since if (1 −∆T )φ = 0 then

[(1 −∆)φ]∧(x) = (1 + 4π2|x|2)φ̂(x) = 0 for all x ∈ R
n

and hence φ̂ = 0, which implies φ = 0.

Remark 3.3. By means of Fourier transforms it is also very easy to show
that ∆T is one-to-one. However, this operator has non-dense range. To
prove this, consider the linear form u : φ 7→ �

Rn
φ(x) dx which is continuous

and non-identically vanishing. However, (u,∆φ) = 0 for all φ ∈ T , by the
density of D in T .

Now consider the topological dual space of T , denoted by T ′. Note that
as the topology that T induces on S is weaker than the usual topology of
this space, we find that if u ∈ T ′ then u can be identified as a tempered
distribution. Moreover, as S is dense in T , u is completely determined by
its restriction to S.

We endow T ′ with the topology of uniform convergence on bounded
subsets of T , i.e., the topology defined by the seminorms

|u|B = sup
φ∈B

|(u, φ)|, u ∈ T ′, B ⊂ T a bounded set.

In T ′ the two main requirements that we need hold: the negative of the
Laplacean is a non-negative operator and the spaces Lp (1 ≤ p ≤ ∞) are
included in T ′.

Remark 3.4. Since T is non-normable, no countable family of bounded
sets exists such that every bounded set in T is contained in this family.
Hence, T ′ is non-metrizable. However, by the Banach–Steinhaus theorem
(see [16, p. 86]), this space is sequentially complete. So, we have a non-trivial
example of a sequentially complete locally convex space where it will be very
useful to apply the theory of fractional powers developed in [12, 13].

Proposition 3.4. For all 1 ≤ p ≤ ∞, Lp ⊂ T ′ and the induced topology

of Lp is weaker than the usual topology of this space.

P r o o f. Consider f ∈ Lp and a bounded set B ⊂ T , and

k = sup
φ∈B

{‖φ‖1, ‖φ‖∞},
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which is finite since B is a bounded set. From the Hölder inequality, if q is
the conjugate exponent of p, it follows that

sup
φ∈B

∣∣∣
�

Rn

f(x)φ(x) dx
∣∣∣ ≤ sup

φ∈B
{‖φ‖q , ‖f‖p} ≤ k‖f‖p,

and thus f ∈ T ′ and |f |B ≤ k‖f‖p.

Derivation and convolution in T ′. Given u ∈ T ′ and a multi-index β,
the distributional derivative Dβu can be extended to an element (that we
also denote by Dβu) that belongs to the dual space T ′ and which is defined
by

(Dβu, φ) = (u, (−1)|β|Dβφ), φ ∈ T .

In particular, the Laplacean operator in T ′, ∆T ′ , acts as

(∆T ′u, φ) = (u,∆φ), φ ∈ T .

Given f ∈ L1 and u ∈ T ′, we define the convolution u ∗ f as the linear
form

φ 7→ (u, f̃ ∗ φ), φ ∈ T ,

where f̃(x) = f(−x). From Lemma 3.2 it follows that u ∗ f ∈ T ′.

Theorem 3.5. −∆T ′ is a continuous and non-negative operator but it

is not one-to-one.

P r o o f. Given a bounded set B ⊂ T and u ∈ T ′, as the set E = {∆φ :
φ ∈ B} is also bounded, from

|∆T ′u|B = sup
φ∈B

|(∆T ′u, φ)| = sup
φ∈B

|(u,∆φ)| = |u|E

it follows that ∆T ′ is continuous.
Let now λ > 0 and u ∈ T ′. It is very easy to prove that the linear form

v : ψ 7→ (u, (λ − ∆T )−1ψ) is continuous and (λ − ∆T ′)v = u. Therefore,
λ−∆T ′ is surjective.

On the other hand, let u ∈ T ′ be such that (λ −∆T ′)u = 0. Then, for
all φ ∈ T ,

((λ−∆T ′)u, φ) = (u, (λ −∆T )φ) = 0,

and thus u = 0 (as R(λ − ∆T ) = T , due to the fact that −∆T is a non-
negative operator).

For every bounded set B ⊂ T and u ∈ T ′, since −∆T is non-negative,
the set F = {µ(µ −∆T )−1φ : φ ∈ B, µ > 0} is also bounded and thus, for
λ > 0,

|λ(λ−∆T ′)−1u|B = sup
φ∈B

|(λ(λ−∆T ′)−1u, φ)|

= sup
φ∈B

|(u, λ(λ −∆T )−1φ)| ≤ |u|F .

We now conclude that −∆T ′ is a non-negative operator.
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Finally, as the constant functions belong to T ′ and obviously their Lap-
lacean is null we find that ∆T ′ is not one-to-one.

In the next theorem we point out a dual relationship between the oper-
ators (−∆T )α and (−∆T ′)α.

Theorem 3.6. For φ ∈ T , u ∈ T ′ and Reα > 0, we have the duality

formula

((−∆T ′)αu, φ) = (u, (−∆T )αφ).

P r o o f. Let m > Reα > 0 be a positive integer, φ ∈ T and u ∈ T ′.
Since ∆T ′ is continuous,

Γ (α)Γ (m− α)

Γ (m)
((−∆T ′)αu, φ) =

(∞�

0

λα−1[(−∆T ′)(λ−∆T ′)−1]mu dλ, φ
)

=

∞�

0

(λα−1[(−∆T ′)(λ−∆T ′)−1]mu, φ) dλ

=

∞�

0

(u, λα−1[(−∆T )(λ−∆T )−1]mφ) dλ

=
(
u,

∞�

0

λα−1[(−∆T )(λ−∆T )−1]mφdλ
)

=
Γ (α)Γ (m− α)

Γ (m)
(u, (−∆T )αφ),

where the first and last identities follow from (2); the second one is a con-
sequence of the fact that the convergence in T ′ implies weak convergence;
the third one can be justified by the duality relations between (λ−∆T ′)−1

and (λ −∆T )−1; and, finally, the fourth one is an immediate consequence
of the continuity of u.

4. Riesz potentials. In this section we obtain a relationship be-
tween the Riesz potentials and the fractional powers of the negative of the
Laplacean operator in the spaces T and T ′. As a consequence, we deduce
some interesting properties of the operator Rα.

Lemma 4.1. If 0 < Reα < n/2 and φ ∈ T , then

(17) (−∆T )n−αφ = Rα(−∆)nφ = (−∆)nRαφ.

P r o o f. By (2),

(−∆T )n−αφ =
Γ (n)

Γ (α)Γ (n− α)

∞�

0

λn−α−1[(λ−∆T )−1]n(−∆T )nφdλ.



266 C. Mart ı́nez et al.

On the other hand, as (λ−∆T )−1 is the Laplace transform of the heat
semigroup Pt, it easily follows (see [20, p. 242]) that

[(λ−∆T )−1]nψ =
1

(n− 1)!

∞�

0

tn−1e−λt(Kt ∗ ψ) dt, ψ ∈ T .

If ψ = (−∆T )nφ, as the T -convergence implies pointwise convergence, we
have

((−∆T )n−αφ)(x)

=
1

Γ (α)Γ (n− α)

∞�

0

λn−α−1
(∞�

0

tn−1e−λt(Kt ∗ ψ)(x) dt
)
dλ

for all x ∈ R
n. Interchanging the order of integration gives

((−∆T )n−αφ)(x) =
1

Γ (α)

∞�

0

tα−1(Kt ∗ ψ)(x) dt,

since Γ (n− α)
−1 � ∞

0
λn−α−1e−λt dλ = tα−n. Note that we can apply the

Tonelli–Hobson theorem since 0 < Reα < n/2 and

|(Kt ∗ ψ)(x)| ≤ ‖Kt‖∞‖ψ‖1 =
1

(4πt)n/2
‖ψ‖1,

|(Kt ∗ ψ)(x)| ≤ ‖Kt‖1‖ψ‖∞ = ‖ψ‖∞.

In a similar fashion
∞�

0

tα−1(Kt ∗ ψ)(x) dt =
�

Rn

( ∞�

0

tα−1Kt(y) dt
)
ψ(x− y) dy

since
∞�

0

tα−1Kt(y) dt =
Γ (n/2 − α)

22απn/2
|y|2α−n.

This proves the first identity. The second one follows from Lemma 3.2.

It is known that if 1 < p < ∞, then −∆p is non-negative, with dense
domain and range.

Proposition 4.2. If 1 ≤ p < n/(2Reα), then Rαf ∈ R(∆T ′) for all

f ∈ Lp. Moreover

(18) (−∆T ′)n−αf = (−∆)nRαf.

P r o o f. Let us first prove that Lp ⊂ R(∆T ′) for 1 ≤ p <∞.
If 1 < p < ∞, we know that Lp is the Lp-closure of R(∆p) which by

Proposition 3.4 is included in the T ′-closure. Thus, Lp ⊂ R(∆T ′). More-
over, as Lp is dense in L1 one also deduces that L1 ⊂ R(∆T ′).
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Let f ∈ Lp. By the Young inequality, the condition 1 ≤ p < n/(2Reα)
implies that Rαf can be decomposed as Rαf = g+h, where g ∈ Lp, h ∈ Lr

and r > 0 is such that 1/r < 1/p− 2Reα/n. Therefore Rαf ∈ R(∆T ′).
By Theorem 3.6 and (17), the proof of (18) reduces to proving that for

f ∈ Lp,
�

Rn

(Rαf)(x)φ(x) dx =
�

Rn

f(x)(Rαφ)(x) dx for all φ ∈ T ,

and this identity easily follows from the Tonelli–Hobson theorem.

In the following result, ∆R denotes the restriction of the distributional
Laplacean to R(∆T ′).

Theorem 4.3. If 1 ≤ p < n/(2Reα), then Lp ⊂ D[(−∆R)−α] and

(19) (−∆R)−αf = Rαf for all f ∈ Lp.

P r o o f. Let f ∈ Lp. By applying (λ−∆T ′)−n (λ > 0) to both sides of
(18) and taking into account that (−∆T ′)n−α commutes with this operator
we obtain

(λ−∆T ′)−n(−∆T ′)n−αf = (−∆T ′)−α(−∆T ′)n(λ−∆T ′)−nf

= (λ−∆T ′)−n(−∆T ′)nRαf.

Since f and Rαf belong to R(−∆T ′), taking limits as λ → 0 we conclude
that f ∈ D((−∆T ′)−α) and (−∆T ′)−αf = Rαf . Finally, from (6) one
deduces (19).

Corollary 4.4 (Additivity). If Reα > 0, Reβ > 0 and Re(α + β) <
n/(2p), then

(20) RβRαf = Rα+βf for all f ∈ Lp.

P r o o f. Let f ∈ Lp. The existence of Rα+βf and Rαf is evident.
Moreover, from Theorem 4.3 one deduces that Rαf = (−∆R)−αf and
Rα+βf = (−∆R)−α−βf.

As we have already seen in the proof of Proposition 4.2, Rαf = g + h,
with g ∈ Lp and h ∈ Lr, for all r > 0 such that 1/r < 1/p − 2Reα/n. It is
clear that Rβg exists and, if we take 1/r > 2Re β/n, so does Rβh. Hence,
RβRαf exists.

Theorem 4.3 implies that RβRαf = (−∆R)−βRαf. From the additivity
of the fractional powers we now deduce (20).

Corollary 4.5. Let X ⊂ L1+Lp (1 ≤ p <∞) be a sequentially complete

locally convex space which has property (p) of Proposition 2.6 with Y = T ′.
Then, if the operator −∆X is non-negative, the identity

(21) (−∆X)−α = [Rα]X , 0 < Reα <
n

2p
,
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holds. In particular ,

(22) (−∆p)
−α = [Rα]p.

P r o o f. This is an immediate consequence of Theorem 4.3 and Proposi-
tion 2.6.

Remark 4.1. The identity (21) can be applied in some interesting spaces
such as

X = Lr + Ls, 1 ≤ r ≤ s ≤ p,

with its usual norm, or

X = {f ∈ Lr1 + Ls1 : ∆f ∈ Lr2 + Ls2}, 1 ≤ rk ≤ sk ≤ p, k = 1, 2,

with the graph norm.

Another consequence of (21) is that Rα is one-to-one in L1 + Lp.

From the general properties of the fractional powers of −∆p we deduce
the following results:

Corollary 4.6. The following properties hold :

(i) If α, β ∈ C are such that 0 < Reα < Reβ < n/(2p), then

D([Rβ ]p) ⊂ D([Rα]p).

(ii) If 1 < p < n/(2Reα), β ∈ C and Reα = Reβ, then

(23) D([Rα]p) = D([Rβ ]p).

P r o o f. The first assertion follows from (22) and the additivity of the
fractional powers.

On the other hand, it is known (see [15]) that if 1 < p < ∞ and τ ∈ R,
then (−∆p)

iτ is bounded. Therefore, Proposition 2.5 yields (23).

Following [7] we introduce the notion of ω-sectoriality. Given ω ∈ ]0, π],
we say that a closed linear operator A : D(A) ⊂ X → X is ω-sectorial if
the spectrum of A satisfies

σ(A) ⊂ Sω = {z ∈ C \ {0} : |arg z| < ω} ∪ {0}

and the operators z(z −A)−1 are uniformly bounded for z 6∈ Sω. Kato and
Hille proved (see [6, p. 384] and [7]) that if A is ω-sectorial, 0 < ω < π/2,
then −A is the infinitesimal generator of an analytic semigroup of amplitude
π/2 − ω. Conversely, if {T (z) : z ∈ Sτ \ {0}}, 0 < τ ≤ π/2, is an analytic
semigroup and −A is its infinitesimal generator, then A is (π/2 − τ + ε)-
sectorial for 0 < ε < τ .

It is known (see [2]) that if 1 ≤ p < ∞, then the operator ∆p is the
infinitesimal generator of the heat semigroup, which is analytic. Hence, −∆p

is (π/2 − δ + ε)-sectorial for δ = arctan 1
ne and 0 < ε < δ. If 1 < p < ∞,
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by means of the Mikhlin multiplier theorem it can be proved (see [15]) that
−∆p is ε-sectorial for all ε > 0.

Corollary 4.7 (Sectoriality). If 1 < p <∞ and 0 < α < n/(2p), then

[Rα]p is ε-sectorial for all ε > 0. Moreover

σ([Rα]p) = [0,∞[.

Consequently , −[Rα]p is the infinitesimal generator of an analytic semigroup

of amplitude π/2.

If 0 < ε < δ = arctan 1
ne and 0 < α < min

{
n
2 ,

π
π/2−δ+ε

}
, then −[Rα]1 is

a non-negative operator.

P r o o f. It is known (see [7, Th. 2]) that if A is ω-sectorial and 0 <
α < π/ω, then Aα is αω-sectorial. On the other hand, from the identity
z(z +A)−1 = A(z−1 + A)−1 it follows that if A is a one-to-one, ω-sectorial
operator, then A−1 is also ω-sectorial. Hence, by (22) we deduce the sector-
iality properties of [Rα]p.

The identity σ([Rα]p) = [0,∞[ follows from (22) and the spectral map-
ping theorem for fractional powers (see, for instance, [12]). Finally, from
[7] one deduces that −[Rα]p is the infinitesimal generator of an analytic
semigroup of amplitude π/2.

Remark 4.2. Note that −[Rα]1 does not generate any strongly C0-
semigroup since its domain is not dense.

Corollary 4.8 (Multiplicativity). If 1 < p < ∞, 0 < α < n/(2p),
β ∈ C and 0 < αRe β < n/(2p), then

([Rα]p)
β = [Rαβ ]p.

If 0 < ε < δ = arctan 1
ne , 0 < α < min

{
n
2 ,

π
π/2−δ+ε

}
, β ∈ C and 0 <

αReβ < n/2, then

([Rα]1)
β = [Rαβ ]1.

P r o o f. The proof is an immediate consequence of (22) and the multi-
plicativity of the fractional powers (see, for instance, [19] and [14]).

Given α ∈ C+ and ε > 0 we consider the function

Gα,ε(x) =
1

(4π)αΓ (α)

∞�

0

e−π|x|2/te−εt/(4π)t−n/2+α−1 dt, x ∈ R
n, x 6= 0.

It is easy to check that Gα,ε ∈ L1 and that its Fourier transform is Ĝα,ε(x) =
(ε+ 4π2|x|2)−α (see, for instance, [17, p. 131]).

The Bessel potential of degree α acting on a function f locally integrable
on R

n is defined by the convolution Bα,εf = Gα,ε ∗ f, if this convolution
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exists. As a consequence of the Young inequality, the operator

[Bα,ε]p : Lp → Lp, f 7→ Gα,ε ∗ f,

is bounded.

Theorem 4.9. If 1 ≤ p <∞, ε > 0 and Reα > 0, then

(ε−∆p)
−α = [Bα,ε]p.

Moreover , if 1 < p < n/(2Reα), then

(24) s-lim
ε→0+

[Bα,ε]p = [Rα]p.

The operator [Rα]1 is a proper extension of s-limε→0+ [Bα,ε]1.

P r o o f. The Fourier transforms satisfy

(25) [(ε−∆p)
−αf ]∧(x) = (ε+ 4π2|x|2)−αf̂(x), a.e. x ∈ R

n, f ∈ S.

Since (ε −∆p)
−α and [Bα,ε]p are both bounded, by density, from (25) one

deduces that (ε−∆p)
−α = [Bα,ε]p.

Finally, (24) is an immediate consequence of Propositions 2.2 and 2.4,
taking into account (22).
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