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Kadec norms and Borel sets in a Banach space
by
M. RAJA (Bordeaux)

Abstract. We introduce a property for a couple of topologies that allows us to give
simple proofs of some classic results about Borel sefs in Banach spaces by Edgar, Schacher-
mayer and Talagrand as well as some new resuits. We characterize the existence of Kadec
type renormings in the spirit of the new results for LUR spaces by Moltd, Orihuela and
Troyanslki.

1. Introduction. Throughout this paper (X, |||} will denote a Banach
space, X its dual, w and w* the weak and weak* topologies respectively.
Bx (resp. Bx+) denotes the unit ball of X (resp. X*). Sx will be the
unit sphere of X. We shall also consider topologies on X of convergence
on some subsets of the dual space. A subset of Bx~ is said to be norming
(resp. quasi-norming) if its w*-closed convex envelope is Bx~ (resp. if the
envelope contains an open ball centered at the origin).

A norm | - || on X is said to have the Kadec property when the weak
and norm topologies coincide on the unit sphere. A norm is said to be
locally uniformly rotund (LUR) if for every sequence (z,,) in the unit sphere
and for every point z in the unit sphere such that lim, |z, + z|| = 2 the
sequence () converges to x in norm. LUR norms have the Kadec property.
For the proof of this fact and other properties of Banach spaces having an
equivalent LUR norm we refer to the book [4]. There exist Banach spaces
having a Kadec norm and admitting no equivalent LUR norm [11].

Edgar [5] proved that in a Banach space which admits an equivalent
Kadec norm the Borel o-algebras generated by the weak and norm topolo-
gies coincide. He also noted that an analogous result also helds when the
Kadec property holds for the weak® topology. Schachermayer [6] proved
that a Banach space X that has an equivalent Kadec norm is a Borel set in
(X**,w*). Talagrand [26] showed that the previous two results are not true
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2 M. Raja

for general Banach spaces, but he proved [25] that for subspaces of weakly
compactly generated spaces the Borel sets for the topology of pointwise con-
vergence on a quasi-norming subset of the dual space and the norm Borel
sets are the same.

Jayne, Namioka and Rogers [15] introduced the notion of a countable
cover by sets of small local d-diameter (SLD) (see Definition 2) for a topo-
logical space with respect to some metric d and they noted that if a Banach
space X has an equivalent Kadec norm. then {X, w) has SLD with respect to
the norm, which implies the coincidence of the Borel sets for the norm and
weak topologies. In fact, property SLD implies the coincidence of the Borel
sets for the original topology and the metric in a wider topclogical context.
Oncina [22] has made a deep study of property SLD showing that a Banach
space with SLD for the weak topology with respect to the norm is a Borel
set in its bidual. Another approach to the coincidence of the Borel sets and
related properties has been given by Hansell in his unpublished preprint [10]
using the notion of descriptive topological space. In the context of a Banach
space endowed with its weak topology, Hansell's notion of descriptive space
is equivalent to property SLD, as pointed out by Molté, Orihuela, Troyanski
and Valdivia [20].

Recently Moltd, Orihuela and Troyanski [19] have characterized the Ba-
nach spaces which admit an equivalent LUR norm as those spaces X such
that (X, w) satisfies a special case of norm SLD: X has an equivalent LUR
norm if and only if {X,w) satisfies Definition 2 below and the weak neigh-
bourhood there is a slice (the intersection with an open half space). See also
the comments after Theorem 2.

Our aim in this paper is to show that all the above mentioned positive
results on coincidence of Borel g-algebras and the Borel nature of a Banach
space in its bidual stem from a common topological principle which can be
used to characterize the existence of Kadec type norms in a Banach space.

In Section 2 we introduce a useful condition (Definition 1) for a couple of
topologies that gives a natural approach to the study of Borel sets (Propo-
sition 3). When one of the topologies is given by a metric, our property is
equivalent to property SLD (Definition 2, Proposition 2).

In Section 3 we use the framework of topological vector spaces to study
the relation between property SLD and the existence of Kadec type equiv-
alent norms. In particular we show that if X is a Banach space such that
(X, w) has SLD then the weak and norm topologies coincide on the level sets
of some positive homogeneous function (Theorem 1), We also characterize
the existence of an equivalent Kadec norm (Theorem 2) in the spirit of the
recents results on LUR norms by Molt, Orihuela and Troyanski [19].

In Section 4 we apply the previous results to WCD Banach spaces tak-
ing advantage of the existence of a LUR norm to build Kadec norms for
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topologies weaker than the weak topology (Theorem 3) and to show the co-
incidence of Borel sets improving a result by Talagrand. As an application
to nonmetric topologies we finish by showing that if K is a Radon-Nikodym
compact set then C(K) has an equivalent norm such that the weak and
pointwise topologies coincide on the unit sphere (Theorem 4).

Part of the results of this paper have been announced in [23].

Acknowledgments. I want to express my thanks to R. Deville, B. Cas-
cales, L. Oncina, J. Orihuela and A. Pallares for fruitful discussions, and
especially to G. Vera who first introduced me to analysis.

2. Topological results. We begin with the main definition of this paper.
Actually the idea is implicit in [25]. We recall that a network for some

topology is a family of sets not necessarily open such that every open set,
can be written as a union of sets in the family.

DerinTIoN 1. Let X be a set, and 71 and 7 two topologies on X. A
subset A C X is said to have property P(r,7s) if there exists a sequence
(An) of subsets of X such that the family (4, NT) where n € N and U € 7
is a network for 71, that is, forevery z € A and every V e 7y witha € V
thereexist n € Nand U € msuch that z € A, NU C V.

Evidently, if 7y C 73 then X has P(ry, 73), but this case is not interesting.
The relevant case happens when m» C 71, for instance, in applications to
Banach spaces 1 and 73 will be the norm and the weak topology respectively.
If 71 has a countable basis (V) then X has P(7y, 7o) for any 73, because we
can take A, = V,,. This happens in particular when (X,71) is metrizable
and separable. In fact, we shall use the property introduced in Definition 1
to extend results valid for separable spaces to nonseparable spaces.

Observe that if we take the sequence (A4, MNA) we can always suppose that
An C A. That means that property P(y,72) only depends on A equipped
with the relative topologies.

To check P(r,m) for a given A it is enough to verify the above set
inclusion for all the Vs belonging to a sub-basis of 71, because then A will
have P{r;, m5) with the countable family of the finite intersections of sets of
the sequence (4,).

The following proposition contains some other elementary consequences
of Definition 1.

PropPOSITION 1. Let X be o set, 7, 72 and 73 topologies on X, and A «
subset of X. Then:

(i) If A has P(r1,72) and B C A then B has P(r1,72).
(ii) If A has P(r1,72) and P(72,73) then A has P(ry,7s).
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(iil) If every point of A has a T3-basis of neighbourhoods which is made
up of my-closed sets then the sequence (A,,) in Definition 1 can be taken to
consist of To-closed sets.

(iv) If every set A, of Definition 1 is -Borel then for every V € 1y such
that A C V, there is a m-Borel set B satisfying A C B C V. In particular,
if A is T -open, or more generally, if A is a Gs-set for the T -fopology, then
A is m-Borel,

Proof. (i) Use the same sequence (A4,).

(ii) If (By,) is a sequence for P(7,7s) then it is easy to check that
(An, N By,) satisfies the condition of Definition 1 for P(r, 73).

(ili) Fix © € A. Take V' € 7 with = € V. Take V; € 7y such that x € j
and V{? C V. There exist A, and U € 7 such that z € A,, NU C V. Thus

ceANUCANU " cVy cV.
(iv) For every « € A there exist n, € N and U, € 7 such that z ¢
An, NU; C V. Now we have

A=l 4nnle= D (4 J B) =BV
z€A z€A n=1 g ==

where B is clearly in Borel(X, 7).
If A=-2, Vo where V,, € 7, we can take 7o-Borel sets (By,) such that
ACB,CV,. Then A=(2, B,.

A particularly interesting case occurs when 7 is metrizable. In this case
the property introduced in Definition 1 agrees with the following one given
by Jayne, Namioka and Rogers in [15], which is a special case of their o-
fragmentability.

DerINITION 2. Let (X, 7) be a topological space and let d be a metric
on X. Then X has a countable cover by sets of small local diameter (SLD)
if for every e > 0 there exists a decomposition

[s.]
x=Jx
n=1
such that for each n € N every point of Xt has a relative T-neighborhood
of diameter less than .

A Banach space X is said to have countable Szlenk index if for every
g > 0, there is a decreasing transfinite countable sequence (Cy) of subsets
such that Bx = |J,{Ca\ Cay1) and every point of O, \ Cyq1 has a relative
weak neighbourhood in (), of diameter less than £. These spaces have been
considered by Lancien [18]. Clearly, if X has countable Szlenk index, then
(X, w) has ||-]|-SLD. However, a separable Banach space X without the Point
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ﬁf Tliontinuity Property does not have countable Szlenk index but (X,w) has
- ||-SLD.

PROPOSITION 2. Let (X,7) be o topological space and d a metric on X.
Then X has o countable cover by sets of small local digmeter if and only if
X has P(d, 7). Moreover, if the closed d-balls are -closed then, the sets X7
in Definition 2 can be taken to be differences of T-closed sets. "

Proof. If X; are the sets of Definition 2 it is easy to check that the
sets (An) obtained by arranging ( R "™)nm into a sequence by a diagonal

process satisfy the condition of Definition 1.
For the other implication, given £ > 0 just define

Xo={z€d,:Wer eV, diam(4,NU) < ¢}.
The “moreover” part is a consequence of Proposition 1(iii).

The following result shows the good Borel behavior of a topological space
(X, 7) that has P(d, 7) for some appropriate metric d. The statement (a)
has already been noted by Jayne, Namioka and Rogers in [15] and [17], in
terms of property SLD.

PrOPOSITION 3. Let (Y, 7) be a topological space and d o mefric on Y
stronger than 7 and such that closed d-balls are 7-closed. Let X be o subset
of Y having P(d, 7).

(a) Considering X with the inherited topologies we have
Borel(X, 7) = Borel( X, d).
(b) If X is d-closed in ¥ then X € Borel(Y, 7).

Proof. (a) Evidently every 7-Borel set is a d-Bore! set. Conversely, if
V' C X is a d-open set then it has P(d, 7). As closed d-balls are T-closed we
can apply Proposition 1(iii), (iv) to conclude that V is 7-Borel.

(b) Since X is a Gj-set in (Y, d), the result follows from Proposition 1(ii),

(iv).

The next corollary embraces the applications of property SLD to Banach
spaces by Jayne, Namioka and Rogers [15], Oncina [22] and Hansell [10]
(this last using the notion of descriptive space) that improve preceding ones
by Bdgar [5] and Schachermayer [6] on Banach spaces admitting Kadec
norms. We shall prove later that Banach spaces having P(| - ||, 7) are not

very different from Banach spaces that admit an equivalent Kadec norm
(Theorem 1).

CoroLLARY 1. Let X be a Banach space and v a vector topology weaker
than the norm topology and such that "B_;{ is bounded.
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(a) If X has P(||-||,7), then Borel(X, || - ||) = Borel(X, r).
{(b) If X has P(||-||,w}, then X € Borel{X™, w*).

Proof. Note that B is the unit ball of an equivalent norm on X whose
closed balls are 7-closed. Then apply Proposition 3.

Let us remark that E;C is bounded, for instance, when 7 is the topology
of convergence on a norming or a quasi-norming subset of X*.

We now give an application of Proposition 3 to descriptive topology.
Following Fremlin (see [16]), a completely regular topological space X is
Cech-analytic if for every finite sequence s of positive integers there is a set
A(s) open or closed in the Cech—Stone compactification of X such that

x=J ) Aloln)

e n=1

where ¢|n denotes the finite sequence made up from the first n terms of
the sequence o. The notion of Cech-analytic space has some interest in the
context of nonseparable and nonmetrizable topological spaces (e.g. a Banach
space endowed with its weak topology), where the classical descriptive set
theory is not applicable in general. We refer the interested reader to [16] and
[10] for more information about Cech-analytic spaces and their applications
to Banach spaces.

COROLLARY 2. Let (X, 7) be a topological space. Suppose that there is a
set T such that X can be identified as a subspace of RY with the poinfwise
topology which is made up of bounded functions and is complete for the
metric d on X of uniform convergence on T. If X has P{d,7), then X is
a Borel subset of BT, in fact a pointwise (F N G)gs, and (X,7) is Cech-
analytic.

Proof. We can assume that d is defined on R” and it is stronger than
the pointwise topology with pointwise d-closed balls. As X is complete for
d, it is d-closed in RT and we finish by applying the proofs of Propositions 1
and 3.

According to [16] a sufficient condition for (X, 7) to be Cech-analytic is
being homeomorphic to a Borel subset of some compact space. The reasoning
above shows that X N[—n, n]7 is Borel in [-n, n|7, so it is Borel in RT where
R is the two-point compactification of R. Now, as X = [Jo°, X N [-n,n]T
it is a Borel set in the compact RT.

Hansell [10] proves that a descriptive topological space is always Cech-
analytic, in particular, every Banach space X such that (X, w) has ||-||-SLD
is Cech-analytic (see [20]). Corollary 2 contains more information about the
structure of X in that particular case.
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Under thc'a hypothesis of Corollary 2, it is easy to show that every d-Borel
subset of X is pointwise Borel in RT and analogously éech—ana,lytic.

3. Kadec norms. It is convenient for our purposes to give a more

general definition of Kadec norms involving topologies different from the
weak topology.

DEFINITION 3. Let X be a Banach space and 7 a vector topology weaker
than the norm topology. An equivalent norm || - || is said to be 7-Kadec if
the norm topology and 7 coincide on the unit sphere of || - |

The next result appears in [1].

| PROPQSITION 4. A 7-Kadec norm || - || is 7-lower semicontinuous, that
is, ibs wunit ball is always T-closed.

Proof. Suppose that || - || is not 7-lsc. Then there is a net (z.) on
the unit sphere Sy and a point z outside the unit ball Byx such that 7-
lim,, @, = 2. Take numbers £, > 1 such that |z + t, (2, — z)]| = ||z]. Let
Yo = T+ty (2, —). Note that {t,} is bounded because inf,, ||z, ~z| > 0. We
deduce that 7-lim,, ., = 2. Since |ly,|| = ||2f| we should have lim,, |y —zl} =
0, but this is impossible because ||y, — z|| > ||z, — =|.

As mentioned in the introduction, LUR norms provide examples of norms
with the Kadec property. In fact, it is not difficult to prove that a r-lower
semicontinuous LUR norm is 7-Kadec. At this point it is important to re-
mark that if the unit ball of a Banach space is 7-closed for some vector
topology 7, then the new unit ball after a renorming is not necessarily
7-closed. For example, there exists a dual Banach space that admits an
equivalent LUR norm but no equivalent dual LUR norm (see the remarks
after Theorem 3).

Given two topologies 71 and 75 on X and a family X of subsets of X we
shall say that X is good ot z € X if for every V € 71 with z € 7y there exist
SeXand U emsuchthat s € SNU C V. A good family means a family
good at every point of X. It is easy to see that a family X covering X such
that on every § € X the topologies 7 and 7 coincide is good and property
P(7y,79) is equivalent to the existence of a countable good family.

The following lemma shows how to make a good family of “thick” sets
from a good one made up of “thin” sets.

LemMMA 1. Let X be a vector space, 7o C 71 vector topologies on X and
£ a family good at some x € X. Then the Jamaly

{§+W:5e¢X, 0eWemn}
is good at . Thus, if £ and I are families of subsets of X such that for
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every § € X and every W € m with 0 € W there exisis P € IT such that
SCPCS+W
then IT i3 good if and only if &' is.

Proof Given Ve withz ¢ V weshallfind S 2,0 W € 1, and

U € 7 such that
ze(S+W)nUCYV,

As 0+ 2 € V we can take W1,V € =y with 0 € Wy, 2z € V' and
Wi+ V' c V. Since X is good at z there are 5 € £ and U’ € 73 such that
zeSNU cV . AsO+zecU' wecan find Wo, U e p with0e Wy, 2z € U
and Wy + U C U’. Now take W = W1 N {—~W>) € 7. We show that U and
W satisfy the above set inclusion. If ¥ € (S + W) N U then there is z € §
such that y — 2 e WC —Wasoz2=(z~y)+ye U thusze SNU ' C V',
Nowasy—-zeW CWywehavey=(y—z2)+z¢eV.

The applications of Kadec type norms to the results developed in Sec-
tion 2 are contained in the following lemma.

LeMMA. 2. Let (X, || - ||} be a normed vector space, and 19 C 11 be vector
topologies on X weoker than the norm topology. Suppose that there exists a
positive homogeneous function F on X such thal:

(a) F(x) = c||z|| for some c > 0.
{(b) 71 and Ty coincide on the set S ={z e X : F(z) = 1}.

Then X has P(r1, 7). In particular, if X is a Banach space that admits
an equivalent T-Kadec norm for some weaker vector topology T then X has

P [ly7)-

Proof. Consider the following families of sets: ¥ = {S(t) : t & [0,00)}
and the countable one IT = {A(r,s) : r,5 € Q, 0 < r < s} where

St)={ze X :Flz)=t}, Alrs)={zeX:r<F(z)<s}
If W € 1 is a neighbourhood of ¢ then it contains some ball B[0, 8]. It is
easy to see that for § small enough
S(t) C Alt —ed, t+eb) C S(t) + W.

The result follows from Lemma 1.

Combining Proposition 1, Corollary 1 and the previous lemma we easily
obtain the theorems of Edgar and Schachermayer. Note that a more direct
proof of Edgar’s theorem just needs a special case of Lemma 1 and the idea

of point (iv) of Proposition 1. Schachermayer’s theorem moreover needs
Proposition 1(iii). '

CoroLLary 3. Let X be o Banach space that admits an equivalent Kadec
norm. Then Borel(X, || - ||) = Borel( X, w) and X € Borel(X**, w*).
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The next theorem is the main result of this section. It provides a converse

of Lemma 2 in the metric case. A partial similar result has been proved by
Lancien [18].

THEOREM 1. Let X be a Banach space and T a vector topology coarser

than the norm topology such that By is bounded. Then the following are
equivalent:

(1) X has P(|| - ||,7) (equivalently, (X, 7) has | - ||-SLD).
(il) There ezists a nonnegative symetric homogeneous T-lower semicon-

tinuous function F on X with ||- || < F < 3||- || such that the norm topology
and T coincide on the set § = {r € X : F(z) = 1}.

Proof. (ii)=-(i). This is in fact Lemma 2.

(i)=(ii). Assume that X is endowed with a T-lower semicontinuous equiv-
alent norm || - ||. B(0,a) and B[0, o] are the open and closed balls of center
0 and radius a. As usual Bx = B[0,1].

Suppoge that X has P({ - |[,7) with a sequence (A,). We can suppose
every A, is star shaped with respect to 0 and norm open. To see that, we
are going to modify the sequence in several steps.

STEP 1. Take A], = A, N Bx.
SteP 2. Take

Al ={tz:0<¢<1, ze A}

We now check that (A;) is good for the points of the unit sphere Sx. Let
z € Sx and € > 0. Applying Lemma l wecan find U € 1, n e N and § > 0
such that z € A, NU and diam((A}, + B(0,8))NU) < e. Now it is clear that

AL (UN\BJ0,1—8]) C (A -+ B(0,6)nT.

Thus U’ = U\ B[0,1 - §] € 7 satisfies z € A NU’ and diam{A” N T’) < &,
STEP 3. The family

{rA, +B(0,8):neN, r>0,6>0, rd Q)

is good for X by Lemina 1. Renumbering this family vields the desired (4,).

Clearly the sets E; are star shaped with respect to 0. Let f, be the
Minkowski functional of 4. Since A == {f, < 1} the function fn i T-lower
semicontinuous. Let || f,|! be the supremum of |f.(z)| with ¢ € By. The
function F' given by the formula

o) =l + Y o - 228 S0 L L)
n=1

E P ¢

is T-lower semicontinuous and symmetric.

=1



10 M. Raja

Let (z,) C S be a net T-converging to some z € S. From the 7-lower
semicontinuity of || - i| and f, we have

2] < i of o, |
falz) € lin}uinf Falzw),
Fal—2) < lin}uinf Fal—2u).

On the other hand, it is not difficult to see that

1> hmmf |le it + Z o hm inf folz,) -+ Z 7

lim fnf Fr(—2u).

IEf i i]f i

Since F(z) = 1, a simple reasoning with lim sup gives the following equalities
and the existence of its left members:

t | = le],
h‘infn(mw) = fn("q-:)a
li}}lfn(_‘-'l’w) = fn(—flf),

for every n € N.

Fix ¢ > 0. By the proof of Proposition 1{iii) there exist n € Nand I/ € 7
such that z € A, N U and diam(A, NU) < &. In particular, as A4, is norm
open then f,(z) < 1 so for w large enough f.{z.) < 1 and thus z. € ﬁ;.
Since for w large enough we have z,, € U we obtain ||z, — | € . This
proves that the net {z,) converges to x in norm, so the norm topology and
T coincide on 5.

Clearly the constant 3 in statement (ii) of the preceding theorem can
be replaced by any constant greater than 1. In fact every function of the
form || - || + aF with a > 0 has the same property. This also shows that the
norm can be approximated uniformly by functions with the Kadec property
provided at least one such function exists.

Note that S is a norm Gy-set in B = {z € X : F(z) < 1}, thus (5,7) is
completely metrizable.

A remarkable theorem of Kadec (see [2, p. 177]) shows that every sepa-
rable Banach space has an equivalent +-Kadec norm for the topology 7 of
convergence on a fixed quasi-norming subset of its dual space. The follow-
ing result characterizes the existence of T-Kadec norms in general Banach
spaces extending Kadec’s theorem.

TuroREM 2. Let X be a Banach space and 7 o weaker topology such that
B, x ts bounded. Then X has an equivalent T-Kadec norm if and only if X
has P(||-l, 7) where the sets (Ay,) in Definition 1 are convex, in other words,

Kadec norms and Borel sets 11

if there exist conver sets A, C X such that for every x € X and every € > 0
there are n € N and U € 7 such that © € A, N U and diam(4, NU) <.

Proof. If we begin with (4,) convex in the proof of Theorem 1 it is
easily checked that all the families of sets built there are still convex. Thus
F is subadditive and so it is an equivalent 7-Kadec norm.

For the converse assume that the norm of X is r-Kadec. The proof of
Lemma 2 shows that X has P(|| - ||,7) with a sequence of differences of
closed balls centered at 0. As the closed balls are 7-closed we deduce that
the sequence of closed balls with rational radii satisfies what is required.

We do not know if property P(|| - ||, w) implies the existence of an equiv-
alent Kadec norm,

Recently Molté, Orihuela and Troyanski [19] have given a characteriza-
tion of the existence of an equivalent LUR norm in a Banach space using
a variant of Definition 2. Their result can be reformulated in similar terms
to those of Definition 1 as follows: a Banach space X admits a LUR norm
if and only if there exists a sequence of sets A, C X such that for every
z € X and every e > 0 there is n & N and an open semispace U such that
z € Ay NU and diam(A, NU) < e. Note that the topological counterpart
of this result is Theorem 1 applied to the weak topology but to deduce that
the function F is in fact a Kadec norm we did need a geometric assumption
about the sets A4,,.

4. Applications. A Banach space X is said to be weakly countably
determined (WCD) if there exists a sequence (K,) of w*-compact subsets
of X** such that for every v € X and every y € X** \ X thereisn € N
with ¢ € Ky, and y € K.,,. WCD Banach spaces generalize in a natural way
the weakly compactly generated Banach spaces (WCG), that is, the spaces
containing a total weakly compact set. A WCD Banach space admits a LUR
norm [28].

The coincidence of Borel families in the following theorer improves one
by Talagrand [25] for subspaces of WCG Banach spaces.

THEOREM 3. Let X be a WCD Banach space and let T be o Hausdorff
vector topology wem{ er than the weak topology of X. Then X has P(|-|, 7).
Moreover, if BX 15 bounded then X alsc admits o 7-Keodec norm topology
and

Borel(X, || - |) = Borel(X, 7).

Proof. We can assume without loss of generality that the sequence

{K,) is closed under finite intersections. We claim that the sequence of w*-

closed convex hulls {co(Kn)w } also satisfles the above definition. Indeed,
fix x € X and y € X** \ X. The set K = Neek,, Kn Is a weakly compact
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set of X containing z. Now, since co(K )w is a weak*-compact convex set
not containing y, there is a weak*-open half space H such that z € H and

y & H . By compactness, there is n € N such that z € K,, ¢ H. As

co(K,) € H" weseethat z ¢ co(K,) andy ¢ co(Kn)w . This ends
the proof of the claim.

First we check that X has P(w,r). For every x € X define

Se= [ Kn.

Fige= T

By definition of WCD it is clear that S, is a weakly compact subset of X.
If we take {5;} as X and the traces on X of finite intersections of X.,’s as a
countable family I7, then the conditions in Lemma 1 are satisfied. Indeed,
2 covers X, and 7 and w coincide on every S, by compactness, so X is
good for (w, 7). Now let W be a weak neighborhood of 0 and let W' be a
weak™ neighborhood of 0 in X** such that W = X NW". For some increasing
sequence (n;) of integers we have S, = ﬂj K. By compactness there are
a finite number of K,,’s whose intersection is contained in S, + W’. So X
has convex P(w, ).

Since a WCD Banach space admits a Kadec norm, it has convex
P{|| - l,w). Now X has P(|| - ||,7) by Proposition 1(ii) with convex sets.
The existence of a 7-Kadec equivalent norm follows from Theorem 2, and
the coincidence of Borel sets follows from Corollary 1.

Using the general definition of a countably determined topological space
{X,71) in terms of usc maps one can prove that X has P(ry, ) for every
weaker Hausdorff topology 75, but it is not clear if that implies the coin-
cidence of Borel sets. For example, in the preceding theorem, if we want
to prove the coincidence of Borel sets for 7 and the weak topology directly
from the fact that X has P(w, ) we have to check that X N X, is 7-Borel,
which is not evident except in the case of a WCG space. Roughly speaking
that was the argument of Talagrand [25], but WCD spaces were introduced
some years later.

In the particular case of a dual WCD space, when 7 is the weak* topology
it is known that the space admits an equivalent dual LUR norm [8]. Without
the hypothesis of WCD the result may not be true: the space J(w1) is a dual
with the Radon-Nikodym property, so it admits an equivalent LUR norm [9],
but Borel(J(w1),w*) is a proper subset of Borel(J(w;),w) = Borel{J(w:),
| -1} (see [7]). A natural generalization of dual WCD are the dual spaces
X* such that (Bx«,w*) is a Corson compact set but in this case there may
be no dual LUR norm [12].

"The next corollary is inspired by a result of [5] for WCOG spaces.
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COROLLARY 4. Let YV be a Banach space and T a vector topology weaker
than the weak topology of ¥ such that the unit ball B;,- is bounded. If X is
a WCD norm closed subspace of ¥ then X is g 7-Borel set in Y.

Proof. Note that 7 is Hausdorff. We deduce from Theorem 3 that X
has P(|| - ||, 7). Now apply Proposition 3(b).

It is not difficult to see that under the conditions of Corollary 3 if X is
Kosin (X**,w*) (for example if X is WCG) then it is an Fy; in (Y, 7) while
the proof of Corollary 4 shows that X is an (F N G)gs. Tt is not known if a
WCD Banach space is always a K, in (X**,w") (see [4, Problem VL.3]).

It is known that K -analytic topological spaces are Cech—analytic for ev-
ery Hausdorfl weaker topology. The same result is not true in general for
WCD topological spaces. The next corollary gives a positive answer in the
particular case of Banach spaces and “reasonable” topologies,

COROLLARY 5. Let X be o WCD Banach space and 7 the topology of
convergence on a quasi-norming subset of X*. Then (X, 7) is Cech-analytic.

Proof. Using an equivalent norm we can suppose that 7 is given by a
norming subset. Then apply Corollary 2.

Let us mention here that it is a consequence of Proposition 2 and The-
orem 3 that under the hypothesis of Corollary 5, (X, 7) is o-fragmentable
and, in particular, the 7-compact subsets of X are fragmentable (see {3] for
the definitions and some consequences).

A typical situation is the case of ' (K) spaces with the pointwise topol-
ogy. There is a huge family of compact spaces K called Valdivia compact sets
such that C'(K) admits a LUR norm which makes the unit ball pointwise
closed [27]. So the results above are applicable, in particular the Borel sets
for the norm and pointwise topologies coincide. Recently Haydon, Jayne,
Namioka and Rogers [13] have shown that if K is a totally ordered set that
is compact in its order topology then C'(K) admits a norm with the Kadec
property for the pointwise topology so the same coincidence of Borel sets
holds.

A different class of compact spaces where we can check directly the
coincidence of Borel sets in C(K) for the weak and pointwise topologies is
the ciass of Radon-Nikodym compact spaces. Originally, a compact space is
called Radon~Nikodym when it is homeomorphic to a w*-compact subset of
a dual with the Radon-Nikodym property. Equivalently, a compact set K is
Rodon-Nikodym if and only if there exists a stronger lower semicontinuous
metric d on K such that every Radon measure on K is the restriction of a
Radon measure on (K, d) ([21] and [14]).

THEOREM 4. Let K be a Radon—Nikodym compact space. Then C (K) has
an equivalent pointwise lower semicontinuous norm such thot on its wnit
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sphere the weak and pointwise topologies coincide, C(K) has P(w,t,(K))
and
Borel{C{K), w) = Borel(C(K), t,(K}).

Proof. A continuous function on K is d-uniformly continuous. Indeed,
suppose not. Then we can take sequences (z,) and (y,) in K such that
limy, d{2y,yn) = ¢ while |f(z,) — f(yn)| = & for some & > 0. By taking an
ultrafilter we make the sequences converge to the limits = and y respectively.
But by the lower semicontinuity of d we have d{z,y) = 0 so = y and this

contradicts the continuity of f.
Fix a d-dense set (Zy)aer. Now we define the seminorms Oy, as follows:

On(f) = supsup{|f(z) — f(z2)| : d(z,7a) < 1/n}.

Clearly O, is pointwise lower semicontinuous and since every f € C(K)
is d-uniformly continuous, for every § > ( there exists n € N such that
Or(f) < 4.

Define a new norm by the formula

A= 171+ 3 5=0u(0).
n=1

Evidently || - || < i - [I| £ 3] - [|. Thus ||| - ||| is an equivalent norm in C(K).
It is also not hard to check that the unit ball of ||| - ||| is pointwise closed.

We now check that the weak and pointwise topologies coincide on § =
{f € C(X) : ||Ifl]] = 1}. Let (f.) be a net in S pointwise converging to
f € 8. Take a Radon measure u with | x| < 1 that we suppose already
defined on Borel(K,d) and take ¢ > 0.

From the pointwise lower semicontinuity of || - || and O,, reasoning as in
Theorem 1 we deduce that lim,, O, (f,} = O,{f) for every n € N.

Now fix n € N such that O, (f) < &/8. Then for w large enough O, (f.,) <
¢/6. Since i has a d-separable d-support we can fix F C T finite such that

£
61{ () Blza,1/n]) > ul(E) - .
aeF
If w is large enough then |f,(24) — f(za)| < &/6 for & € F. So |fu(z) ~
f(z)| < €/2 for every @ € )5 B(Zo, 1/n).
If we have in mind that || f|| and || /.|| are bounded by 1, an easy calculus
gives

w(fo = Al <Yk — fldul < g

which implies that (f,) converges weakly to f. :
Now apply Lemma 2 to deduce that C(K) has P(w,t,(K)). Since the
unit ball is pointwise closed the weak and pointwise. topologies have the
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same Borel sets by Proposition 1(iv); moreover, every weakly open set is a
countable union of differences of pointwise closed sets.

Clearly Theorem 3 is still true for a continuous image of a Radon-
Nikodym compactum. We know no example of a compact space with differ-
ent Borel sets for the weak and pointwise topologies.

Note that if K is Radon-Nikodym compact and (C{K),w) has || -|-SLD,

then (C(K), t,(K)) has ||-||-SLD. In particular, X has the Namiola property
(see [15
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Interpolation of real method spaces
via some ideals of operators

by

MIECZYSLAW MASTYLO (Poznad) and
MARIO MILMAN (Boca Raton, FL)

Abstract. Cerfain operator ideals are used to study interpolation of operators be-
tween spaces generated by the real method. Using orbital equivalence a new reiteration
formula is proved for certain real interpolation spaces generated by ordered pairs of Banach
lattices of the form (X, Leo(w)). As an application we extend Ovchinnikov’s interpolation
theorem from the context of classical Lions-Peetre spaces to a larger class of real interpo-
lation spaces. A description of certain abstract J-method spaces is also presented.

0. Introduction. The Riesz-Thorin-Marcinkiewicz interpolation the-
orems are important tools in classical and modern analysis. Recall that
the Riesz-Thorin theorem states that if a linear operator T is bounded
from Ly, into Lg, for j = 0,1 then T is bounded from Ly into L,, where
1/p=(1-6)/po+6/p; and 1/¢ = (1~ 6}/qo+ 6/qo and 0 < 6 < L. It
is natural to ask if under the same assuraptions we can improve the con-
clusion: for example we ask if it is possible to find a smaller range space
Y such that T is bounded from L, into ¥. It was known for a long time
that if go < po or 1 < py the result is not sharp. Finally in [13] Ovchin-
nikov obtained a sharp version of the Riesz—Thorin—Marcinkiewicz theorem:
under the same assumptions of the classical Riesz-Thorin—-Marcinkiewicz
theorem we can conclude that 7" maps continuously L, into the Lorentz
space Ly, with 1/r = (1 — 0)max{1/q0,1/po} + #max{1l/q1,1/p1}. The
proof of this remarkable result is based on the application of a factorization
theorem of Bennett [1], which states that the inclusion map £, — £, is a
(p, 1)-summing operator, to prove a new interpolation theorem for opera-
tors acting on weighted sequence £,-spaces modelled on the set Z of integers.
A simple application of the reiteration theorem aliows Ovchinnikov to prove
his general interpolation theorem for Lions-Peetre scales.
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