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(b) Finally, let {z, } be an interpolating Blaschke sequence approaching 1
21 = 0}, with m in the w* closure of {2z, } and B the corresponding Blaschk(;
product. If 7(z) = }B(z), then it is well known [3] that (T o L,,)'(0) =
1(BoL,)'(0) # 0. This, then, is an exampie of a compact endomorphism of
H*®(D) which is not a composition operator but whose spectrum properly
contains {0, 1}.
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The triple-norm extension problem:
the nondegenerate complete case

by
A. MORENO GQGALINDO (Granada)

Abstract. We prove that, if A is an associative algebra with two commuting involu-
tions 7 and m, if 4 is a T-m-tight envelope of the Jordan Triple System T := H (4,7)N
S(4,), and if T is nondegenerate, then every complete norm on T making the triple
product continuous is equivalent to the restriction to T of an algebra norm on A.

0. Introduction and preliminaries. The classification of prime Jor-
dan Triple Systems (JTS) is essentially due to E. I. Zel'manov ([Zel2], [Zel3]
and [Zeld]). Later Zel'manov’s ideas have been clarified and completed in
[D’A], [ACCM] and [D'AM]. In the Zel'manov classification of prime non-
degenerate JTS’s, triples of the following form became crucial. Take an as-
sociative algebra A with two commuting involutions 7, w, put

H(A,7)={acA:a" =d} and S(Am):={acd:a”= —a},
and consider the JTS T := H(A,7) N S(A, =) under the triple product
{zyz} = 3(zyz + zyx).

Let A and T be as above. If || - || is an algebra norm on A, then, clearly,
the restriction of || - || to 7' is a triple-norm on T, i.e., a norm on the vector
space T making the triple product of T continuous. The converse question is
called the triple-norm extension problem [Mor2] (S3NEP for short), namely:
given a triple-norm ||-|| on T, is there an algebra norm on A whose restriction
to T'is equivalent to || - |7 To have some possibility of an affirmative answer
to the above question, it seems reasonable to assume that A is a T-m-tight
envelope of T', which means:

(i) A is generated by T', and
(ii) every nonzero T-r-invariant ideal of A has nonzero intersection
with 7.
1991 Mathematics Subject Classification: Primary 17C85, 46K70.
Key words and phrases: Jordan triple systems, JB*-triples, norm extension problem.
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Under these assumptions, we showed in [Mor2, Theorem 1.2] that the
triple-norm extension problem has an affirmative answer if (and only if) the
pentad mapping {...}s is || - |l-continuous, where {...}s is the function from
TxTxTxTxTtoT given by {t1tatatats}s := L(t1tatatsts + tstqtatatr).

The 3NEP is the natural triple version of the norm extension problem
for Jordan algebras (see [RSZ]). Answers to this last problem are involved in
several normed versions of the Zel'manov prime theorem for Jordan algebras
[Zell] and related topics (see [FGR], [CR1], [CR2], [Rod, Section F], [RSzZ],
[CMR1], [CMRZ], [Morl], [MR1], [MR2], [CMR2] and [CMR3)). In [RSZ],
the authors find a general criterion (similar to the one above) for the norm
extension problem for Jordan algebras, and prove that, if A is an associative
algebra with an involution #, if J denotes the Jordan algebra F{A, ), if A
is a +tight envelope of J, and if J is nondegenerate, then every complete
algebra norm on J is equivalent to the restriction to J of an algebra norm
on A. We recall that a JTS is called nondegenerate if it has no trivial ele-
ments ¢, = 0, where Qu(y) = {zyz}. In this paper we show that, if A is
an associative algebra with two commuting involutions ~ and 7, if A is a
7-7-tight envelope of the Jordan Triple System T := H (A, 7). (A, ), and
if T is nondegenerate, then every complete norm on T making the triple
product continuous is equivalent to the restriction to T' of an algebra norm
on A.

By the way, in the presence of the remaining requirements on 4 and 7'
as above, the assumption that T is nondegenerate is equivalent to A being
semiprime. This is a consequence of the following proposition.

PrOPOSITION 0. Let (A, r,7) be an associative algebra with two com-
muting involutions, and put T := H(A,7) N S(4, ). Then T is nonde-
generate whenever A is semiprime. Moreover, the converse is true if every
T-w-tnvartant ideal of A meets T.

Proof. Assume that A is semiprime. By [Zel3, Lemma 1], it is enough
to prove that H(A, 7} is nondegenerate. Let k be an element of B (A, T) such
that RH (A, 7)h = 0. For 5,81 € S(A,7) and by € H(A,7) we have

(hsh)hi(hsh) = h{shhihs)h & RH (A, T)h = 0
and
(hsh)si(hsh) = h{shs) }hsh — hsihshsh
€ hH(A, T)hsh —~ hsthH (A, 7)h = 0,
so (hsh)A{hsh} = 0. By the semiprimeness of A, we obtain hsh = 0 for

every s € §(A4,7), and consequently hAh = 0. Again, by the semiprimeness
of A, we conclude that b = (.

Now, assume that 7' is nondegenerate and every T-m-invariant ideal of A
meets T. Let I be an ideal of A such that 2 = 0 (hence (I = (I9)" =0
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and also (I")? = (I7 )2 = 0). Then J := I+ I+ I" +I"" is a T-m-invariant
ideal of A. For z € J NT we have
Qqa.r2T = {{2Te} T (@TeNT{{2T}T{aTe}}}
e 72 + (IT)Z + (ITF)2 + (IT")Z =0,
hence, by the nondegeneracy of T' we obtain ¢g,rT =0, @.T =0, z =0,
ie., JNT = 0. Therefore J = 0 (since J is a T-w-invariant ideal of A not
meeting T7), and consequently I =0. »

1. The main result. The proof of our main result will consist in
applying the closed graph theorem to obtain the separate ] - [|l-continuity
of the pentad mapping {...}s, so that its joint || - §-continuity will follow
from the principle of uniform boundedness. Finally Theorem 1.2 of [Mor2]
will be applied. We begin by stating the following identity (courtesy of
E. I. Zel’'manov), the verification of which is left to the reader.

Lemma 1. Let x,y, 2, £, u, ¢ be elements in o special JTS. Then
Hryzture{zyztu} = 8{z{yztuc}{xyztu}} — 2{zc(utzyryziu)}
~ da{yztu{yztuc} }x + wyztucutzyz + utzyzrcryziu.

THEOREM 2. Let (A,7,7) be an associative algebra over K (= R, C)
with two commuting involutions. Assume that A is a 7-m-tight envelope of
the JTS T := H{A,7) N S(A,x) and that T' is nondegenerate. Then for
every complete triple-norm || - | on T there exists an algebra norm |-| on A
making v and w isometric and hoving the following properties:

(1) The restriction of |- to T is equivalent to || -]

(2) If A denotes the completion of (A,]- 1), and if 7,7 stand for the
unique isometric involutions on A that extend T, T, respectively, then T =
H(A,7)NS(4,x). ~

(3) (A, 7,7) is a topological -m-tight envelope of T, i.e., A is generated
as an associative Banach elgebra by T' and every nonzero 7-mw-invariant ideal
of A meets T

Proof Fix y,z,%,u in 7', and consider the mapping Pyt from T to
T given by Pv#%(z) = {zyztu} for all = in T. If {z,} — 0 in T and
Pystu(p Y = {@,yztu} — | € T, then, by Lemma 1, we have Qi(c) = Il =0
for every ¢ € 7. Since T is nondegenerate, ! = 0 and we conclude that pyztu
is || - §-continuous, i.e., the pentad mapping is separately continuous in the
first variable. From the equalities

{zyztu} = [{zyz}iu} — {oyztu}, {ulzyz} = {zyztu}

we deduce that the pentad mapping is also separately continuous in the
third and fifth variables. By the uniform boundedness principle, for 8,6
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in T, the mapping (e, v,¢) = {, 8,7,4,e} from T x T x T to T is jointly
Il - |l-continuous. Then a new application of Lemma 1 and the closed graph
theorem allow us to derive the separate ||- |-continuity of the pentad mapping
in its second and fourth variables. Now, the pentad is || |-continuous in each
of its variables, 50, again by the uniform boundedness principle, the pentad
mapping is jointly | - |-continuous. By [Mor2, Theorem 1.2], there exists an
algebra norm || - || on A making v and 7 isometric and satisfying (1) (with
|- || instead of |- ]).

Such a norm also satisfles (2) (again with [|- || instead of |- ). To see this,
let B denote the completion of (4, - ||), and consider the extension to B
(also denoted by 7, 7) of the involutions 7, 7 of A. If z is in H(B, 7)NS(B, ),
then there exists a sequence {2} in A such that z = || - ||-lim{=z,}, so that

5= T4z -~z -z _ ”_”_hmasn—l—m;_«mg—w;"

4 4
belongs to T because (zn + 2] ~ 2T — 7 )/4 lies in T for all » and T is
closed in B by || - ||-completeness.
Concerning (3), it is obvious that, for B as above, T' generates B as a

Banach algebra, but we need to “tighten” the envelope. Let I be the largest
ideal of B contained in

H(B,r)NH(B,m) & S(B,7) N H(B,7)® S(B,7) N S(B, ).

I is a closed 7-m-invariant ideal of B, hence we can consider the associative
Banach algebra B/I with commuting isometric involutions

(a+ )" :=a" +1, {a+ D" :=a" +1.

Moreover INA is a 7-m-invariant ideal of A such that (INA)NT = INT =,
hence IMA = 0 because A is a T-7-tight envelope of 7. Therefore, the natural
T-m-homomorphism ¢ : a — o + I from A into B /I is one-to-one and we
can define the definitive algebra norm |- | on A by setting |a] == lla-+ I for
every a in A. Then for t € T and z € J we have

t+x t+a\’ &+ a”
el = 52+ )(552) | 2 e 232
2
|t +aT)/2 (e 2\
2 2
ZH_m-l-a: w4a: - — e

because  + 27 ~ 5™ — g™ € I'NT = 0. It follows that Itl = ||¢]| for every ¢
in T’ hence property (1) holds. Now, since ¢ is an isometry from (4, ]-]) into
B/I and ¢(A) is dense in B /1, it extends to a 7-m-isometric ispmorphism ¢
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from A onto B/I, and then
H(A,7)NS(A,m) = ¢~ (H(B/I, )0 S(B/I, 7)) = $~2(T) = T,

which proves property (2). Clearly, as T generates A, we see that A is gen-
erated as an assoclative Banach algebra by T. Finally, since, by definition
of I, B/ has no nonzero ideals contained in

H(B/I,TynH(B/I,x)s S(B/I,7)n H(B/I,7) @ S(B/I,) nS(B/I,m),

every nonzero 7-m-invariant ideal of B/J meets H(B/I, 7)NS(B/I, ), which
completes the proof. =

We conclude the paper by showing that the requirement of comnpleteness
for the norm || - || in Theorem 2 cannot be removed. To show the appropriate
counter-example, the following result will be useful. As usual, if (A, %) is an
algebra with involution, then given n in N, we extend the involution of 4 to
the algebra My (A) by setting (a;,;)* = (a} ;). In other words, if we identify
Mn(A) = Mp(K)® A, then (M, (A), *) = (M,{K),t) ® (4, +), where ¢ is the
familiar transpose involution oh M, (K).

PROPOSITION 3. Let (A, 7, ) be an algebra with two commauting involu-
tions, satisfying the following two conditions:

(1) A =A%

(2) T:= H(A,7) N S(A,7) generates A.

Then, forn in N, T = H(M,(A),7) N S(M,(A), ) generates M, (A).

Proof. Let n € N, and let S, denote the subalgebra of M,,(A) generated
by T,,. If {e; ;} ii=l.m denotes the usual system of matrix units for M, (K),
then it is enough to show that, for all 4,5 € {1,...,n}, &;; ® A is contained
in Sy. Since e;; @ T C S, certainly the above happens if i = j. Now, fix
i,7€{l,...,n} with ¢ # j, and define W :={a € A:¢e;; ®a € 5,,}. Since,
fora e A, w e W, and ¢ € T, we have

€5 ®wa = (e@-,j @ w)(em ® (1.), ei; Ria = E(ef,;yj + eji":) & t](ej,j ® Cb),
and (e; + e;) ® T C Sy, it follows that WA C W and TA C W. In this
way, P = {x € A: 24 C W} is a right ideal (hence a subalgebra) of 4
containing T'. Therefore P = A, i.e. A2 C W. Since A = A?, we conclude
that W = A, =

Let K = R,C. For n € N and £ = &1, we consider the involutions on
M3, (K) given by o — s7'a's, where o' denotes the transpose of o and

T

§i= diag{m} with ¢ 1= (g é) Depending on g, these involutions are
called the symmetric (if ¢ = 1) and the symplectic (if ¢ = —1) involutions
on My, (K), and are denoted by 7 and w, respectively. These two involu-
tions pass to the algebra M, (K) (of all countably infinite matrices over
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K with only a finite number of nonzero entries) by regarding M., (K) as
Unen M2n(K) in the most natural way. Then, by [Mor2, Corollary 2.6],
there exists a triplenorm || - || on T := H{Mu (K}, 7) N5 (Moo(K), 7) such
that there is no algebra norm. on M, () whose restriction to T is equiva-
lent to |} - |. Notice that, since My (K) is a simple associative algebra, T is
nondegenerate by Proposition 0, and in order to show that M. (K) is a
T-m-tight envelope of T it only remains to check that M. (K} is generated
by T Clearly Tp := {(° u O) i A p € K} generates My (K), and, by Proposi-
tion 3, M2, (KK) is generated by Top 1= H (M2, (K), 7) NS (May, (K), n), which
actually establishes the desired conclusion.
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rignez Palacios for the careful reading of the manuscript.
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