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The monogenic functional ealculus
by

BRIAN JEFFERIES (Sydney), ALAN McoINTOSH (Canberra) and
JAMES PICTON-WARLQOW (Sydney)

Abstract. A study is made of a symmetric functional caleulus for a system of bounded
linear operators acting on a Banach space. Finite real linear combinations of the operators
have real spectra, but the operators do not necessarily commute with each other. Analytic
functions of the operators are formed by using functions taking their values in a Clifford
algebra.

1. Introduction. The notion of a monogenic functional caleulus of com-
muting n-tuples of bounded operators was introduced by A. McIntosh and
A. Pryde in order to give estimates on the solution of systems of operator
equations (8, 9]. This led to the study of the monogenic functional calculus
of noncommuting families by A. McIntosh and J. Picton-Warlow utilising
plane-wave decompositions. V. Kisil and E. Ramirez de Arellano have also
introduced a functional calculus for an n-tuple A of bounded selfadjoint
elements of a C*-algebra [3, 6], and for monogenic functions defined on a
sufficiently large ball in R™t*. In this paper, we make precise the idea of
the monogenic spectrum. v(A) of an n-tuple A of noncommuting bounded
operators on a Banach space. Tt i3 a compact subset of R™ characterised as
being the smallest set about which a symmetric analytic functional calcu-
lus is defined. In further work we use the monogenic functional calculus to
anatyse the support of the Weyl functional caleulus [3,4].

The central idea is a natural extension of the Riesz—Dunford functional
calcutus for a single operator, but with functions of a single complex variable
replaced by functions defined in R**! and taking values in a Clifford algebra.
With the appropriate notion of the monogenic spectrum v(A) ¢ B™ of 4,
we find that the monogenic functional calculus coincides with the Weyl
functional calculus W, applied to functions of n real variables analytic in
a neighbourhood of the support supp W4 of W4, Furthermore, the equality
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v(A) = supp W4 holds [3, Theorem 6.2]. The Weyl functional calculus is a
symmetric C°°-functional calculus.

A C°°(R*)-functional calculus for an n-tuple A of bounded operators act-
ing on a Banach space X exists whenever A satisfies an exponential bound.
One would expect a monegenic functional calculus to exist even when such
an exponential bound fails. In this case, it is not possible to identify the
Cauchy kernel G, (A), w € R™*\ ({0} x v(A)), for A as the monogenic
representation of a distribution W, with compact support supp W4 c R*
(cf. [3]).

For a single bounded operator T', the resolvent (A — T)~! of T has
a Neumann series expansion for all A € C with modulus [A| > |T|}. If the
spectrum o (T") of T is real (so that C\ o (7") is connected), then the resolvent
function A — (AT —T)71, X € C\ o(T), is the unique analytic function with
maximal domain coinciding with the function defined by the Neumann series
expansion for [A| > ||T||. The resolvent of a bounded linear operator T is
the Cauchy kernel for the Riesz—Dunford functional calculus and its set of
singularities is precisely the spectrum o(T) of T.

A similar strategy may be applied to an n-tuple A of bounded operators
acting on a Banach space. The Cauchy kernel G, (A4) may be defined by
a multiple power series expansion for all w € R with |w| sufficiently
large [5, Definition 3.11]. However, we need to know that w — G, (4) is
the restriction of a monogenic function with a maximal connected domain
in R™"*. In the case when A satisfies an exponential bound, so that a Weyl
functional calculus Wy exists, the equality v(A) = supp Wa guarantees
the existence of a unique maximal monogenic extension—the monogenic
representation of the distribution Wy. If the n-tuple 4 is a commutative
system of operators, then the monogenic spectrum ~y(A) coincides with the
Clifford spectrum considered in [5, 8, 9].

The purpose of the present work is to establish the existence of a mono-
genic functional calculus for an n-tuple A of hounded operators acting on
a Banach space X, just under the condition that the spectrum o ({4, &) of
the operator (4,&) = 377_; A;€; is real for every £ € R". This amounts
to showing that there exists a compact nonempty set v(4) C R", the
monogenic spectrum of A, and a monogenic function w — G,(4), w €
R\ ({0} % y(A)), coinciding with the multiple power series expansion for
G (A} defined for all w € B"*! with |w| sufficiently large.

The existence of the Cauchy kernel G, {A) for the n-tuple A and the set
¥(4) is proved in Theorem 2.2 and Theorem 2.6 by appealing to the plane
wave decomposition for the Cauchy kernel [12, p. 111]. In effect, we replace
the Fourier transform in the definition of G, {A4) via the Weyl functional
calculus (if this makes sense) by a plane wave decomposition; we can do
this provided that ({4, £}) is real for all real ¢ € IR®. This is the key alge-
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braic condition gnaranteeing that the “resolvent set” R™1\ ({0} x v(4)} is
connected—most of the analysis depends only on this topological property.

The verification that the function f{A) of the n-tuple A by a real analytic
function f defined in a neighbourhood in R™ of the monogenic spectrum
v(4) is indeed a bounded lincar operator on X is given in Theorem 3.5.
The proof appeals to the fact that the unique monogenic extension f of
the real analytic function f may be approximated uniformly on compact
subsets of the domain of f in R"*! by the monogenic extensions of scalar-
vatued polynomials defined on R™. This function theory result is proved in
Proposition 3.2.

In Theorem 3.6, we make precise the observation that the monogenic
spectrum v({A) is the smallest set about which an analytic functional calenlus
is defined: if there exists a “functional calculus” T4 defined for all functions
of n real variables analytic in an open neighbourhood of a compact set K C
™ and with the property that T4 (p({-,&))) = p({4, £)) for all polynomials
p: R — R and £ € R", then necessarily o{(A,&)} is real for all £ € R and
v(A) C K. Moreover, T4 agrees with the monogenic functional calculus for
those analytic functions defined in an open neighbourhood of K.

Even in the case of commuting systems of operators, the use of Clifford
analysis leads to simplifications in the construction of functions of operators.
In Theorem 3.9, we show that Taylor’s functional calculus [13] for commuting
systems (Ai,...,Ay,) of operators acting on a Banach space coincides with
the monogenic functional calculus in the case when o(4;) is real for every
i=1...,n

The notation of [3] concerning Clifford algebras is used. If F denotes the
field R or C, then F(,) denotes the Clifford algebra over F generated by
€0,€1,--.,en. Given a Banach space X, the family of sums T" = } . Tses
for Ts € £(X) and § C {1,...,n} forms a Banach module Ln){X(n))
under left and right multiplication by elements of Fr,y. The norm is given
by |7 = (ZSHTSH%(X))”z. For each 2 € X and £ € X', the element
(Tz, &) of Finy is defined by (I'z, &) = 3 5 (Tsw, Ees.

Let D he the differential operator D = E;L:O €;0/0z;. A function f :
U -+ K is called left monogenic in an open set U if Df = 0in U. It is right
monogenic in U if D = 0 in U. The expression two-sided monogenic is used
for functions which are both left and right monogenic. For each w € R™ 1,
the function G, defined by

1
(1) Gw(m) = 5_; ) |w _ m|-n_|_1
is two-sided monogenic. Here gy, = 27("*1/2/I"((n + 1)/2) is the volume of
the unit n-sphere in R*+! and R is identified with a subspace of Ryy.
The notation E{w — 2) = G (z) is used in [2].

w—x
for each z # w
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Suppose that 2 C R*™! is a bounded open set with smooth boundary 82
and exterior unit normal n(w) defined for all w € 012. For any left monogenic
function f defined in a neighbourhood U of 2, the Cauchy integral formula

: ) fzen
@ e -{{P e,
is valid. Here  is the surface measure of 8f2. The result is proved in 12,
Corollary 9.6]. If g is right monogenic in I/ then $o0 9lwin(w)f(w) du(w) =0
[2, Corollary 9.3].

These results extend to the vector- and operator-valued setting in a
routine fashion. In this case, “monogenic” means that the partial derivatives
are evaluated in the underlying topology of the space. We shall quote them
without further discussion.

In the monogenic functional calculus for a suitable n-tuple A of bounded
operators acting on a Banach space X, the operator f(4) is defined for all
F-valued functions f of n real variables analytic in an open neighbourhood I/
of the monogenic spectrum ~(4); see Section 3. The operator f(A) is defined
analogously to the Cauchy integral formula (2), where G, is replaced by a
suitable element G, (A) of L,)(X(n)) for each w € R*1 \ y(A4) and f is
extended monogenically off {0} x U into R*+1.

In (3], the Cauchy kernel w — G, (A), w € R™1\ 4(4), is identified
by employing the Weyl functional calculus. In the present context, it is

constructed in Lemma 2.5 by using the plane wave decomposition of the
Cauchy kernel (1).

2. The Cauchy kernel for an n-tuple of operators. It is a simple
matter to write down an example of a pair A = (A;, A2) of bounded linear
operators acting on {2(N) for which the bound

(3) [lef@rdrtbadad) < o(1 4 |€])*  for all ¢ € R?
fails, but o(£14; + &242) C R for all £ € R2,
2.1. EXAMPLE. For each n = 1,2,..., let U, be the n x n matrix such

that (Un)jj41 =1lforall j=1,...,n— 1, and (Un)k,; = 0 otherwise. Let
I be the n x n identity matrix. Let 4; : I*(N) — 2(N) be the direct sum
of (—1)*I, for n = 2,3,... and let Ay : I2(N) — I2(N) be the direct sum
of Uy for n = 2,3,... There exists no ¢ > 0 and no s > 0 for which the
commuting pair 4 = (Ay, Ay) of operators on 1?(N) satisfies the bound (3).
Nevertheless, the spectrum o(£;4; + £243) of the operator 141 + &4y is
real for all £ € R? because it is real on each common invariant subspace.
Let ¢+ Gy(z), © = (20,21, 22) € R3, be the Cauchy kernel on R? for
w # x. The natural definition of G,,(A4) suggested by the matrix functional
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calculus is obtained by taking the direct sum of
n
1 .
D RGO, (— 1), 0)) (T )
k=0 "

forn=1,2,... for each w € R*\ ({0} x {~1,1} x {0}).
The example above suggests adopting a power series expangion as the

definition of G, (A4) for general n-tuples A.
For cach w € R™ such that w = 0, let

o0
(4) GW(CC)=Z Z ml'--lk(w)vilwlh(m)

k=0 {i1,.,05)
be the monogenic power series expansion of G, in the region lz] < fw]
[2, 11.4, pp. 77-81]. Here Wy, ,, (w) is given for each w € R™1, w £ 0,
by (=1)6.,, o800, Gu(0) and Vi, 4, (z) is the monogenic extension of
y, .-z, off R™ [2, Proposition 11.2.3].

Let A be an n-tuple of bounded operators acting on a Banach. space X.

Let
Wlmlh(A) = "%f Z A.?'1 .. 'Ajh’
Jiyeen 2k
the sum being over all distinguishable permutations of (l,-.., k). Asin [5,
Definition 3.11], the Cauchy kernel G, (A} is given by the expansion
() ColA) =" > Wit ()Viy.i,(4)
B=0 (Iy,...,0k)

in the case of w € R* and |w| > (1 + ﬂ)HZLl Aje;|l. The sum con-
verges in L) (Xn)) because 30070 5o, 1y Wty ()] |V 1, (A)]] con-
verges uniformly for [wf 2 R, w € R***, for each B > (1++/2)[|7_, Aje;l]
[3, Lemma 6.1]. Each function Wi,..1, is left and right monogenic, so (5) de-
fines a left and right monogenic £¢)(X(n))-valued function for all w € R
such that jw| > (14 2} ey Agegll-

Although (5) makes sense for any n-tuple of bounded operators, the
problem remaing of extending the domain of definition of the monogenic
function defined by (5) to be as large as possible in a unique way, such as
in the case when the natural domain is connected. The following assertion
allows us to define the monogenic functional caleulus.

2.2. THECREM. Let A = (Ay,..., A,) be an n-tuple of bounded operators
acting on o Banach space X. Suppose that o{{A,€)) C R for all £ € R™.
Then the Lyy(X(p))-valued function w v~ G, (A) is the restriction to the re-
gion lw| > (14 ﬂ)”ZLl Azes|l of a function which is two-sided monogenic
on the set RMT1\ R™,
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Ta prove the theorem, we appeal to a series of lemmas, in which we sup-
pose that the n-tuple A satisfies the conditions of the theorem. Let u be the
surface measure of the unit (n—1)-sphere S; in R™. The following plane wave
decomposition is given in [12, p. 111]. Further proofs appear in [11] and {7].
The latter uses a general Fourier transform calculus for monogenic functions.

2.3. PROPOSITION, Let w = xgeg+-x be an element of R™! with z € B,
Ifzg > 0, then

an\:j|n+1 - (n;l)! (;—W) bﬁl(eo +is)({z, 8} - 0s) ™" dpu(s).

If xg < 0, then

REMARK. If n is odd, the integral of ({z, 5) —zgens) ™™ over Sy is zero and
aslong as (z1,...,z,) # 0, the integral of the other term s((z, 3) — zgegs) ™™
over Sy is continuous at o = 0. If n is even, the integral of s({z, s)—zgegs) ™
over 51 is zero and the integral of ((z, s) — zpeps) ™ suffers a jump as 29
passes through 0.

We view the n-tuple 4 = (A44,..., An) of bounded linear operators acting
on a Banach space X as an element A =3 "_, Aje; of the Banach module
Lny(X(ny). In the following statement, R™ is identified, as usual, with the
set of all z € R for which z = (0,5,...,%,), and in turn, R"*! is
identified with a subspace of the Clifford algebra R,,).

2.4. LEMMA. Lety = >0, y;e; and yo # 0. Then for each s € S,
{yI — A, s) — yosl is invertible in Liny(Xn))-

Proof. The inverse of {yI — A, s) — yos[ is given by

(I = A, sy —yosI) ™ = ((yI — A, 8) +yosI)({yl — A, 8)> +y51) ™
We see that this makes sense as follows,

Letse 51, R, yo #Vandy € R™. Let f: R — (0, 00) be defined by
f(z) = ({y,s) —x)? + ¢ for all x € R. Then applying the Spectral Mapping
Theorem to the bounded operator (A, s), we get

a({yl — A, 5)* + 431) = flo((4,5))] € F(R) < (0,00).

Hence, the operator (yf — 4,s)? + 427 is invertible for yp # 0. Moreover,
it commutes with {yI — A, s) &= yos!, since all three operators involve only
multiples of the identity I and the single operator {yI — 4,s). By direct
calculation,

({yd — A, s}y + yosI)({y] ~ A, 8) — yosI) = ((yI — A, 8> + 3 1),
because under Clifford multiplication, s = —1forall s € 5. =
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Thus, for each s € 51, ((yI — A,8) — y08)™" is an element of Lny(X(n))
and s0
(I — A,s) —~yo3) ™" = (((yI - 4,5) —yos)™')"
is an element of Liny(X(y)) as well.
The following lemma completes the proof of Theorem 2.2.

2.5. LeMMA. For each real number yp # 0, and each y € R®, the
Ln)(Xny)-valued function s — (eo + is)({y] — A, s) — yos)™™ defined for
s € 81 is Bochner p-integrable on Sy, and the function

Y+ yeg — S (e +is){{yl — A, s) — yos) ™ du(s)
Sy
is left and right monogenic on R*T1 \ R",
Furthermore, if yo > 0 and |y| > (1+ v2)|| 4], then

O Grome) = SR Tleo+is)(loT — 4,5) —305) ™ dus)
Sy,
If yo <0 and |y > (14 v2)||4]], then

Gt ) = 2 (2) o i)l = 4,9) = o) i),
8

Here the lefi-hand sides of the equations are defined by formula (5).

Proof. The function s — (gg +is)({(yf — A, s) ~yos) ™" is continuous on
S, and so Bochner p-integrable. The monogenicity of the function follows
by differentiation under the integral sign.

We shall establish the equality

n—1/i\" , .
0 Gprumlt) = B3 (1) [earia)ttyT -4, 0= os) ™ o
51
forall 0 <t <1, yp>0and |y > (1++2)]Al. The case yp < 0 is similar.

For % = 0, the left-hand side of (7) is equal t0 Gytyeeo(0). An appeal to
Proposition 2.3 ensures that the right-hand side equals Gyqyoe,(0) at £ = 0.
By differentiation under the integral sign, for yo > 0, the right-hand side of
(7) is a solution of the equation
(8) 8tu’(yst) = _(Avv’y)ﬂ'(yat)
in the Banach module Ly)(X(ny) with the initial condition u(y,0) =
Gytyoeo (0)1. Then

i
(9) w(y, t) = Glyiyoeo (OH — S {4, Vy)u(y, s) ds.

0
In the case when |yo| > ly| + || 4], a power series expansion shows that the
right-hand side of (7) is analytic in ¢ for all [¢| < 1.
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Let y € R™ satisfy ly| > (14 v2)[ 4] and set w = ygeg + y. In the
notation used in formulae (4) and (5), the series

{10) Ztk Z Wiy @)V, (4)

k=0 (l1,....0p)

represents e~ AVatG, o (0) and iterating equation (9), we find that

u(y’ t) = e_<A’vy)tGy+Uueo (0)7

that is, the solution of equation (8) with the initial condition u(y,0) =
Gy tyoe, (0)] has the series representation {10}.

In the region I' C R™"* where |y| > (1++/2)||A|| and |yo| > |y|+| 4[|, the
right-hand side of (7) and the expression (10) are analytic in £ for 0 < [¢} <1,
so equality follows for all 0 € {¢t| < 1 in I" by the uniqueness of the Taylor
series expansion. Both sides of (7) are monogenic in their domains, so by
unique continuation, the equality (7) must be true for all 0 < [¢| < 1 and all
yo > Oand |y| > (L+v2)[|4]. =

The maximal monogenic extension of the function w — G, {A4) is denoted
by the same symbol; that is, let £2 be the union of all open sets containing
the open set I" = {Jw| > (14 v/2)| A} on which a two-sided monogenic
function is defined equal to w — G, (A4) on I". Then a two-sided monogenic
function equal to w + G, (A) on I is defined on all of £2. It is unique because
{2 is connected and contains I'; a compact subset of R™ cannot disconnect
B+l

The complement v(A) of the domain 2 of w + G, (4) is called the
monogenic spectrum of A. According to Lemma 2.4, ¥v(A) is contained in
the closed ball of radius (1 ++v/2)(37—, || 4;[*)*/? about zero in R, so it is
compact by the Heine-Borel theorem The following result was mentioned
in {5, Lemma 3.13], but with a different definition of the spectrum.

2.6. THEOREM. Let A be an n-tuple of bounded operators acting on a
nonzero Banach space X such that o((A,£)) CR for all £ € R™*. Then v(4)
18 o nonempty compact subset of R™.

Proof. It only remains to show that v(A) is nonempty. The norms of
the coefficients Wy, ., (w) of the expansion (5} decrease monotonically with
|w|, so the function w v+ G, (4) is bounded and monogenic outside a ball.
If v(A) = 0, then for each z € X and £ € X', the function w — (G, (A)z, £)
is two-sided monogenic inside any ball, and so it is bounded and two-sided
monogenic everywhere. By Liouville’s theorem (2, 12.3.11], it is a constant
function. However, by the Hahn-Banach theorem we can obtain z & X

and £ € X' and wy,wy € R™ such that (G, (A)z,&) # (Gy,(A)z,£), a
contradiction. =
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2.7. PROPOSITION. Let A be an n-tuple of bounded operators acting on
o Banach space X such that o((A,£)) CR for all £ € R™. Then v{4) C R®
is the complement in R™TL of the set of all points w € R™L at which the
function

-+ voco — sga(y0)" ™ | (eo + is)({yT - A, ) — yos) " du(s)
8y
is continuous in o neighbourhood of w.

Proof. Suppose that the function is contimious in a neighbourhood
U c R*! of w € R™+!. By Lemma, 2.5 and Painlevé's theorem |2, Theorem
10.6, p. 64], the function

Y+ yoo - sgn(vo)" ™ | {(eo + is){(Wl ~ A, 5) — yos) ™", £) du(s)
51
is two-sided mono'genic for each © € X and £ € X'. The statement now
follows from the equality

{ ((eo + i8) (5] ~ A, ) — yos) ", &) dps(s)
S

= ({ [(eo+is) (T = A, 5) = yos) ™" da(s) ), )
51
and the observation that an £ny(X(n))-valued function is left or right meno-
genic for the norm topology if and only if it is left or right monogenic for
the weak operator topology. =

As a consequence of Proposition 2.7, the set v(A) remains the same if, in
the definition of 'y(A), the term “two-sided monogenic” is replaced by either
“left monogenic” or “right monogenic”.

We have osmbhshed the following representation for the Cauchy kernel
G (A}, w € RV y(A), of an n-tuple A of bounded linear operators on X
with the property that o{(4,£}) C R for all £ € R™. In the case w € R*H*
and w = y 4 ypey with y € R™ and yo a nonzero real number, we have

W e =" s
x { (eq +is)((yI ~ A, s} — yos) ™" du(s).
81

IfweR"\ v(A4), then
02 Gu=C20( )

X hm ‘eo+1s)((w1 A, 8) —yo8) " du(s)

’y'—P



108 B. Jefferies et al

_ _(n;n:(%)“

® lim S (eq +is)({wl — A4, 8) — yos) ™ du(s).

yo—+0" 8

3. The Cauchy integral formula for an n-tuple of operators. Let
A be an n-tuple of bounded operators acting on a Banach space X such
that o((A4,£}) C R for all £ € R™. Let {2 be a bounded open neighbourhood
of ¥(A) in R**! with smooth boundary 812 and exterior unit normal n(w)
defined for all w € 812. Let u be the surface measure of 2. Suppose that f
is left monogenic in a neighbourhood of the closure 2 = 2U82 of 2. Then
we define

(13) f4) = | Cu(A)n(w)f(w)dp(w),
o8
Because w — G, (4) is right monogenic, the element f(A4) of Ln)(X(m)
is defined independently of the set 2 with the properties mentioned above.

This may be seen by taking z € X and & € X’. Then by the properties of
Bochner integrals

{F(4)z,6) = § (Gu(A)z, () (w) du(w)
ag

and the F(,)-valued function w — (G, (A)r,§) is two-sided monogenic off
%(A). The analogue for monogenic functions of Cauchy's theorem [2, Corol-
lary 9.3] ensures that the open set {2 can be changed as long as the boundary
of the set 2 does not cross y(A). Because this is true for all z € X and
§ € X', the Hahn—Banach theorem ensures that the values of the integrals
(13) do not change when (2 is so modified.

Moreover, a similar argument shows that if f : V — C is a function
zinalytic in a neighbourhood V' of v(A) in R* and f; : U3 — C,y and
fa 2 Uy — €,y are left monogenic functions defined in neigbourhoods Uy, U
of y(A) in R™? such that f;(z) = f(z) for all z € U, NV and fa(z) = f(z)
forall z € U2 NV, then f1(4) = fa(A). It therefore makes sense to define
f(A) = fi{A). In Theorem 3.5(iv), we show that f{A4) actually belongs to
the closed linear subspace £(X) of the Banach module L,y (X (ny).

For any open subset U of R, let M(U,F,)) be the collection of ali
Finy-valued functions which are left monogenic in U. It is a right Finy-
module. The space M (U, F(,)) is given the compact-open topology (uniform
convergence on every compact subset of U). If K is a closed subset of R”,
then M(K,Fx;) is the union of all spaces M{U,F,)) as U ranges over the
open sets in K™ containing K. The space M (K, F(ny) is equipped with the
inductive limit topology.
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Endowed with the C-K product (2, p. 113], M(K,F(,)) becomes a topo-
logical algebra and the closed linear subspace M(K,F) of M(K,F,)) con-
sisting of left monogenic extensions of F-valued functions on X is a com-
mutative topological algebra. Then the topological algebra M (K, F) is iso-
morphic, via monogenic extension, to the topological algebra H(K,T) of
F-valued functions analytic in an open neighbourhood of K in R™ with
pointwise multiplication. We write just H(K) for H(K,C). The induced
topology on H{K) is that of convergence of the left {or right) monogenic
extensions on compact subsets of a neighbourhood of K in R®+!, rather than
the usual topology of convergence on compact subsets of a neighbourhood
of K in - —formula (13) forces us into this somewhat unusual terminology.

We shall need a result on the approximation of a special class of FrT2-
valued monogenic functions by monogenic polynomials in the same class.
Let f = 3 7o fse; be an F**'-valued function defined in an open subset
U of R*™1. The equation Df = 0 implies that the one-form a = fodzg —
fidzy — ... — fudiy is closed in U, The left monogenic function f is called
conservative if S'y a = 0 for every closed contour « in U, that is, a is exact
in U,

Let L be a compact subset of R, The closed linear subspace of
M(L,F(y)) consisting of all conservative left monogenic functions defined
in a neighbourhood of L in R**! and with values in the linear span F™™!
over T of the basis vectors eg, ..., e, is denoted by M(L,F*T1). Note that
if I is the closure of a digjoint union of finitely many simply connected
domains, then M(L, Frtt)y = M{L,F*+1).

3.1. LEMMA. Let L be a compact subset of RV with connected comple-
ment. Then the linear space of all T -valued left monogenic polynomials
is dense in the space M(L,F"tY) for the topology of uniform convergence
on L.

Proof. The result is a version of the Runge approximation theorem for
left monogenic functions [2, Corollary 18.5]. We describe where the proof of
[2, Theorem 18.4] needs to be adapted to the present context.

The topology on the space M(L,F**+1) of uniform convergence on L
is induced by the uniform norm of the space C(L,F™™) of F***-valued
continuous functions defined on the compact set L. According to the Riesz
representation theorem, the dual space of C(L,F™*!) is identifiable with
the space of all F**1-valued Borel measures on L equipped with the total
variation norm.

Let B be an open ball in B*+! such that L C B. An argument analo-
gous to the proof of [2, Theorem 18.4] works once we establish that every
element of M(L,F**1) may be approximated uniformly on L by elements of
M(B,F*+1) = M(B,F*+!). By means of the usual Hahn-Banach theorem
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(rather than the left module version [2, Theorem 2.10}), it suffices to show
that every F™*'.valued measure which annihilates M (B,F**1) is also zero
on M(L,F**1), The remainder of this proof is devoted to establishing this
fact.

If 11 is an F**l-valued Borel measure on L, we set

T
(Fomy = §ifdpy =D £ duy
L §=0L

for all fanctions f = 37 fse; belonging to C(L,F™*!). Suppose that u
annihilates M (B, F*t1), that is, (f, u) = 0 for all f € M(B,F"1). Then
for all w € R** \ B, the function G, belongs to M (B,F**!), so we have
(Gu, i} = 0. The function w — (G, ) is an F-valued harmonic function
defined in R™**? off the support L of u. Since R™! \ L is connected, unique
continuation for harmonic functions implies that (G,,p) = 0 for all w €
Rr+L \ L.

1f we can represent any function f belonging to the space A (L, F*+1) a5

(14) @)= | Cula)elw)dw,

]Rn+1

zelL,

for a smooth scalar-valued function ¢ with compact support in R™ \ L,
then by Fubini’s theorem, we have

G = (| Gule)o(w)dw, duz))

L n+l

= (S(Gw,du))¢5(w) dw = 0.
Re+INL L
It remains to show that the representation (14) holds for all f € M (L, F*+1).

A. closed one-form o such that | « = 0 for all closed contours « in U is
exact, so there exists a scalar-valued function F : U — C such that o = dF,
that is, f = DF. The function ¥ is harmonic in U because AF = DDF =
Df=0inU. '

Let w be a smooth function with compact support in U and equal to F
on the open neighbourhood 2 of L in R™. Let w = Au. Because 1 = F
in 2 and F is harmonic, w vanishes in 2 and is supported in U.

If g denotes the fundamental solution of the Laplacian in R**1, then
Ag = § in the sense of distributions and we have u = g+ w. But u = F in
12, s0 F(z) = g+w(z) for all z € £2. From the identity G, (2} = (Dg)(w —z)
for all w, z € R* with w # x, we have

f@)=DF(@) = - | Gu(z)w(w)dw,
. Re+1
Hence, the representation (14) is valid with ¢ = —w,

€ {2
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The remainder of the proof [2, Theorem 18.4] works in the present con-
text, so that f may be approximated uniformly on L by elements g of
M(RL T +1). The Taylor series of g converges uniformly on compact
subsets of Rt [2, Section 11.5.2]. Comparison with the Taylor series of
t 1= g(tz) shows that g may be approximated in M(R**+1 Fo+1) py Frri.
valued left monogenic polynomials. Alternatively, we can see this directly
from the representation (14} by expanding G, in its Taylor series (4). m

REMARK. 1t is easily checked that a left monogenic function with values
in F**1 is automatically right monogenic.

The next statement would follow from the Stone-Weierstrass approxi-
mation theorem if H(K) had the topology of uniform convergence on K.
The point is that H(K) has the topology, inherited from M(K, Finy), of
uniform convergence of monogenic extensions on compact subsets of R?1E,

3.2. PROPOSITION. Let K be a compact subset of R*. The linear space
of all scalar-valued polynomials is dense in H{K).

Proof. It suffices to prove the result for real-valued functions f € H(K)
defined in a neighbourhood of K, otherwise f can be decomposed into real
and imaginary parts. Let U be a bounded open neighbourhood of K in
R™! for which f has a left monogenic extension f to U. According to [2,
Theorem 11.3.4, Remark 11.2.7(ii)], the left monogenic extension f of f
into R™™ takes its values in the real linear subspace R**? of Ry,,y spanned

by eg,. .. ,en. The function w — f(—w) is left monogenic and the equality
F(=@) = f(w) holds for all w € U by unique continuation from points of K.

Let L be a compact subset of U such that R\ L is connected and L is
invariant under the mapping J : w — —@. According to [2, Theorem 14.8],
the open set U in which ]T is monogenic may be chosen to be a J-invariant
set in which every closed contour -y in U is homotopic to a closed contour
in UNR". Here we are allowing the possibility that U may not be a simply
connected domain. Then every compact subset of U is contained in such a
set L.

To check that f is conservative in U, let v be a closed contour in U
and let 7" be a closed contour in U N R™ homotopic to . The one-form o
associated with f is closed in U, so §_ o = { , & = 0, because & = fdzp on

¥ C UNRK* By Lemma 3.1, J? can be approximated uniformly on L by
polynomials p € M (L, R***) and so by polynomials w + (p{w) + p(—@))/2.
The coefficients of the expansion of p in left inner spherical monogenics
lie in R™*!, 50 p(w) + p(~@) € R for all w € R™. Hence the polynomial
w = (p(w) +p{—@))/2 is scalar-valued on R" and approximates f uniformly
onLl. m
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The operation f =~ f{A) defined on H(v(A)) extends to analytic func-
tions with values in a finite-dimensional vector space V' over C by application
to the component functions of f. In particular, if f : U — Cy,,) is an analytic
function defined on a neighbourhood I of v(A) in R™ and f = > 4 fses
for the scalar component functions fs defined for § < {1,...,n}, then
flAY = 35 fs(A)es. If the term “analytic” is replaced by “C™", then
this property is shared with the Weyl functional calculus; see [3].

The following statement is implied by formula (13) and the estimate

(15) 1 F(A)| < 2720(00) sup [Gu(4)] sup |f(w)]
we&dn wed R

3.3. ProrosiTiON. Let A be an n-tuple of bounded operators acling on
a Banach space X. Suppose that o({A,£}) C R for all £ € R™. Then the
mapping f — f(A) is continuous from M(v(A),Frny) to Ly (Xny)-

3.4. PrRoPOSITION. Let A be an n-tuple of bounded operators acting on
o Banach space X such that o{{A,£€)) C R for all £ € R™. Suppose that
F iU = Crpy is left monogenic in an open neighbourhood U in R** 1 of the

closed unit ball of radius (1++v/2)(327, | 4;12)2/2 about zero. If the Taylor
series of f restricted to U NR™ is given by

(16) f(-’ﬂ Z T Z Z Ofy . 2, 0Ly » v Ty

Iq==1 =1
with ay, .1, € C(n), then

) =3 ¥ Veu))a.

k=0 (llr'-)lk)

Proof. Let £2 be an open set in R*+! with smooth boundary 842 such
that 2 ¢ B,(0) C U and 2 contains the closed unit ball of radius {1 +
\/5)(2;;1 | A;]]2)1/2 in R™**. The series

ZZZW:

Iy=1 L=l

a‘h i

representing the left monogenic extension of (16), converges normally in 2

2, 11.5.2] 50
-> ¥ (ia

k=0 (l,..,lk)  Bf2
We now deduce from the expansion (5) and from formula (12.2) of [2, p. 86]
that

S Go (A (w)Viy..a, (w) d(w) = Vi,.,, (4)

an
Ade=1,..

AV oy (@) dil) ot

for all 14, ... .,na.ndk=1,2,..

. The equality (17) follows. =
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3.5. THEOREM. Let A be an n-tuple of bounded operators acting on o
Banach space X such that o{({A,£)) C R for all £ € R"™.

()Supposethatkl,”. kn=0,1,..., k=k +...+k, and f(z) =
zht . zke for all z = ($1, : mn) S R", Theﬂ
F(A) = ZAm

where the sum is taken over every map w of the set {1,...,k} into {1,...,n}
which assumes the value j exactly k; times, for each j =1,...,n.

(i) Let p: C ~ C be a polynomial and { € C™. Set f(2} = p({2, () for
all z € C*. Then f(A) = p({A,()).

(ii) Let {2 be an open set in R™ containing v(A) with a smooth bound-
ary 802. Then for all w ¢ {2,

Gu(A) = | Ge(AM(OGL(C) au(0).
an

{iv) Suppose that U is an open neighbourhood of v(A) in R™ and f :
U — C is an analytic function. Then f(A) € L(X).

Proof. (i) Let I" be the set of all k-tuples (Iy,...,Ix) in {1,...,n}* in
which j appears exactly k; times, for each j =1,...,n. Let ay = ki!.. k!
for all v € " and @y = 0 for all v € {1,...,n}* \ I". Then

k1 R. .
T &y = k' Z Z Il: Wl zll <Dl

Iy=1 lp=1

50 by the proposition above,

A= Y o inVa.in(4) = ZAWQ Arimy-
{t,eke)

(ii) follows from (i) because only symmetric products of the (4
in both f{A} and p({A, {}).

(iii) On appealing to (4)-(5), the formula follows directly from Proposi-
tion 3.3 for all w ¢ §2 such that |w| > (1++/2)||4]. Both sides of the formula
are right monogenic in w in the complement of the set 2, so equality follows
there by unique continuation.

(iv) According to (i), p(4) € £(X) for any scalar-valued polynomial p
on R". By Proposition 3.2, there exists an open neighbourhood V of U in

;) appear

R**! such that the left monogenic extension fof f can be approximated on
compact subsets of V' by monogenic extensions of scalar polynomials on R™.
An appeal to Proposition 3.3 shows that f(A) belongs to the closed linear
subspace L(X) of Liny(X(n))- ®



114 B. Jefferies et al

As can be deduced from [1], the Weyl functional calculus W4 for an
n-tuple 4. of bounded operators acting on a Banach space X is determined
by the following two properties:

(a) Wa : C2(R™) —
norm;

(b) Walp((-,£)))
¢ R,

The Paley-Wiener theorem ensures that the inverse Fourier transform
(Wa)Y of Wa extends to an entire analytic function on C" satisfying an
exponential bound and (b) guarantees that (W)Y (£) = (2m)~"/2eiA) for
all £ € R*. Hence Wa = (2m)~"/2(e¥{4€))A, In particular, ({4, £)) C R for
all £ € R” (see, for example, [9, Corollary 7.5]).

The analogous statement for the monogenic functional calculus follows.

L(X} is a continuous linear map for the operator

= p({4,&}) for every polynomial p : B — R and

3.6. THEOREM. Let A be an n-tuple of bounded linear operators acting
on a Banach space X. Suppose that there exists a compact subset K of R™
and a map T such that

(a) T : H(K) — L(X) is a continuous linear map;
(b) T(p({-,£&))) = p((A, &)} for every polynomialp : R — R and £ € R™.

Then o({A,£€)) is real for each £ € R™, v(4) C K and T(f) = f(A) for
every f € H(K).

Proof. Denote the tensor product T'® I(,) of T" with the identity I(,) on
F(ny by T again and define T : M (K, F(n)) — Ln)(X(ny) by T(F) = T{fTU),
f € M(K,F(y)), for an open neighbourhood U of K in R* in which f is
defired.

Let £ € R™ and (K,&) = {(z,¢) : z € K} C R Forall A € C\
(K, £), the function z + (A — {z,£))~! belongs to H(K) and the function

= (A= (-, i3 an H(K)-valued analytic function on C\ (X, &), so
(A= (€))7 dh = 0 in H(K) for all closed contours I' contained in
C\ (K, §). The integral converges as a Bochner integral, so that

FT(O = ™Mdr=T{(~ (&) dr=0.
r r
By Morera’s theorem, A —+ T({A — {-,£))7*} is an £(X)-valued analytic
function defined in €\ (K, £). By (b) and the continuity of T, the equality
A= (AN =T((A~ (-, &)™)

holds for all A € C such that |A| > sup [(K, £}|. It follows that the resolvent
set of the operator (4,£) contains the set C\ (K, &), that is, o({4,£)) C
(K.&) CR.

icm

The monogenic functional caleulus 115

As in the proof of [1, Theorem 2.4], property (b) and the continuity of T
on H(K') guarantee that T(f) is equal to (17) for all complex-valued analytic
functions f with a power series given by (16) in an open neighbourhood of
K with a;,.1, € C.

Let R > (1 + +/2)| Al be so large that K is contained in the open
ball Br(0) of radius R in R™*!, According to (4) and (5), it follows that
Gu(4) = T(G,,) for all w € R**! with |w| > R.

Now the function w 1— G, is monogenic from R\ K into M (K, Fny),
because for each o € R\ K there exist disjoint open sets U and V in ]R““"l
such that « € U, K C V and V,G,,(z) is uniformly bounded and uniformly
continuous for allw € U and z € V. Consequently, w — T(G,,) is monogenic
from R™™ \ K into Liny(X(n)) and the function defined by formula (5) has
a monogenic extension off K, that is, v(4) C K and G, (4) = T(G.,) for all
we R\ K.

Let f € H(K) and suppose that f is a left monogenic extension of f to
an open neighbourhood of K in R*, We may suppose further that 7 is
defined in a neighbourhood of the closure {2 of a bounded open set 2 D K
in R**1 for which the Cauchy integral formula (2) holds for f. Then by
formula (2), we have

T(5) =T( | Gul- nw)Fw) da(w) )
862
= | T(GuIn(@)Fw) dutw) = | Gu(A)n(w)Flw) dalw) = F(4). =
842 an

The monogenic functional calculus, when it exists, is therefore the richest
analytic functional calculus satisfying (b) that can be defined over a compact
subget of R™, Suppose that L : B® — R™ is an affine transformation given
by (Lz)y = E;.’,__l enjxi A dy for all z € R* and k = 1,...,m. The m-tuple
LA is given by (LA}, = Y3 epjdj +dil and Lf = fo L for a function
defined on a subsct of BR™.

The following properties of the Weyl functional calculus [1, Theorem 2.9],
suitably interpreted, are also enjoyed by the monogenic functional calculus.

Let m; : R® — R be the jth projection m;(z) = z; forall z = (21,...,2n)
e R".

3.7. THEOREM. Let A be an n-tuple of bounded operators acting on a
Banach space X such that o({A,€)) CR forall L € R™.

(a) Affine covariance: if L:R™ — R™ is an affine map, then v(LA) C
Ly(A) and for any function f analytic in a neighbourhood in R™ of L~y(A),
the equality f{LA) = (f o L)(4) holds.

(b} Consistency with the one-dimensional calculus: zf g: R - Cis
enalytic in a neighbourhood of the projection m1Y(A) of ¥(A) onto the first

il
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coordinate, and f = g o my, then f(A) = g(A1). We also have consistency
with the k-dimensional celeulus, 1 < k < n.

{c) Continuity: The mapping (T, f} — f{T) is continuous for T =
iy Tiej from Lipy(Xiny)x MR, Criny) to Liny (Xny) and from LX)
x H(R™) to L(X).

(d) Covariance of the range: If T' is an inverfible continuous linear map
on X and TAT ™! denotes the n-tuple with entries TA; T forj=1,...,n,
then Y(TAT™%) = v(A) and F(TAT™Y) = TF(A)T! for all functions §
analytic in o neighbourhiood of y{A) in R™.

Proof. (a) The mapping f +» f o L(A) defined for all f ¢ H(Lvy(A))
satisfies the conditions of Theorem 3.5 for the m-tuple LA, so v(LA) C
Ly(A) and f o L{A) = f{LA) for all f € H(Ly(A)).

(b) Set L = m; and apply (a).

(c) Let A = 3 7, Aje; and choose R > (v2 + 1)||A||. Let Ug be the
intersection of the open unit ball of radius R in £, (X, (n)) with the subspace
{3°5-1 Sie5 + 85 € L{X)}. According to (5), the mapping (w,T) = Gu(T)
is continuous from R™*! x Uy into L(ny(X(ny) for all jw| > R.

Let B.(0) be the open ball of radius r > R in R**!. Then from (16) we
have

| f1(T1) — fa(T2)

< | Cu(Tne)fiw) - Gl

4B,.(0)

< 2”/2;5(845’?(0))( sup
weBR(0)

To)nfw) fa(w)l| du(w)

1Gu(Th) — Gu(T2)]|

| fa(w)}

x max{ sup |[fi(w)|, sup

wEABL(D weDB,(0)

+ sup |fi(w) ~ fa(w)]

wEHBL(0

xmax{ sup |Gu(Ti)l, sup |Gu(T:)]})
wEHB(0) w€dB(0)

for all Ty, Ty € Ug. The spaces M(R™, C,y) and M (R}, Cp,y) are isomor-
phic [2, Corollary 14.6]. Combined with Theorem 3.5(iv), this corapletes the
proof of (c).

(d) follows from the identity G, (TAT™) = TG,{A)T* valid by (5)
for |w| large enough. Then y(TAT~!) C y(A). The reverse inclusion comes
from writing G, (4) = T71G,(TAT 1T for |w| large enough. =

The inclusion in (a) may be proper, as may be seen from the equality
7¥(m1A) = 0(A1). The next assertion shows that property {b) of Theorem 3.5
can be extended from polynomials to analytic functions.
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3.8. PROPOSITION. Let A be an n-tuple of bounded operators acting on
o Banach space X such that o({A,£)) CR for all £ €R™. Let { € C* and
set (1(4),0) i= {(2,) : 3 € 7(A)}. Then a((4,)) C (v(4), ).

Suppose that U C C is a bounded open set with connected complement
containing the set (v(A), (). Suppose that g : U — C is analytic. Set f(z) =
g{{z,0)) for all z € C™ such that (z,{) € U. Then f{A)=g{{4,{)).

Proof. The proof of the inclusion o ({4, ()) C {¥{A4), ) follows the argu-
ment of Theorem 3.6. By Runge’s theorem for functions of a single complex
variable, g can be approximated uniformly on compact subsets of I by poly-
nomials {pp)n on €. Hence f can be approximated by {p, o {}n uniformly
on sets (-, ()7 K for K C U compact.

Now take K to be a compact subset of U whose interior K° contains
{(y(A),¢). Let V be an open subset of B**? such that y(4) C V and V is
contained in {-,() " K®°. Then f can be approximated uniformly on V by
functions {p, 0(}, with {pn}, a sequence of polynomials on C. The equality
f(A) = g({A,{)) is a consequence of Theorem 3.5(ii) and Proposition 3.3. =

In the case when A is a commuting n-tuple of bounded operators act-
ing on a Banach space X, it is shown in [9, Corollary 3.4] that for A € R,
the operator Y 7, (Al — A;)* is invertible in L(X) if and only if
E?:l(’\jf . Aj)ej is an invertible element of ﬁ(n)(X(n)).

The following result was announced in [5, Lemma 3.2, Corollary 3.17]
for commuting selfadjoint operators.

3.0. THEOREM. Let A be a commuting n-tuple of bounded operators acting
on o Banach space X such that o(A;) CR for all j=1,...,n. Then v(A4)
is the complement in R™ of the set of all A € R™ for which the operator
Yy (AT — Ag)? is dnvertible in L(X).

Moreover, v(A) is the Taylor spectrum of A. If the complez-valued func-
tion f is analytic in a neighbourhood of ~v(A) in R", then the operator
F{A) € £(X) coincides with the operator obtained from Taylor’s functional
ealeulus [13].

Proof. Let ormy(A) be the set of all A € R+ such that éither Ag s 0,
or if Ap = 0 then the operator ¥ ;_; (A;1 —~ 4;)* is invertible in L{X). Set
I(n)(4) = R"\ gn) (A).

Each of the operators A; has real spectrum, so o({4,§}) CR [9, Propo-
sition 10.1]. Suppose first that n is odd. In this case, the Cauchy kernel
G (A) for A can be written down directly. The element

(18) ot |wl — AT Wl = A)
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of £y (X)) has the power series expansion (5) for {w| large enough. Here
il -1
jwl — A"™ = ((wgr + 3 (wyl - Aj)z) )
i=1

for an even integer m and wl — A = wpl ~ ):;7___1(ij — Aje;.

The operator wjl + 37 (wil — A;)? is invertible for each w € g(ny(A)
because A; has real spectrum for each 7 = 1,...,n [9, Proposition 10.1].
As stated in [9, Example 5.4], it is easily verified that the function w
ot Wl ~ A7 MWl — A, w € gn)(A), is monogenic in Liny(X(,). Hence
v(4) € o@m)(4) and G, (A) is given by the expression (18) for all w €
Q(n) (A)

Now suppose that 2 € R™ \ 7(A). Then w — G, (A) is norm-continuous
in a neighbourhood U of z in R™*! and it is given by (18) for wg # 0. The
function

m/2

w s op|wl — A" G (A)

is also continuous in U. For wy # 0, we have o,|wl — A|"71G,(4) =
|wI — A| 72wl — A and the equality (W]~ A4)™! = |wl — A|~20T = 4 holds in
Lin)(Xn)) 50 the Liny (Xny)-valued function w ~ (wl— A)~! has a contin-
uous extension J from U\ R* to U. Continuity ensures that the equalities
J(w)(wl — A) = (wl — A)J(w) = Iep hold for all w € U, so 2] — A is in-
vertible in Ly (X(m)), that is, © € p(ny(A4). This completes the proof that
Y(A) = on)(A) for the case in which n is odd.

For n even, we have to define (w§Z + 37, (w;I ~ A4;)2)~(*+1)/2 in some
fashion. A convenient way is to use the plane wave decomposition formula
(6) to define G, (A). To identify the set v(A4), we use Taylor’s functional
calculus [13].

That 0(,)(A) is the Taylor spectrum of A4 is proved in [10, Theorem 1].
A continuous linear map T : H (0(,)(A)) — L£(X) such that T'(p) = p(A) for
all polynomials p : R* — C is constructed in [13].

- The function w — |w ~ - |71 is analytic from g, (A4) into H (o (A)),
so on application of the mapping T, it follows that w +— T'(|w — - |7"71) is

analytic from gn3(4) into £(X). The analytic functional calculus ensures
that the function

(19) w oM T (jw — - | TP YWl — 4

has the power series expansion (5) for |w| large enough and is monogenic in
0(n)(A). Hence ¥(4) C o,)(A) and G,,(4) is given by formula (19) for all
w € g(n){A). The proof that o(,)(A) C v(A) follows the case of n odd.

Equality of the monogenic functional calculus and Taylor’s functional
calculus T" (see [13]) is a consequence of Theorem 3.6. u
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