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Continuity of generalized inverses in Banach algebras
by

STEFFEN ROCH (Darmstadt) and
BERND SILBERMANN (Chemnitz)

Abstract. The main topic of the paper is the continuity of several kinds of gener-
alized inversion of elements in a Banach algebra with identity. We introduce the notion
of asymptotic generalized invertibility and completely characterize sequences of elements
with this property. Based on this result, we derive continuity eriteria which generalize the
well known criteria from operator theory.

1. Introduction. Let 2 be an algebra with identity element e over the
field € of complex nurnbers. An element a of 2 is called generalized invertible
if there is an element b € ¥ such that

() aba = a.
The element b is not unique in general. In order to force its uniqueness, fur-

ther conditions have to be imposed. The perhaps most convenient additional
conditions are

(11) bab = b,

(I1I) {ab)* = ab,
(IV) (ba)* = ba,
(V) ab = ba.

Of course, (III) and (IV) make sense for involutive algebras only. One also
considers a generalization of (I):

(I) a*ba = of

with some k € Z7. Clearly, (I) = (I1).

FElements b € 2 satisfying (1) and (II) are called (I,1I)-inverses or sym-
metric inverses of a. Similarly, (I,1I, V)-inverses are called group inverses,
(X, 1L, III, IV)-inverses are Moore~Penrose inverses, and (I, II, V)-inverses
are Drazin inverses (of degree k). (For a moment, we had to resist the temp-
tation to introduce the notion of Abel inverse for the usual group inverse.)

1991 Mathematics Subject Classification: 46H99, 4TA05, 65F99.
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198 8. Roch and B. Silbermann

Thus, group inverses are Drazin inverses of degree 1. Furthermore, every
generalized invertible element has a symmetric inverse. Indeed, if b is a gen-
eralized inverse of o, then bab is a symmetric one:

(bab)a(bab) = b(ababa)b = bab.

It turns out that both Dragin and Moore-Penrose inverses are unique if they
exist. This leads to the natural question whether Drazin or Moore-TPenrose
inversion is a continuous mapping on the set of all Drazin resp. Moore-
Penrose invertible elements of 2 (such ag wsual inversion is continuous on
the group of invertible elements). The answer is known to be no in general.
So the main concern of the present paper is conditions which enforce the
continuity.

‘We have tried to make the paper self-contained; so its first parts can also
serve as a brief introduction in and a survey on this topic. For rmuch more
detailed accounts on generalized inverses and their applications we refer to
the monographs [12] and [14]. Let us also mention the paper [9], which con-
tains a very nice treatment of generalized Drazin inverses, 5] and {6], which
deal with Moore~Penrose inverses in C*-algebras and which, together with
developments in numerical analysis, stimulated our efforts in this topic, and
[15] and [10] where the continuity of the Drazin inverse is also considered.
Further we refer to [7] and [8] where the existence of several kinds of general-
ized inverses of elements of algebras of matrices over a commutative Banach
algebra is studied.

We start with recalling basic algebraic facts about existence and unique-
ness of generalized inverses in algebras, and about relations between them.
The proofs of these facts are no much longer than the citation of explicit
references, and so we add them for completeness, and for the reader’s con-
venience.

Then we turn to properties of generalized inverses which are more related
to complete normed algebras. The first one concerns the inverse closedness of
subalgebras with respect to generalized inversion, i.e. the question whether
an element which belongs to a subalgebra of a large algebra, and which has a
generalized inverse in the large algebra, also possesses a gencralized inverse
in the subalgebra. Secondly, we characterize generalized invertibility of an
element in terms of the spectrum of that element.

After these preparations, we turn our attention to the main topic of the
paper: the continuity of several kinds of generalized inverses. The origins
of our approach lie in numerical analysis. Motivated by [13], and based on
experience from [19] and [16]-[18] (where continuity with respect to the

strong operator topology of sequences of Toeplitz matrices is considered),
we introduce some kind of asymptotic generalized invertibility of a sequence
(2n) C . This means, for example, that we require ||@pbntn — ag|| — 0 in

a(bab)a = (aba)ba = aba = a,

icm

Continuity of generalized tnverses 199

place of anbpa, — an = 0. We prove that a convergent sequence is asymp-
totically group invertible if and only if its limit is group invertible, and
we derive a criterion for asymptotic group invertibility (Theorem 1). This
will enable us to obtain a criterion for continuity of group inverses (and
therefore also of Drazin and Moore-Penrose inverses) in Banach algebras
(Theorem 2) which generalizes the well-known criterion for the continuity
of the Moore—Penrose inverses of Fredholm operators in terms of their kernel
dimension. These results are then applied to the algebra of bounded linear
operators on a Banach space.

Finally, we consider a problem which also has its roots in numerical anal-
ysis: the regularization of approximation sequences for ill-posed equations.
In particular, we will discuss how to regularize an asymptotically group {or
Moore—-Penrose) invertible sequence in order to get a sequence which has an
exact and continuous group (resp. Moore—Penrose) inverse. This regulariza-
tion is intimately related to the asymptotic splitting of the approximation
numbers of the entries of the sequence.

The authors are grateful to the referee for helpful comments and for
turning their attention to the papers [15] and [10].

2. Uniqueness and existence. Let us start with the uniqueness of
generalized inverses. Symmetric inverses are not unique in general; for ex-
ample, every matrix (g‘ g) is a symmetric generalized inverse of (8 é) . But
it turns out that both Drazin and Moore—Penrose inverses are unique if they
exist.

LEMMA 1. An element can have at most one Drazin inverse and af most
one Moore—Penrose inverse.

Proof. Let b and ¢ be Drazin inverses of a of the same degree k. Then
b = bab = b(ab)* = b*t1a* = v*"gken
— BhHLgk(ea)h L = pRtLgZR Rk

and, analogously, ¢ = b*T1a2*t1lckt! ie b = c. Similarly, if b and ¢ are
Moore-Penrose inverses of a, then

b = bab = b{ab)* = bb*a™ = bb*(aca)” =: bb*a*(ac)"
= bb*a*ac = bb*a*{aca)ec = bb*a*a(ca)*c = bb*a"aa*c"c
and, analogously, ¢ == bb*a*ae*c*e, ie. b=c. =
Observe that every Drazin inverse of degree k is also a Drazin inverse of

degree k + 1. Thus, if an element has Drazin inverses of degrees k; and ks,
then these Drazin inverses coincide.
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COROLLARY 1. Let U be an involulive algebra. If b is the Drazin resp.
Moore-Penrose inverse of a, then b* is the Drozin resp. Moore—-Penrose
inverse of a*. Drazin and Moore-Penrose inverses of self-adjoint elements
are self-adjoint again.

Proof. Taking adjoints in (Ix), (II) and (V) yields
a*b*(ak)* :(ak)*, b*a*b*zb*, a*b* = b*a*.
The first and third equality together ensure that (a®)*b*a* = (a*)*, i.e. b*
is the Drazin inverse of a*. Analogously, the other assertions follow. w

It is well known that every matrix A € CV*V is generalized invertible.
On the other hand, the function a{z) = z, considered as an element of the
algebra C10,1] of all complex-valued continuous functions on the interval
[0,1], is an example of an element which is not generalized invertible (and
also not (Ix)-invertible for any k). Thus, our next concern is the existence
of generalized inverses. The following lemma shows that the central role is
played by the group invertibility. We denote by Comme the commutator
algebra {b € A : ab = ba} of the element a. Further, we only consider
involutive algebras which are reducing in the following sense: If a*a = 0 for
an element a € 2, then o = 0. Examples of reducing algebras are C*-algebras
and the algebra L*(R) (with the Fourier convolution as multiplication).

LevMAa 2. (a) Let 2 be an algebra with identity. An element a € U is
Drazin invertible of degree k in %4 if and only if a® is group invertible in
the algebra Comm a.

(b) Let AU be an involutive and reducing algebra with identity. An element
a € U is Moore—Penrose invertible if and only if a*a is group invertible.

Proof. If o is Drazin invertible and b is the Drazin inverse of a of
degree k, then b* is the group inverse of a*:

afbPak = gF (ba)* = a¥,  BRaRbR = (bab)F =K, aFbF = bFaF,

and from ba = ab we conclude that b* belongs to Comm a.

If, conversely, b is the group inverse of a® in Comm a, then ba®! is the
Drazin inverse of degree &k of a:

af(ba*Ya = aFba® = a¥,  (baFV)a(ba* ) = (baFb)ab ! = ba*T,
and a{ba*"!) = (ba**)a since b € Comma. .
- Let now a be Moore-Penrose invertible and b be the Moore~FPenrose
inverse of a. Then " is the group inverse of a*a as one easily checks. If,
conversely, b is the group inverse of a*a, then ba* is the Moore—Penrose
inverse of a: It can be easily verified that be* is a (II, 11T, IV)-inverse of a.
Moreover, ¢*aba*a = a*a implies a*a(e — ba*a) = 0 and, consequently,

(e — ba*a)a*ale — ba*a) = [a(e — ba*a)]*[a(e — ba*a)] = 0.

icm

Continuity of generalized inverses 201

The reducing property of 2 yields a(e — ba*a} = 0 or aba*a = @, i.e. ba™ is
also a (I)-inverse of a. m

We shall see in Corollary 5 (Section 4) that, in case % is a Banach algebra,
the group invertibility of the element a® in Comma in assertion (a} can be
replaced by its group invertibility in the algebra 2 itself.

One has the following simple criterion for the existence of group inverses.

LEMMA. 3. Let U be an algebra with identity e. An element ¢ € A is
group invertible if and only if there is an idempotent p € U such that

(1) a + p is invertible, ap = 0, and ap = pa.

If these conditions are satisfied, then the group inverse b of a is given by
b= (a+p)t(e—p), and p=e— ba.

Proof Let a be group invertible and & be the group inverse of o. Then
p = e — ba is an idempotent element, and one has ap = pa and ap =
a(e — ba) = 0. Moreover, pb = bp = b(e — ab) == 0 and, thus,

(a+p)b+p)=ab+ap+pb+p=ab+p=ce,

i.e. a + p is invertible and (a+p)~' = b+ p.
If, conversely, the conditions {1) are satisfied, then b := (a +p) (e —p)
is the group inverse of a: Indeed,

ala+p)e—pa=la+p)a+p) e~pla=(e-pla=a,
(a+p) " e—p)a(a+p)~He—p) = (a+p)>(e~p)(a+p) = (a+p) " (e—p),
and axiom (V) follows from ap = pa immediately. m

In other words: @ is group invertible if and only if there is an idempotent
p which commutes with a such that a +p = (e — p)a(e — p) +p is invertible.

COROLLARY 2. If a € 2 is group invertible, then there is exactly one
idempotent p satisfying (1).

Proof. Let p; and py satisfy (1) in place of p. Then (a + p1)"* (e — p1)
and (e — pp){a + pz)~* are group inverses of a by Lemma 3, and hence,
(a+p1)~"{e—p1) = (e~ p2)(a+ps)" by Lemma 1. Thus, (e ~p1)(a+ps) =
{a+ p1)(e — p2), which implies p; = pp. =

We shall refer to this idempotent as the group idempotent of a. It is
obvious from the axioms of group inverses that, if b is the group inverse of
a, then g is the group inverse of b, and that the elements a and b have the
same group idempotent.

COROLLARY 3. Let U be an involutive algebra with identity. The group
idempotent of o self-adjoint group invertible element is self-adjoind.
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Proof. Adjoining the axioms, one sees that ¢* is group invertible when-
ever ¢ is, and that the group idempotent of a* is the adjeint of the group
idempotent of a. Hence, group idempotents of self-adjoint elements are self-
adjoint. a

Now conditions for the existence of Drazin and Moore-Penrose inverses
follow without great effort.

ProPOSITION 1. (a) Let U be an algebra with identity. An element a € 2
is Drazin invertible of degree k if and only if there is an idempotent p € 2A
such that
(2) a+p is invertible, a¥p = 0, and ap = pa.

If {2) is satisfied, then the Drazin inverse of a is (a4 p)~*(e — p).

(b) Let 2 be an involutive and reducing algebra with identity. An element
a € U is Moore—Penrose invertible if and only if there is a projection (i.e. a
self-adjoint idempotent) p € A such that
(3) a*a +p is invertible, ap = 0, and a*ap = pa*e.

If (3) is satisfied, then the Moore-Penrose inverse of a is (a*a+ p) ta*.

Proof. {a) If o is Drazin invertible of degree k, then a” is group invertible
in Comm a, and conversely (Lemma 2). By Lemma 3, the group invertibility
of a® in Comm ¢ is equivalent to the existence of an idempotent p € Comma
such that

a® + p is invertible, akp=0, and afp = pa®.
The latter condition is redundant since even ap = pa. We claim that a +p
is invertible if and only if a + p is invertible.
From a*p = 0 and ap = pa we conclude that
af +p=df(e—p)+p=((e—plale—p) +p)"
Thus, a® + p is invertible if and only if (e — p)ale — p) + p is invertible.
Further we have
() a+p= (e~ plale—p) +pap+p=:c+
where ¢ := (e—p)a(e—p)+p, and where r := pap is nilpotent: r* = (pap)* =
a*p =0, Qur claim follows from the following observation:

If ¢ and v are commauting elements of an algebra with identity e, and if
r is nilpotent, then ¢ is invertible if and only if ¢+ r is invertible.

Indeed, if » is nilpotent, then so is —r, and thus it is sufficient to verify
only one direction. Let ¢ be invertible and r* = 0. Then e+c ™17 is invertible:

(e—clr 432 — 4 (m1)F T hmLph1y e 4 o1y
=e+ (1) leFrk =g,
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and, hence, ¢ +7 = c¢{e + ¢~ 'r) is invertible. Thus, (e — plale —p) +p == ¢
is invertible if and only if a + p = ¢ + r is Invertible.

The formula of the Drazin inverse can be verified straightforwardly.

(b) If ¢ is Moore-Penrose invertible, then a*a is group invertible, and
conversely (Lemma 2). By Lemma 3, group invertibility of a*a is equivalent
to the existence of an idempotent p such that

a*a -+ p is invertible, a*ap = 0, and a”a2p = pa*a.

The second condition implies {ap)*(ap) = 0 whence via the reducing prop-
erty it follows that ap = (. Moreover, p is self-adjoint by Corollary 3. Thus,
conditions (3) are necessary and sufficient for the Moore-Penrose invertibil-
ity of a.

Finally, we know from Lemmas 2 and 3 that the Moore-Penrose inverse
of ais (a*a+p)~ (e — p)a*, which coincides with (a*a+p)~'a* since pa* =
(ap)*=0.m

3. Spectral characterizations. Beginning with this section, we sup-
pose 2L to be a complex Banach algebra with identity e. Further, let og(a)
or o(a) denote the spectrum of an element a in 2.

LeMMA 4. Let A be a Banach algebra with identity, and let o € U be
group invertible. Then either 0 & o(a) (i.e. a is invertible}, or 0 € a(a), and
0 is an isolated point of the spectrum.

Proof. If p stands for the group idempotent of a, then the assertion fol-
lows easily from @ = {e — p)ale — p) and from the invertibility of
(e — p)a(e — p) + p by Lemma 3. It is also easy to give a more direct proof:
If o = 0, then the assertion is correct. If @ # 0, then the group inverse b of
a is also non-zero. Let |\ € (0, ]3] 7). Then e — Ab is invertible (Neumann
series), and one easily checks that (e — Ab)~1b — A~%(e — ba) is the inverse
ofa—Ae. m '

This spectral condition is not sufficient in general, as the following lemma
indicates.

LeMMa 5. Let % be a Banach algebra with identity, and let a be in
the radical Rad 2 of U. Then a is (I,)-invertible if and only if a* = 0.
In porticular, the only generalized invertible element in Rad 2 is the zero
element.

Proof. If a* = 0, then every element of 2 is a (Iy)-inverse of a. If,
conversely, b is a (I )-inverse of a, then a®ba = a”* and so a*(e ~ ba) = 0.
The element e — ba is invertible if o is in the radical. Thus, o® = 0. »

The following proposition singles out a class of Banach algebras for which
the spectral characterization from Lemma 4 is also sufficient. Recall that a
Banach algebra is semisimple if its radical consists of the zero element only.
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PROPOSITION 2. Let U be a semisimple commuiative Banach algebra
with identity. An element a € U is group invertible if and only if 0 & o(a)
or if 0 is an isolated point of o(a).

Proof. The necessity has been shown in Lemma 4. For the proof of the
sufficiency, we restrict ourselves to the case where 0 belongs to o(a), but is
an isolated point of this set {otherwise a is invertible).

Let X be the maximal ideal space of 2, provided with its Gelfand topol-
ogy, and let @ stand for the Gelfand transform of a € 2. Choose € > 0 such
that

{reC: A< el nola) = {0},

and define UV :={z € X : @(z) =0} and V := X\ V. Clearly, U and V are
disjoint, UV = X, U is closed and V is open in X. Since G(X) = (a), the
set U coincides with {z € X : [a(z)| < £} and is thus also open. Accordingly,
V is closed. Consequently,

Blz) = 1 ifzel,
PE)=10 ifzeV,

defines a continuous function on X such that
(5) @+ P is invertible in C(X) and ap == 0.

Now recall the following result by Shilov (for a proof see [3], Chapter I, 4.10,
Proposition 12).

SHILOV'S IDEMPOTENT THEOREM. Let 2 be a commutative Banach alge-
bra with identity, and let X denote its mazimal ideal space. Suppose further
there is a continuous function & on X taking only the values 0 and 1. Then
there exists an element p in A with Gelfand transform 5, and this element
8 UNLqUe.

Shilov’s theorem yields the existence of an element p € 2 with Gelfand
transform 7, and (5) implies that a + p is invertible and ap is in the radical
of A. But the radical of % is trivial by assumption, hence, ap = 0. By
Lemma 3, a is group invertible. m

Let us mention in this connection that group invertibility is, in contrast
to common invertibility, no longer a local property. Whereas a function a €
C(X) is invertible if and only if a{x) is invertible for all ¥ € X, this is no
longer true for group invertibility, as the example X = [0,1] and a{z) =
demonstrates.

. LEMMA 6. (a) Let % be a semisimple commutative Banach algebra with
identity. An element o € U is Drozin invertible if and only if 0 & o{a) or if
0 is an isolated point of o(a).
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(b) Let U be a C*-algebra with identity. An element a € 2 is Moore—-
Penrose invertible if and only if 0 & o{a*a) orif 0 is an isolated point of
o(a*a).

Proof. (a) An element a is Drazin invertible of degree k if and only if
a® is group invertible in Comma (Lemma 2). Since Comme = 2, this is
equivalent to

0 & oo (a®) or 0 is an isolated point of o9 (a”)

(Proposition 2). As a(a*) = (c(a))*, this is equivalent to the assertion.

(b) By Lemma. 2, the Moore-Penrose invertibility of a is equivalent to
the group invertibility of a*a which, in turn, is equivalent to the existence
of a projection p € % such that

(6) o g+ p is invertible, a*ap = 0, and a*ap = pa*e

(Lemma 3 and Corollary 3). Let B denote the smallest closed subalgebra of
A which contains e, a*a and p. Then B is a commutative *-subalgebra of
2, and (6) entails the group invertibility of a*a in %. But B is—as every
C*-algebra—semisimple. Thus, by Proposition 2, the group invertibility of
a*a in B is equivalent to

0 ¢ os{a*a) or 0 is an isolated point of o (a™a).

Since o (b) = og(b) for all b € B (inverse closedness), this yields the
assertion. m

COROLLARY 4. Bvery Drazin invertible element of a commutative semi-
simple Banach algebra with identity is group invertible.

4. Tnverse closedness. We start with an example showing that subal-
gebras B of an algebra 2 which are inverse closed with respect to common
invertibility are not necessarily inverse closed with respect to generalized
invertibility.

ExaMpLE. Let U = €2*2, and let B C 2 stand for the algebra of all
matrices

(g Z)za([l) 2>+ﬁ(8 é) with «, 8 € C.

The algebra B is inverse closed in 2 with respect to common invertibility: If
(g g ) ig invertible in 9, then its inverse Elg (8‘ _2) belongs to B. But B is
not inverse closed with respect to generalized invertibility: The matrix 2 g)
is a generalized inverse of (§ ;) in 2, but (2 3) bas no generalized inverse
in 9B. Indeed, this matrix lies in the radical of 2B, and the only generalized

invertible matrix in the radical is the zero matrix (Lemma 5). m
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Fortunately, this situation changes drastically if we consider group in-
vertibility. To see this, let us introduce a few more notations. Let again 2
be a Banach algebra with identity e, and let o € 2. By U[a] we denote
the smallest closed subalgebra of 2 which contains e, a and all elements
(a— X&)~ with A & o(a).

LEMMA 7. Let A be a Banach algebra with identity e, and let a € 2.

(a) The algebra Ula] is the smallest closed and inverse closed subalgebra
of 2 which contains e and a.

(b) The mazimal ideal spece of Ula] is homeomorphic to oa(a), and the
homeomorphism sends a character @ into p(a).

For the proof, see [3], Chapter I, Sections 1.4 and 3.3.

PrOPOSITION 3. Let A be o Banach algebra with identity e, and let B
be o closed subalgebra of U which contains e and which is inverse closed in
A with respect to the common invertibility. Then B is inverse closed in A
with respect to group invertibility.

Proof. Let & be group invertible in %, and let p € U denote its group
idempotent. We claim that p € Aa]. Indeed, if n is sufficiently large, then
the elements a — (1/n)e are invertible in 2 (by Lemma 4) and, hence, in
fU[a]. Thus, a(a ~ (1/n)e)~! € Ula] for all sufficiently large n. Now we have
(recall that ap = pa = 0)

o(a-2e) " = e pate-n) - He-n- 1p)

-1

-1

= a((e”p) ~ %p)_l((e—p)a(e—p) +p- "3;(6“1?))
= a((e—p) - np) ((8 ~plale —p)+p- %(e -p))_l
= a((6~p)a(e-p) +p- %(e—p))ml-

The element (e ~ plale — p) + p = a + p is invertible by Lemma, 3, and the
continuity of the mapping = +— 2~ entails that

Jim ((e—p)a(e—p)+p—%(e—1’))— =(a-+p)7"
Hence,

: 1!
11ma(a~;e) =ala+p) "t =e—p,

TT—+00
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whence it follows that e—p and p belong to %[a]. But then a+p € Ale] and, by
inverse closedness, (a+p)~! € A[al. Thus, the group inverse (a+p) " t{e—p)
of A belongs to Ala] and, in particular, to every closed and inverse closed
subalgebra B of U. =

As a consequence of the inverse closedness with respect to group invert-
ibility we mention a specification of Lemma 2(a) to the Banach case.

COROLLARY 5. Let % be ¢ Banach elgebra with identity. An element
a € 2 is Drazin invertible of degree k in 2 if and only if o is group
invertible in 2.

Proof. The necessity of the group invertibility of a* in % is a conse-
quence of Lemma 2. What we have to prove for its sufficiency is, again by
Lemma 2, that group invertibility of o* in 2( implies group invertibility of
o* in Comma. Since o* belongs to Comma, and Comm g is inverse closed
in 2 with respect to common invertibility, this follows immediately from
Proposition 3. a

COROLLARY 6. {a) Let 2 be a Banach algebra with identity e, and let
B be a closed and inverse closed subalgebra of A with e € B. Then B is
inverse closed in U with respect to Drazin invertibility.

(b) Let 2 be a C*-algebra with identity e, and let B be a closed
*_subalgebra of % with e &€ B. Then B is inverse closed in A with respect
to Moore—Penrose inuertibility.

Proof. (a) Let a € B be Drazin invertible of degree k in 2. Then o is
group invertible in 21 by Lemma 2 and, hence, group invertible in Ala*] by
the preceding corollary. Then a® is also group invertible in Ula]. Let b € A{a]
be the group inverse of a*. Then, by Lemma 2 again, ba*~" is the Drazin
inverse of degree k of a and, evidently, ba*! € [a] C B.

(b) Let b € ¥ be the Moore-Penrose inverse of a € 8. Then bb* is the
group inverse of a*a by Lemma 2, and bb* € %[a*a] by Proposition 3. The
inverse closedness of C*-algebras entails that 2{e*a] actually coincides with
the smallest closed subalgebra of 2 which contains e and a*a, which implies
that bb* € B (because a*a € B). Since bb*a* = b, again by Lemma 2, we
conclude that b € B as desired. w

5. Asymptotic group invertibility and eigenvalue splitting. Be-
ginning with this section, we consider convergent sequences of generalized
invertible elements. So let 2 be a Banach algebra with identity again, and
let (an) C 2 be a sequence with norm limit @ € 2. The following assertions
are well known for the common invertibility:

(A) If the an, are invertible, and if sup, |la; || < oo, then o is invertible,
and a;l — a”t.
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(B) If a is invertible, then a, is invertible for all sufficiently large n,
and a7l — a7t

The trivial example % = C and a, = 1 shows that assertion (B) does
not hold for generalized invertibility in general, but assertion (A) remains
valid as we will see now.

Define the following sets of sequences of elements of 2U:
F = {(an) : a, € A, sup|la,]| < o0},
T
£={(an): an € X, Jim a, exists},
& ={(a,): an € %, gingoan = (0}.

Provided with elementwise operations and the supremum norm, the sets §
and £ become Banach algebras, and & becomes a closed two-sided ideal of
both ¥ and £. If & is an involutive algebra, then we introduce an element-
wise involution on § which makes ¥ as well as its subalgebras £ and &
into involutive algebras and, in case 2l is a C"-algebra, into C*-algebras.
Property (A) of the common invertibility further entails that £ is an inverse
closed subalgebra of §.

PROPOSITION 4. Let 2 be a Banach algebra with identity, let (a,,) C 2 be
a convergent sequence with limit a, and suppose all a, are group tnvertible
with group inverses b,. Then the following assertions are eguivalent:

(a) sup,, ||ba|| < co.
(b} a 1s group invertible, the sequence (by,) is convergent, and its limit is
the group inverse of a.

Proof. The iraplication {(b)=+(a) is obvious. So suppose (b,) is a bounded
sequence. Then (by,) belongs to ¥ and is, consequently, the group inverse of
(an) in this algebra. But the sequence (a,) belongs to the algebra £ which
is inverse closed in §. So, Proposition 3 and the inverse closedness of £ in §
entail that also (b,) € £, that is, this sequence is convergent. Let b denote
its limit. Letting n go to infinity in

Onbrly = Gy, bnanby = by, Qpby = bran

yields
ab = ba.

aba =a, bab=05h,

Hence, a is group invertible, and b is its group inverse. m
COROLLARY 7. The assertion of the preceding proposition remains valid

for Drazin inverses with uniformly bounded Drazin degree and—in case % is
& C*-algebra—also for Moore—Fenrose inverses.
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The proof proceeds as that of Proposition 4, only with Corellary 6 in
place of Proposition 3. =

The problem of norm continuity of the group inversion will be examined
in greater detail in the next section. As a preparation, we consider a weaker
version of group invertibility of a sequence. A sequence (a,,) € § is called
asymptotically group invertible if there is a sequence (b,) € § such that

f[anbnon —anll = 0,  ||bpanbn = bl = 0,  |lanby — bpax| — 0

as n — 00. Analogously, one defines asymptotic Drazin and asymptotic
Moore-Penrose invertibility. Thus, the sequence (a,) € ¥ is asymptotically
group (Drazin, Moore-Penrose) invertible if and only if its coset (a,,) + & is
group (Drazin, Moore—Penrose) invertible in the quotient algebra F/6.

LemMa 8. The quotient algebra £/& is inverse closed in /6 {with re-
spect to common invertibility).

Proof Let (a,) be a sequence in £ the coset (an) + ® of which is
invertible in §/®. Then there are sequences (b,) in § and (gn), (hy) in &
such that

anby, =e+ g, and byon =€+ h,.

If n is sufficiently large (n > ng, say), then ||gn|| < 1/2 and |k, |} < 1/2.
Thus, e + g, and e + h,;, are invertible for n > ng, and the norms of their
inverses are uniformly bounded. So we get

1

anbne+g,) " =e and (e+ hn)_lbnan =e forall n > ng,

whence the invertibility of the sequence (an)p>n, in § follows. Its inverse is
the sequence (b (€ + gn) " nzng, and since (an)n>n, belongs to £ and £ is
inverse closed in §, we conclude that (bp{e+ gn) ™' )nzn, belongs to £, i.e. it
converges. But then so does (bn)nzng = (bnl{e+gn) " )nzno(€4gn)n>n,. This
implies that (bn)n>n, and, hence, the sequence (b,) itself, belong to £. =

Thus, a sequence (a,) € £ is asymptotically group (Drazin, Moore—
Penrose) invertible if and only if its coset (a,) +® is group (Drazin, Moore—
Penrose) invertible in the quotient algebra £/®. For group invertibility in
£/6, we have the following simple criterion.

Lemma 9. Let 2 be o Banach algebra with identity, and let (a,) € L.
The coset {an) + B is group invertible in £/& if and only if there is an
ng and an idempotent p in U such that a, + p s invertible for all n > ng,
SUDPp s, [|{am +p) 71| < 00, and |lanpl — 0 as well as [lanp — pan|| — 0.
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Proof. The algebra £/® is evidently isometrically isomorphic to 2 with
the isomorphism being

(n (an) + & = lim ay.
Hence, (an) + @ is group invertibie in £/® if and only if a := lim a,, is group
invertible in ®. Let p € 2 denote the group idempotent of g, i.e.

a + p is invertible, ap == 0, and ap = pa.
Applying the inverse of the isomorphism (7) to these assertions we obtain
(an +p) + & is invertible in £/, (anp) € &, and (a,p) + & = (pa.) + &,
which is equivalent to the assertions of the lemma. =

A remarkable consequence of the asymptotic group invertibility of a con-
vergent sequence (a,,) is the asymptotic splitting of the spectrum of the a,.
Givene > 0, let

U:={2€C:|z{|<e} and V.:=C\U..
PRrROPOSITION 5. Let % be o Banach clgebra with identity, and let

(an) € £ be asymptotically group invertible. Then there are numbers cp, > 0
with ¢, — 0 asn — 00 and d > 0 such that

Jm(an) C Ucn UV

Thus, one part of the spectrum tends uniformly to 0, whereas the other
part remains bounded away from zero by a positive constant independent
of n.

Proof. Let (a,) + & be group invertible in £/&. Then o = lima, is
group invertible in A and hence, by Lemma 4, there is a positive number d
such that

(8) oy (Ct.) C {0} U Ve
The upper semicontinuity of the spectrum (see, e.g., [1], p. 26) entails that,
given ¢ > 0, there is an ng such that o{a,) lies in the e-neighbourhood of
a(a) for all n > ng. Due to (8), this implies that
UQL(an) CU. UVy,
whence the assertion easily follows. =
CorOLLARY 8. (a) Let 2 be a Banach algebra with identity, and let
{an) € £ be asymptotically Drazin invertible. Then there are numbers ¢, > 0
with ¢, — 0 as n — oo and d > 0 such thaot
oy lan) © U, UV

(b) Let A be a C*-algebra with identity, and let (an) € £ be asymploti-
cally Moore—Penrose invertible. Then there are numbers ¢, > 0 with ¢, — 0

for all n > ng,
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asn — oo and d > 0 such that
sat(an) C [0, cn) U [d, 00)
where sy (a) stands for the set of singular values of a € 2.

Recall that the singular values are just the non-negative square roots of
the (non-negative) numbers in the spectrum of a*a.

Proof. (a) By Corollary 5, the sequence (a,) is asymptotically Drazin
invertible of degree & if and only if the sequence (a®) is asymptotically
group invertible. Thus, we have a splitting of o (a?) in accordance with the
preceding proposition. But g (af) = (og(a,))*, and so the splitting carries
over to the spectra of ay,.

(b) By Lemma 2(b), the sequence (a,,) is asymptotically Moore-Penrose
invertible if and only if {eXe,) is asymptotically group invertible. Thus,
the spectra on (e an) split in accordance with the preceding proposition.
Now it is clear from the definition of the singular values that they split
in the same manner. Since the spectrum of aj e, is contained in the non-
negative real semiaxis, the neighbourhoods U, and Vj can be replaced by
real intervals. m

It will be important in what follows to be able to replace the (constant)
sequence (p) in Lemma 9 by a sequence (g») of idempotents which belongs
to the inverse closed algebra generated by the sequences (e) and {a,) and
which, in particular, cornmutes with (a.) exactly. As a preparation, we need
one more lemma.

LEMMA 10. Let A be a Banach algebra with identity, and let (b,) be o
sequence n £ with limit b. Then

O’g((bn)) = O'Q{(b) U Uaﬁl(bn)-

Proof. Let A & og((by)). Then there is a sequence (e,) in £ with
(en)((br) = Ae)) = ((bn) — Me)){en) = (€)

or, written elementwise,

9 en(bn — X&) = (bp — Ae)ep =e  for all n.
Passing in (9) to the limit, we get (with ¢ := limcy,)
(10) elb—Ae) = (b—dejc=e.

The identities (9) show that A ¢ ow(bs), and (10) implies that A & og(b).
Hence,

os((b)) 2 oa(B)U | Jou(be)
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For the reverse inclusion, let A € og (b) U, oa(bn). Set ¢ := (b— Xe)™1
and ¢, = (bn, — Ae)"!. The invertibility of b — Ae and the convergence
b, — Ae — b — Ae enforce the uniform boundedness of the elements ¢, as
well as their convergence to ¢. Thus, (¢, ) is in £, and it is just the inverse
of (b, — Xe) in £. Consequently, A & og((bs)), which proves the reverse
inclusion. =

The following theorem is a key in our approach to the continuity problem
for generalized inverses.

THEOREM 1. Let 2 be o Banach algebra with identity, and let (a,,) be a
sequence in £ with limit a. Then the following ussertions are equivalent:
(a) @ is group invertible in 2.
(b) (an) + ® is group invertible in £/®.
(c) There exists a sequence (g,) € £ of idempotents such that:
b the sequence (an+n)npny 15 invertible in £ for sufficiently large ng,
> Gndn = Qnn for all sufficiently large n,
B Gngn — 0 as n ~+ co.

If (g,) has these properties, then it belongs to the algebra L[(an)n>ny), and
the idempotents ¢, belong to Alay] for every n > ng.

Proof. The equivalence between (a) and (b} is quite obvious and has
already been remarked. The implication (¢)=(b) is also easy to check: Let
(gn) be as in (c), and set for brevity A := (a,) + ® and Q = (¢) + &.
Then the conditions in (c) imply that @ is an idempotent in £/ such that
A+ Q is invertible in £/® and that AQ — QA =0+ & and AQ =0+ &.
By Lemma 3, A = (a,) + & is group invertible in £/®.

Now suppose {a) and (b) are satisfied, Le. let (a,)+® be group invertible
in £/®, and let @ = lim a,,. By Proposition 5, there are ¢, > 0 with ¢, — 0
and d > 0 such that

O'Ql(a.n) - Ucn UV
and by Lemma 4, there is a d > 0 such that
(11) ogla) € {0} U V.

Without loss of generality, we can assume the two d’s occurring in these
inclusions to he equal, and the sequence (c,)} to be decreasing, Hence,

oo (@) U U oalan) & Ue, U Va,
n>k

for all n,

which, by Lemma 10, is equivalent to

(12) e((@n)nzk) S U, UVy forall k.
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Let ng be a number such that
(13) Cne < min{d, 1},

and let B := £[(an)n>n,] denote the smallest closed and inverse closed
subalgebra of £ which contains the identity sequence (e} and the shortened
sequence {an)n>ny. Then, by (12},

(14) U%((an)nZno) g UC"D U Vd'

The maximal ideal space of B is homeomorphic to o ((@n)n>n,) by Lemma
7, and it is the union of its open and disjoint components om((@n)nsng) N
Ue,, and o ({(an)nzn) N Ve by (13) and (14). Of course, one of these com-
ponents might be empty.

By Shilov’s idempotent theorem, there is an idempotent sequence
(@n)n>no in B, the Gelfand transform of which is equal to 1 on o ((@n)n>n,)
N U.,, and 0 on the other component. If one of the components is empty,
then (gr) is the identity sequence or the zero sequence.

The sequence (gn)n>n, has the following properties:

(i) Its entries g, are idempotents.

(ii) Gngn = gnan for all n > ng.
(iii) The sequence {ap, - ¢n)npn, is invertible in B (and, hence, in £}.
(iv) 0m ((angnln>ns) < Cng,

where ps(c) is the spectral radius of ¢ in 9. Indeed, properties (i) and
(ii) are obvious, and (iii) and (iv) follow from Gelfand theory: The Gelfand
transforms (with respect to B} of the sequences (@n)n>ny a0d (Gn +Pa)n>nq
coincide on oy ({(@n)n>n,) M Va and, consequently, both have values greater
than or equal to d on this component, whereas the Gelfand transform of
(@ + Pr)nzne 8 T+ 1 at © € omn{(an)azn) N Ue,,- Since |z} < eny <1
and d > 0, this shows that the Gelfand transform of (Gn + Dn)nzn 18 in--
vertible and, hence, the sequence (@n + Pn)n>n, i5 invertible in 9. So we
obtain property (iii), and (iv) follows similarly: The Gelfand transform of
cunqn)mﬂo is 0 on om{(@n)azne) N Va and rat & € on{(an)npng) N Vs, -
This gives (iv) because || < cpy.
Now we turn to the limits a := lima, and g := lim¢, (the latter exists

since (g,) belongs to the subalgebra B of £). We claim that the following
assertions hold: '

(i} ¢ is an idempotent element.
(ii") ag = ga.
{iii') e + g is invertible in 2.
( " ¢ € Ya].

(v') oa(ag) = 0.
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The assertions (i') and (i') follow immediately from (i) and (ii). Assertion
(iii’) is a consequence of (iit) and of property (A) of the common invertibility
(see the beginning of the present section).

For the proof of (iv’), recall that (gn)asn, € B = L£[(@n)nzn.]- By
Lemma 7, there are rational functions ri with poles outside om ((an)n>n,)
such that 75 ((an)n>n,) converges in B t0 (¢n)n>n, 88k — 00. By Lemma 10,
the poles of the 7, then also lie outside o{a) and outside o(a,) for all n > ng.
So it makes sense to form the elements ri{a) as well as r4(a, )}, and it is easy
to see that the limits limy, o, 71 (an) exist and that

lim ri(an,) = ri(a) forall k.
From
lg —re(a)]l = lim iga — 7r(an)]
< sup [|gn — Tlan)| = H(qn)nzno = 1e{{@n))nznolle

nAng

we infer that v (a) — ¢ as k — oo, whence it follows that ¢ belongs to 2.
For (v'), recall that

C’?J.(“Q) c Uﬂ((“ﬂ?ﬂ)nzng) = UEB((a'nQn)'n,Zno))

which together with (iv) yields og{aq) C U, . Now we consider a and
g as elements of 2[a). The maximal ideal space of g} is (by Lemma 7)
homeomorphic to oy(a), and oy (a) C {0} UVy by (11). Assume the Gelfand
transform of ¢ is 1 at some 2 € o{a) N Vy. Since the Gelfand transform of
ais x at every z € o(a), this would imply z € o(aq), which is impossible
because |z| > d > ¢n, and p(aq) < ¢y, Thus, the Gelfand transform of g is
0 (of course, 0 and 1 are the only possible values of the Gelfand transform
of an idempotent) on o(a) N Vy, whence via (11) it follows that o(ag) = {0}.
This proves (v).

Let p denote the group idempotent of a. We will show that p = ¢. We
have seen in the proof of Proposition 3 that p € [a]. Let @, 5 and ¢ be
the Gelfand transforms of e, p and ¢. The invertibility of o 4- p implies that
(@+ p){z) # 0 for every maximal ideal z and, in particular, p(z) = 1 for
z € o(a) N {0}. Similarly, we conclude from o(ap) = 0 that (@p)(z) =0
for every maximal ideal = and, in particular, 5{z) = 0 for z € o(a) N Vy.
These considerations remain valid for ¢ in place of p ag well. Thus, § = g or,
equivalently, ¢ = p+ r with some r in the radical of U[a]. Now we have

prr=g=g*=(p+r)*=p+ 2+

or 7{e~2p—r) = 0. The element e—2p is invertible (its spectrum is contained
in {1, 1}), r is in the radical, and so e — 2p ~ r is invertible. This implies
r = 0 and, hence, p = q.
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Now we can finish the proof of assertion (¢} of the theorem. We have
already shown that the an + g, are invertible for large n, that the norms of
their inverses are uniformly bounded, and that a,¢, = gua, for all large n.
In order to see that a,g, — 0, write

Gngn = anp + an{gn — P)
and take into account that ||anp|| — 0 by Lemma 9 and |go — 2| = ||¢n — 4|
— 0 as we have just seen.

Further, we have chosen the sequence {g,} so that it belongs to
Ll{an)n>ne), and it remains to show that the idempotents g, belong to
Alay,] for every n > ng. If ry are the rational functions introduced above,
then

llgn — refan)ll < sup |ign —re(an)ll = [[(@n)nzne — Te{{@n)azn,lle = 0,

nAng

hence, rg(Gn) — dn as k — oo, and g, € Ufa,]. v

6. Continuity of generalized inversion. Let us start with some evi-
dent criteria for continuity.

LeMMA 11. (a) Let 2 be a Banach algebra with identity, and let (an) C2
be a convergent sequence with limit a such thal every a, as well as a are
group invertible. Then the group inverses of an converge to the group in-
verse of a if and only if the group idempotents of a, converge to the group
idempotent of a.

(b) Let A be a Banach algebra with identity, and let (a,) € 2 be a
convergent sequence with limit o such that every ay as well as a are Drazin
invertible of degree k. Then the Drazin inverses of an converge to the Drazin
inverse of a if and only if the group inverses of & converge to the group
inverse of aP.

(c) Let 2 be a C*-algebra with identity, and let (an) C 2 be a convergent
sequence with limit o such that every a, as well as o are Moore-Penrose
invertible. Then the Moore-Penrose inverses of an converge to the Moore-
Penrose inverse of a if and only if the group inverses of a}a, converge to
the group inverse of a*a. ‘

Proof. The assertion (a) follows from the relations between the group
inverse and the group idempotent of a given element mentioned in Lemma 3,
and to prove (b) (resp. (c)), one has to invoke the relations between the
Drazin inverse (resp. the Moore-Penrose inverse) of a,, and the group inverse
of a¥ (resp. of a*a,) as explained in the proof of Lemma 2. m

For a more interesting criterion, we introduce the notion of similarity of
idempotents. Let 2 be an algebra with identity. We call two idempotents p
and q in 2 similar (and write p ~ g in this case) if there is an invertible
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element ¢ in 2 such that ¢ = ¢~ pe. Clearly, similarity is an equivalence
relation in the set of all idempotents of 2[. We need two lemmata.

LeMMA 12. Let 2 be a Banach algebra with identity e, and let p and g
be idempotents in A with ||p - gl < ||2p ~ €||™1. Then p~gq.

Proof Let ¢ :=p+ ¢ —e. Then, in any case, ¢c¢ = pe. Further, we have
¢ = (2p—e) + (g — p) where the element 2p — e is invertible and is its own
inverse. Then, by Neumann series, ¢ is invertible if only

lg—2ll < [[(2p—&}7H|7" = [|2p — ¢l 7.
Thus, if this inequality holds, then p ~ g. m

Observe that the element ¢ as well as its inverse belong to the smallest
closed subalgebra of %l which contains p, ¢ and e.

Lemma 13. Let A be a Banach algebra with identity e, let p and q be
idempotents in A with p ~ g, and suppose that the algebra pAp = {pap :
a € 9} is a finite-dimensional linear space. Then the algebra g is also
finite-dimensional, and

dim p2p = dim ¢Rq.

Proof Let ¢ be an invertible element in A such that ¢ = ¢ 'pc, set
dimpRlp =: I, and let gaiq,...,qa;11g be arbitrary elements in ¢2g. The
I 1 elements pcaic™'p, ..., pcaj1c7 p are linearly dependent by assump-
tion; hence, there are numbers ay,..., a1, not all zero, such that

alpcalc_lp + ...+ a1+1pca5+1c"1p = 0.
Multiplying this equality by ¢=! from the left and by ¢ from the right hand
side yields ‘
a1qaig -+ ...+ ogq1gai1g =0,

ie. any ! + 1 elements of g2g are linearly dependent. Thus, dimpRlp >
dim ¢®g, and the reverse inequality follows analogously. m

Now we can formulate and prove our criterion for the continuity of group
inversion in Banach algebras.

THEOREM 2. Let 2 be a Banach algebra with identity, let (@) G 2
be a convergent sequence with limit o € 2, and suppose that a and every
an ore group invertible with corresponding group idempotents p resp. pp.
Further assume that pip is e finite-dimensional algebra. Then the Jollowing
assertions are eguivalent:

(a) The group inverses b, of o, converge to the group inverse b of a.
(b) The group idempotents pn, of an are similar to the group idempotent
P of a.
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Proof. (a}=(b). If an — a and b, — b then, by Lemma 11(a), we have
pn — p. From Lemma 12 we conclude that p,, ~ pfor all sufficiently large n.

(b)=>(a). By Theorem 1 and its proof, the group invertibility of a entails
the existence of a sequence (g,} of idempotents such that

(15) ap + Gy is invertible and g, € Alay]

for all sufficiently large n, and

(16) HQ'n _p“ — 0.

We shall verify that p, = gn, for all sufficiently large n. By (16), this implies
that p, — p, which gives the assertion via Lernma 11(a).

From (16} and Lemma 12 we infer that g,, ~ p for all sufficiently large
n, and by hypothesis we have p, ~ p for all sufficiently large n. Thus, by
Lemma 13,

(17 dim p,Ap,, = dim pUp = dim ¢,,Aqg,,.

Further we have (an + gn)pn = Pugn (recall that a,p, = 0 by Lemma 3),
and hence

Pn = (a'n + Qn)Hlann
for all sufficiently large n. Multiplying this equality by g, and taking into
account that all the occurring factors commute with each other (since p,, €
Alan| by Proposition 3 and its proof, and since ¢, & %{a,] for all sufficiently
large n by (15)), we obtain

DPn = Paln = nPp = GnPrln

for all large n. Thus, for these n, the idempotent p,, belongs to the algebra
4nAgn, and p,Ap, is & subalgebra of g,%q,. Since both algebras are finite-
dimensional and have the same dimension by (17), we conclude that even

Prip, = gn gy,

i.e. there are d,, € 2 such that g, = pnd,py for all sufliciently large n. But
then

Undn = OnPndnpn = 0,
which together with (15) and Lemma 3 yields that ¢, is the group idempo-
tent of a,. Consequently, g, = pn, and we are done. m

This theorem is no longer valid if the finiteness condition is viclated.
To have an example, let B{L*) denote the algebra of all bounded linear
operators on the Lebesgue space L? over the real line, and let, for every
interval M, x s stand for the operator of multiplication by the characteristic
function of M. The operators A, := (1/n)X[0,1]X[1,00) COnVETge in the norm
of B(L?) to the operator A := X[1,00). Both the operator A and the operators
Ay, are group invertible; their group inverses are x(1,00) and nxo,1) -+ X[1,60)»
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and their group idempotents are X(..eo,1) 21d X(-co,0] respectively. These
idempotents are similar; for, if U : L? — L2 is the shift operator (Uf)(t) =
f(t —1), then

X(oot] = U X(=o0i U,
but the group inverses of the A, do not converge.

7. The operator case. Now we are going to specialize the results of the
preceding sections to the case of linear operators. Let us start with recalling
some results concerning the existence of generalized inverses of operators.
We denote by Im A and Ker A the range and the kernel of the linear operator
A. Further, let I stand for the identity operator.

LEMMA 14. Let E be a linear space and L(E) denote the algebra of all
linear operators on F.

(a) Bwery operator A € L(E} is generalized invertible.

(b) A € L(E) is group invertible if and only if Im ANKer A = {0} and
ImA4KerA=E.

Proof. (a) Every linear subspace of E has an algebraic complement. In
particular, there are subspaces Ex and Ejy of E such that

E=KerA+ Ex and E=E;+ImA.

The restriction of 4 to Ex is a bijection between Ex and Im A. So one can
define a linear operator B on E as being 0 on E; and (A|g,)~" on ImA,
and this operator satisfies the identity ABA = A. (Actually, it is even a
symmetric inverse.)

(b) Let A € L(E) be group invertible with group inverse B and group
idempotent P, and set ¢J = I — P. Then

Q=BA, Q=AB, A=(B+P)qQ,
and these identities imply that
(18) Kerd CKer), ImQCImA, KerQ CKerd, ImACIm@.
Hence, Ker A = Ker @ and Im A = Im @, and the assertion follows from
Im@NKerQ = {0} and Im@Q + Ker Q = E.
Let, conversely, InA NKer A = {0} and Im A + Ker A = E, and let P
stand for the projection operator from E onto Ker A parallel to Im A. Then

AP = PA = 0 and A4 & P is invertible; thus, 4 is group invertible with
group idempotent P. =

A=Q(B+P)—1>

PROPOSITION 6. Let E be a Banach space and B(E) denote the Banach
algebra of all bounded linear operators on E.
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(a) A € B(E) is generalized invertible if and only if Im A is closed and
if there are closed subspaces Ex and Ey of E such that

E= KBI‘A—E—EK and E = E_[ -i—ImA.
(b) A € B(E) is group invertible if and only if Tm A is closed, Im AN
Ker A= {0}, and Im A + Ker 4 = E.
(c) A € B(E) is Drazin invertible of degree k if and only if Im A* is
closed, Im A® N Ker A* = {0}, and Im A* + Ker 4% = F.

(d)} If H is a Hilbert space, then A € B(H) is Moore-Penrose invertible
if and only if Im A is closed.

Proof. (a) Let A be generalized invertible, let B be one of its generalized
inverses, and set P = AB and () = BA. Then P and (Q are projection
operators, and from

ImA=ImABACImnAB CImA,
KerACKerBACKer ABA =Ker A
we conclude that
ImA=ImP and Kerd=ZKerQ.

Now the necessity of the conditions follows since the kernel and the range
of a bounded projection operator are closed subspaces each of which is the
direct complement of the other. The sufficiency can be checked as in part
(a) of the preceding lemma (with the boundedness of (A|g,)~* being a
consequence of Banach’s theorem on the inverse operator).

(b) The necessity part is a consequence of Lemma 14 and of part (a) of
the present proposition. The sufficiency can be seen as in Lemma 14({b) (with
the boundedness of P being a consequence of the closed graph theorem).

(¢) This is an immediate consequence of Corollary 5.

(d) If A is Moore—Penrose invertible, then the range of A is closed by (a).
The reverse conclusion can be proved in the same way as Lemma 14(a); one
only has to choose By and Ep as the orthogonal complements of Ker A and
Im A, respectively. This choice makes AB and B A self-adjoint projections. m

LemMA 15, Let E be a Banach space, let P,@ € B(E) be projection
overators, and suppose that dimIm P < oo. Then the following assertions
are equivolent:

(a) P~ Q.
(b) dimIm P = dimIm Q.

Proof. (a)=(b). We have P = C7'QC and Q = CPC~' with some
invertible operator €, and the assertion follows from the inequality

dimIm AB < min{dimIm A, dim Im B}

holding for arbitrary linear operators A, B.
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(b)=+(a). We have E = ImP +Im(I — P) and B = ImQ 4 Im(I - Q).
Consider the restriction of I — @ to the subspace Im(I — P) of E. The
operator (I — @)(I — P) is a Fredholm operator of index zero, the space
Im P lies in the kernel of that operator, and the intersection of Im ¢ with
the range of that operator is {0}. Hence, there are subspaces Ey, Fp and
B3, By of £ such that

E=Ker(I-Q)I—P)+F and Ker(I-Q)I-P)=ImP+E;
as well as ‘
E=E+Im(I-Q)(I~P) and E3=ImQ+ B,
The zero index of (I — @)(I — P) ensures that
dim(Im P + B») = dim(Im @ + E),

and since dimIm P = dimIm@ by hypothesis, we also have dimE; =
dim £y. Further, all these dimensions are finite, and the restriction of I — Q
to By acts bijectively between this space and Im(7 — Q) (I — FP). Choose linear
bijections ¢ from Im P onto Im @ and C, from E» onto Ey4, and define a
linear operator C from E into F as follows: let € act on Im P as 'y, on By
as Cy, and on B as I — Q. This operator is bounded (the operators C; and
Cy act between finite-dimensional spaces and are, thus, bounded, and the
restriction of the bounded operator I — @ is bounded again), it is invertible
(the inverse acts on Im @ as C;*, on By as 03", and on Tm(I — @Q)(I — P)
as ((I - Q)|g,)™1), and its inverse is bounded by Banach’s theorem on the
inverse operator. It is easy to check that C~1QC = P, i.e. P and @ are
similar. u '

Now we can specialize Theorem 2 to the operator case.

THEOREM 3. Let E be a Banach space, and let (4,) C B(E) be a norm
convergent sequence of operators with limit A € B(E). Suppose that the
operator A and all the operators A, are group invertible, and that the kernel
of A has a finite dimension. Then the following assertions are equivalent:

(a) The group inverses of Ay, converge in the norm of B(E) to the group
inverse of A.

{(b) The kernels of A, are finite-dimensional, and satisfy dim Ker A,, =
dimKer A for all sufficiently large n.

Proof. Let P and P, denote the group idempotents of A and A4, re-
spectively. The kernel dimension of 4 resp. 4, coincides with the range
dimension of P resp. P, by (18), thus, the finiteness condition of Theorem
2 is satisfied. The equivalence of the conditions (b) in Theorem 2 and in the
present theorem is a consequence of (18) and of Lemma 15. w
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COROLLARY 9. Let E be ¢ Banach space, and let (A,) C B(E) be a
norm convergent sequence of operators with limit A € B(E). Suppose that
the operator A and all the operators A, are Drazin invertible of degree k, and
that the kernel of A* has a finite dimension. Then the following ossertions
are equivalent:

(a) The Drazin inverses of A, converge in the norm of B(E) to the
Drazin inverse of A.

(b) dim Ker A% = dim Ker A* for all sufficiently large n.
Proof. Immediate from the preceding theorem and Lemma 11(b). m

COROLLARY 10. Let H be a Hilbert space, and let (An,) C B(H) be a
norm convergent sequence of operators with kmit 4 € B(H). Suppose that
the operator A and all the operators A, are Moore-Penrose invertible, and
that the kernel of A has o finite dimension. Then the following assertions
are equivalent:

(a) The Moore—~Penrose inverses of A, converge in the norm of B(H)
to the Moore~-Penrose inverse of A.
(b) dim Ker A, = dimKer A for all sufficiently large n.

Proof Recalling that Ker B*B = Ker B for arbitrary operators B &€
B(H), one gets this result immediately from Theorem 3 combined with
Lemma 11(c). =&

COROLLARY 11. Let H be o Hilbert space, v a positive integer, and let N,
denote the set of all normally solvable operators A € B(H) with kernel di-
mension k. Then the mapping assigning to every A € N, its Moore-Penrose
mverse is continuous on N,.

Proof. An operator is normally solvable if and only if its range is closed.
So the assertion is just a reformulation of the preceding corollary. m

Let us remark that the continuity of this mapping on the subset &, , of
N, of all Fredholm operators with kernel dimension r and range codimension
s is well known (see, e.g., (4], Vol. I, Ch. 4, Cor. 13.1).

8. Regularization, and asymptotic splitting of approximation
numbers. In this concluding section, we mention some further consequences
of Theorem 1 which have their roots in numerical analysis. The first one con-
cerns the possibility of regularizing a (bad) asymptotically group invertible
sequence by adding a sequence tending to zero in norm in order to get
a (good) sequence whose elements have uniformly bounded group inverses
(which then form, by Lemma 11{a), a norm convergent sequence).

THEOREM 4. Let U be a Banach algebra with identity, let (a,) € A
be a convergent sequence with limit o € 2, and suppose this sequence is
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asymptotically group invertible. Then there is a sequence (gn) € & such that

(a) angn = Gnan for all n,
(b) an — gn 18 group invertible for all sufficiently large n, and
(c) the group inverses of an ~ gn converge to the group inverse of a.

Proof. Let {g,) be the sequence of idempotents introduced in the proof

‘of Theorem 1, and set g, '= Gngn. 3ince angn = Gnan, one has a,gn = g,on.
Further,

(@ — gn)n = (Gn — Onga)gn = 0,

and the elements an — gn + ¢n are invertible for all sufficiently large n due
t0 [|gnl| = [langn|| — 0 and to condition (¢} in Theorem 1. Thus, the a,, — g,
are group invertible, and the g, are the associated group idempotents for
all sufficiently large n. Finally, the uniform boundedness of the inverses of
an +¢n (which is a consequence of the invertibility of (a, - ¢,) +® in £/®)
implies the uniform boundedness of the inverses of a,, — g», + g, and, hence,
of the group inverses of ay, — g,. Proposition 4 yields the convergence of the
group inverses of a, — g, to the group inverse of a. m

The second consequence concerns the asymptotic splitting of the ap-
proximation numbers of the elements of an asymptotically group invertible
sequence Let E be a Banach space. We define the kth approzimation number

s (A) of an operator 4 € B(E) by

sZ(A) = inf{||4 — F||: F e L(E), codimImF > k},
but we have to mention that this name is also used for other (related)
numbers in the literature.

We prepare the proof of the announced splitting result by a few lemmata.

LEMMA 16. Let E be an infinite-dimensional Banach space, A € B(E),

and let P € B(E) be a projection operator with norm 1 and finite kernel
dimension v such that A = PA = AP. Then

0 if k<r
FW= {5z (par) GhSy
Proof We conclude from Im PB C Im P that
codimIm PA > codimIm P = dimKer P = r.
Hence,

57 (A) = inf{||4 ~ F|| : codimIm F > r} < ||A — PA|| =0,
whence s§(A) = ... = sE(4) =0.

" Let now k > r. Slnce |A— PFP| = |P(A— F)P| < |P||*|A - F| for
all F ¢ B(E), one has

(19) inf{|A~PFP||: codimIm F > k} < inf{|{|A—F|| : codimIm F > k}.
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If F' runs through the set of all operators in B(E) with codimgIm F > k,
then PF P runs through the operators in B{PE) with codimpy; Im PFP >
k —r. Thus, {19) gives the estimate

sEZ(A) < sP(A) forallk>r.
Conversely, if codimpgIm PFP > k — r for an operator F, then we have
codimp Im PFP > k and, consequently,
inf{||A — F| : codimpIm F > k}
<inf{||4 — PFP| : codimppImPFP > k —r},
ie. sE(A)<sfE(A)forallk>r. u

COROLLARY 12. In case ||P|| > 1, the approzimation numbers sf(A),. ..

.., 82 (A) are all zero, whereas sE(A) and sEZ (PAP) for k > r are equiv-

alent in the sense that
sP(A) € sTE (PAP) < ||P|?sE (A).

ConroLLARY 13. Let E be a Banach space, and let A € B(E) be a

group invertible operator with group inverse B and group idempotent P.
If dimKer A =1 < 00, then s¥(A) = ... = sP(A) =0, wherens

5?4—1( ) < ||JB”_1 = “I Pj|*s 'r'+1( )-
Proof If F is a Banach space and € € B(F) is an invertible operator,
then
st(C) =7
(see [2] for the proof). Applying this to the operator ' = (I — P)A(I ~ P)
thought of as acting on F = (I — P)E, and taking into account Lemma 16
and its corollary, one obtains the assertion. m

Thus, the (r + 1}st approximation number is equivalent to the norm of
the group inverse. We conjecture that these numbers even coincide.

Now we can verify the announced splitting property of the approximation
numbers. :

THUBEOREM 5. Let I be an infinite-dimensional Banach space, and let
(An) € B(E) be @ norm convergent sequence with limit A € B(E). Suppose
that A is group invertible, and that dimKer A =: r < co. Then

sEP{A,) =0 asn— co,
and there is a constant C > 0 such that
sﬂ_l (An) = C  for all sufficiently large n.

Proof. Let the operators Qr, Gy € B(F) be defined as the elements
n: gn in the proof of Theorem 4. The operators @y, converge to the group
idempotent P of A4, hence, by Lemmata. 12 and 15, dimIm Q, = r for all
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sufficiently large n. Thus, codimIm A, (I — Qn) = codimIm(l — @Q,)} = r,
whence

Sv:E(An) < |An = An(T = Qn)| = || An@nll — 0.

For the proof of the second assertion recall from Theorem 4 and its proof
that the operators A,, - G, are group invertible with group idempotents Q...
Hence, dim Ker(A, — Gp} = dimIm @, = r for all large n, say n > ng. Let
B, denote the group inverse of 4,, — &,,. We infer from Corollary 13 that

sﬂl(An) <IBaIH 1 - @l 23534-1(An)

and, thus,

B : 8]l ~*
(20) Spri{An) 2 11]?211'{0 1= @Qnll
for all n > ng. The norms of the operators B, are uniformly bounded above
by Theorems 3 and 4, and the norms of the I — Q,, are uniformly bounded
above because of the norm convergence @, -+ P and below because P # I.
Thus, the infimum in (20) is finite and positive. =

We conclude with a result which can be considered as an analogue of the
preceding theorem for Moore—Penrose invertible operators.

THEOREM 6. Let H be an infintte-dimensional Hilbert space, ond let
(An) C B(H) be a norm convergent sequence with limit A € B(H). Suppose
that A is Moore—Penrose invertible, and that dimKer 4 =: r < oo.

(a) A, is Moore-Penrose invertible, and dimKer A, < r gor all suffi-
ciently large n.

{b) Ar Ay is group invertible, and dimKer A* A, < r for all sufficiently
large n. :

(¢) There exist numbers c, > 0 with ¢, — 0 asn — 00 and d > 0 suech
that ¢(A%A,) C [0,c,) U [d,00) for all n.

(d) o(A}Ar) N[0,e.] consists of a finite number of pairwise distinct
eigenvalues Az, ..., Ay, the corresponding eigenspaces Hi, ..., H, have finile
dimension, and

idimHi =T.

i=1

Proof. (a) Every Moore~Penrose invertible operator with finite-dimen-
sional kernel is a $*-operator by Proposition 6(d). It is well known that
the class of all $T-operators is open in B(H) and that the function B —
dim Ker B is upper semicontinuous on this class (see [11], Chapter I, Theo-
rem 3.9). Thus, if A is Moore—Penrose invertible and dim Ker 4 =: r, then
the A,, are &*-operators with dim Ker 4, < r for all sufficiently large n.
Together with Proposition 6(d), this proves the assertion.
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(b) This is an immediate consequence of (a), Lemma 2 and the fact that
Ker Ay A, = Ker A, for every A, € B(H).

{¢) Combine (b) and Proposition 5.

{d) If A is Moore—Penrose invertible, then A*A is group invertible by
Lemma 2. S0 we can apply Theorems 1 and 4 with A*A and (AXA,) in
place of @ and (an). What vesults is the existence of a sequence (Q,) of
idempotents and of operators G, 1= A} AnQn with |Gr|| — O such that
the operators A7 A, — Gy are group invertible with group idempotents Q,,
and that their group inverses converge to the group inverse of A* A. Further
we infer from the last assertion of Theorem 1 that the Q, belong to the
commutative C*-algebra generated by A A, and the identity operator and
are, hence, self-adjoint idempotents. Consequently, @, is the orthogonal
projection from H onto the kernel of A% A, — G,,. Further we know from
Theorem 3 that dim Ker(A% A, — G,) = dimKer A* 4 = r for all sufficiently
large n, hence, dimIm @, = r.

The orthogonality of the idempotents Q,, implies that H is the orthog-
onal sum of its subspaces Im @, and Im(J — @,,), and from

A;An = QnA:;AnQn -+ (I - Qn)A:,A-n(I - Qn)
we obtain
(A An) = o(AAnlimg,) U U(A;;Anllm(lw@n))-

Let ¢, and d be as in {¢). Since 45 An|im@, = Gnlimg, a0d |Gnl — 0, we
see that

a{Ar Anlimg, ) N[d,00) =0
for all sufliciently large n. Similarly we have
AnAnlim(r-¢a) = (AL An =~ Go)lim(7-04)s

and the convergence of the group inverses of the A% A, — G, entails that
the norms and, thus, the specira of these group inverses are bounded above
by a positive constant. Hence, the spectra of A} An|im(s~q,,) are bounded
below by a positive constant, which implies that

U(A;Aﬂ]lm(I—Qn)) N[0,cn] =10
for all sufficiently large n. Consequently,
o(AnAnimQ,) = o(An4n) N[0, 6]

for all large n. Now one has to take into account that A% A,|mg, is a
self-adjoint operator acting en an r-dimensional space in order to get the
desired result. m
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The upper semicontinuity of the kernel dimension implies that, if A has
a finite-dimensional kernel and if & is small enough, then

dimKer B < dimKer A for all B with |B — A <e.

Further, there are trivial examples showing that the kernel dimension of
B can be strictly less than the kernel dimension of A. Nevertheless, as the
previous theorem shows, the information about the kernel dimension of A
is stored in B in some sense if only ¢ is small enough.
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