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Geometry of obligque projections
by

E. ANDRUCHOW (San Miguel), GUSTAVO CORACH (Buenos Aires)
and D. STOJANOFF (Buenos Aires)

Abstract. Let A be a unital C*-algebra. Denote by P the space of selfadjoint pro-
jections of 4. We study the relationship between P and the spaces of projections Pa
determined by the different involutions #. induced by positive invertible elements ¢ € A.
The maps yp : P —+ P, sending p to the unique g € P, with the same range as p and
2, : P — P sending g to the unitary part of the polar decomposition of the symmetry
2g -1 are shown to be diffeomorphisms. We characterize the pairs of idempotents g,r € A4
with |ig — 7|} < 1 such that there existe a positive element a € A satisfying ¢,r € F,. In
this case g and r can be joined by a unique short geodesic along the space of idempotents

@ of A

1. Introduction. Let H be a Hilbert space with scalar product {, ). For
every bounded positive invertible operator ¢ : H — H consider the scalar
product {, ). given by

(&a"‘?)a: (éo"?)p g;TIEH.

It is clear that {, ), induces a norm equivalent to the norm induced by (,).
With respect to the scalar product (,),, the adjoint of a bounded linear

operator © : H — M is

¥ = g lz*a.

Thus, x is #,-selfadjoint if and only if
az = x*a.

Given a closed subspace § of M, denote by p = Pgs the orthogonal
projection from H onto S and, for any positive operator a, denote by
pp{a) the unique #,-selfadjoint projection with range S. In a recent paper,
Z. Pasternak-Winiarski [20] proves the analyticity of the map o — ¢p(a) and
calculates its Taylor expansion. This study is relevant for understanding re-
producing kernels of Hilbert spaces of holomorphic L? sections of complex
vector bundles and the way they change when the measures and hermitian
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structures are deformed (see [21], [22]). This type of deformations appears
in a natural way when studying quantization of systems where the phase
space is a Kahler manifold (Odzijewicz [18], [19]).

In this paper we pose Pasternak-Winiarski’s problem in the C*-algebra
setting and use the knowledge of the differential geometry of idempotents,
projections and positive invertible elements in order to get more general
results in a shorter way.

More precisely, let A be a unital C*-algebra, G = G(A) the group of
invertible elements of A, U = U, the unitary group of A, G* = {a € G :
a* = a, o > 0} the space of positive invertible elements of A4, and

Q=QA)={ted:¢*=¢} and P=PA)={peQ:p=yp'}

the spaces of idempotents and projections of A. The nonselfadjoint elements
of @ will be called obligue projections. It is well known that ¢} is a closed
analytic submanifold of A, P is a closed real analytic submanifold of @ and
G is an open submanifold of

S=8(A)={be A:b =b},

which is a closed real subspace of A (see [24], [T] or [9] for details).
We define a fibration
w: PxXGT—Q
which coincides, when A = L(H), with the map (p, a) — pp(a}, the unique
#,-selfadjoint projection with the same range as p. This allows us to study
the analyticity of Pasternak-Winiarski’s map in both variables p, a. The rich

geometry of @, P and G gives an amount of information which may be
useful in the problems that motivated [20].

Along our paper we use the fact that every p € ¢} induces a representation
oy of elements of A by 2 x 2 matrices given by

pap pa(l ~ p) )
a) = .
%) ((1 —plap (1-pla(l-p)
Under this homomorphism p can be identified with

(7 8)- )

and all idempotents g with the same range of p have the form

= (o %)

for some € pA(1—p). This trivial remark shortens many proofs in a drastic
way and the analyticity of some maps (for example ¢ : P x Gt — Q) follows
immediately. :
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The content of the paper is the following. Section 2 presents some pre-
liminary material including the matrix representations mentioned above and
the description of the adjoint operation induced by each positive invertible
(element or operator) a.

In Section 3 we study the map ¢, = p(p,)) : Gt — @, which is
Pasternak-Winiarski’s map when A is L(H) and p is the orthogonal projec-
tion Pg onto a closed subspace S C H. For a € G*, let P, = P,(A) denote
the set of all #,-selfadjoint projections. This is a subset of ( and Section 4
starts the study of the relationship between P = P, and P, and the way
they are located in Q). In particular, we show that ¢, = ¢(-,a) : P — P, is
a diffeomorphisin and compute its tangent map. Another interesting map is
the following: for ¢ € F,, € = 29— 1 is a reflection, i.e. 2 = 1, which admits
in A a polar decompeosition € = Ag, with A € G and p a unitary element of
A. 1t is easy to see that 0 = ¢* = p™! so that p = £(p+1) € P. In Section 5
we prove that the map (2, : P, — P given by $2,(q) = p is a diffeomorphism
and study the movement of P given by the composition 2, oy : P — P.
We also characterize the orbit of p under these movements, i.e.

Op = {r € P: §2,0p4(p) =r for some a € GT}.

In recent years several papers have appeared which study the length of
curves in P and Q (see [25], [3], [23], {7], [2], for example). It is known that
F and the fibres of 2 : Q — P are geodesically complete and their geodesics
are short curves (for convenient Finsler metrics, see [7]). For a fixed p € P,
let us call those directions around p which produce geodesics along P (resp.
along the fibre 271(p)) horizontal (resp. vertical). In Section 6 we show that
there exist short geodesics in many other directions (not only the horizontal
and the vertical ones).

This paper, which originated from a close examination of Pasternak-
Winiarski’s work, is part of the program of understanding the structure of
the space of idempotent operators. For a sample of the vast bibliography on
the subject the reader is referred to the papers by Afriat [1], Kovarik [15],
Zemanek [29], Porta and Recht [24], Gerisch [11], Corach [6] and the ref-
erences therein. Applications of oblique projections to complex, harmonic
and functional analysis and statistics can be found in the papers by Kerz-
man and Stein [13], [14], Ptak [27], Coifman and Muwrray [5] and Mizel and
Rao [17], among others.

2. Preliminary results. Let H be a Hilbert space, A C L{H) a unital
C*-algebra, G = G(A) the group of invertible elements and /4 the unitary
group of A,

If § is a closed subspace of H and ¢ is a bounded linear projection onto §,
then
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(1) p=gg"(1—(g—¢)*)™"
is the unique sefadjoint projection ontc S. Note that, by this formmla, p € A

when ¢ & A. Several different formulas are known for p {see [11}, p. 294);
perhaps the simplest one is the so-called Kerzmaen-Stein formuloe

(2) p=q(l+q—¢")™"

(see [13], [14] or [5]). However, for the present purposes, (1) is more conve-
nient. We denote by

RQ=QA)={geA: =4},
P=PA)={pe A:p=p" =p"}

the spaces of idempotents and projections of 4. Given a fixed closed sub-
space S of H, we denote by

(4) Qs =Qs(A) ={g€ Q(A) : q(H) = 5}

the space of idempotents of 4 with range S. Note that, by (1), Qg is not
empty if and only if the projection p = pg onte S belongs to .A. We shall
make this assumption.

It is easy to see that two idempotents ¢,r € @ have the same range
if and only if gr = r and rq = g. Therefore the space Qg of (4) can he
characterized as

(3)

Qs =Qp=1{9€Q:ap=p, pg=q}.
In what follows, we adopt this notation @, emphasizing the role of p rather
than S. This enables us to simplify many computations. Moreover, this op-
erator algebraic viewpoint allows one to get the results below independently
of the representation of A.

Recall some facts about matrix representations. Every p € Q) induces a
representation o, of elements of .A by 2 X 2 matrices given by

pap pa(l - p) )
5 an(a) = .
® @ = (0 B 0 e
If p € P the representation preserves the involution *. For simplicity we

identify a with oy(e) and A4 with its image under oy, Observe that, with
this convention,

o (D))

Moreover, g € Qg = @, if and only if there exists € pA(l — p) such that

(7) Qﬂ((l) g)
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Tndeed, let g = (Z Z) € Qp. Then

10y fa b 1 0y fa
(o 0)“p“qp‘(c d)(o 0)_<c 0
hence ¢ = 1 and ¢ = 0. On the other hand,

{1 b

so d = 0 and b can be anything. We summarize this information in the
following:

<
S

2.1. PROPOSITION. The space @, can be identified with pA(l ~ p) by
means of the affine map

(8) Qp — pA(1 - p),

Proof. Clearly, the affine map defined in (8) is injective. By (7) it is
well defined and onto. w

grrqg—p.

In the Hilbert space H, every scalar product which is equivalent to the
original {,} is determined by a unique positive invertible operator a € L(H)
by means of

(9) (6777)(1 = <a‘$1 n)a 5177 S H
For this scalar product the adjoint z#e of 2 € L(M) is easily seen to be
(10) #e =g~z

where * denotes the adjoint operation for the original scalar product. Op-
erators which are selfadjoint for some #, have been considered by Lax [16]
and Dieudonné [10]. A geometrical study of families of C*-involutions has
been done by Porta and Recht [26].

Denote by G+ = G*(.A) the set of all positive invertible elements of A.
Every a € G" induces as in (10) a continuous involution #, on .4 by means
of g% = g~ 'g*a, for z € A. A is a C*-algebra with the involution #,
and the corresponding norm ||z||, = ||a*/2za~'/?|| for x € A. The mapping
&+ a~ Y2202 is an isometric isomorphism of (A, || ||, *) onto (A, || ||a: #a)-
In this setting, .4 can also be represented by the inclusion map in L(, {,)a)-

Note that the map a + (,), — #£, is not one-to-one, since (10) says
that if a € CI then #, = *. If we regard this map in G with values in the
set of involutions of .4, then two elements a,b € Gt with a = bz for z in the
center of A,

(11} Z(A)={ze A:zc=czfor all c € A},

produce the same involution #,.
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2.2. Recall the properties of the conditional expectation induced by a
fixed projection p € P. Note that the set A, of elements of .4 which com-
mute with p is the C*-subalgebra of A of diagonal matrices in terms of
the representation (5). We denote by E, : A — A, C A the conditional
expectation defined by compressing to the diagonal:

0
(1—p)a(1~—p>) “ed

This expectation has the following well-known properties ([28], Chapter 2):
for all a & A,

L. Ep(bac) = bEp(a)c for all b,c € A,.

2. Ep(a*) = Ep(a)*.

3. If b < @ then E,(b) < E,(a). In particular, E,(G1) ¢ GT.
1 | By(a)] < .

5. If 0 < a, then 2F,(a) > a

Ey(a) = pap + (1 ~ p)a(l —p) = (ng

3. Idempotents with the same range. The main purpose of this
section is to describe, for a fixed p € P, the map which sends each a € G
to the unique g € @, which is #,-selfadjoint. This problem was posed and
solved in [20] when A = L(H). Here we use 2 x 2 matrix arguments to give
very short proofs of the results of {20]. Moreover, we generalize these results
and apply them to understand some aspects of the geometry of the space @.

Let us fix the notations. For each a € Gt denote by

(12) So=Sa(A) = {b A: b¥#s = b}
the set of #,-selfadjoint elements of A.

3.1. DEFINITION. Let A be a C*-algebra and p € P a fixed projection

of A. We consider the map ¢, : GT — @, given by
wp(a) = the unique g € Q,NS,, a€ Gt

Note that the existence and uniqueness of such a ¢ follow from (1) applied
to the C*-algebra A with the star #,.

3.2. PrOPOSITION. Let A be o C*-algebra and p € P. Then, for ail
a € Gt(A),

(13) wp(a) = pEy(a)~'a,

where B, is the conditional expectation defined in 2.2. In particular,

lep(@)ll < 2llal fla™}I
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Proof. Suppose that, in matrix form, we have

_ {2 az _fa O
a= <a§ a3) and then Ey(a) = ( 0 Ga) )
Since @p(a) € Qp, by (7) there exists 2 € pA(L — p) such that wpla) =p+z.

On the other hand, by (10), p+z € S, if and only if e~ {p+ z)*a = p+ =,
e. (p+z*)e=a(p+ z). In matrix form,

. * _ 1 0 ay ag . al [¢5)

(p bz )Ct— (:IB* 0) (GS as) = (ﬂ’i*al m*az and
N [0 an 1 2\ _ (a1 a1z

wra= (3 o) (o 5)= (4 )

Then (p + #*)e = a(p + z) if and only if as = a;z. Note that @ € GT(A)
implies a; € GT(pAp). Then

(19 e@ = (5 1)),

and now formula (13) can be proved by easy computations. Finally, since
2E,(a) > a, we deduce that Ey(a)~' < 2a~! and the inequality |¢p(a)l| €
2lla]| la7|| follows easily. =

3.3. REMARK. There is a way to describe ¢, in terms of (2) with the
star #,. In this sense we obtain, for p € P and a € G,
1

ppla) = p(L+p—0a""pa)~" = p(a + ap - pa)"a.

Clearly, a+ap—pa = Ep(a)+2a3 and one gets (13), since pla+ap—pa)™' =
pEy(a)~1. However, it seems difficult to obtain bounds for ||, (a)| by using
this approach.

8.4. Consider the space G as an open subset of § = S(A) = 51(A4), the
closed real subspace of selfadjoint elements of A. Then the map ¢, : Gt — 4
is real analytic. Indeed, if h € § and ||h| < 1, then

pZ( —1)"™ B, (

n=0

(15)  p(1 4 h) = p(l + En(h)) " (1 + k) RY* (1 + h),

and this formula is clearly real analytic near 1. Further computations start-
ing from (15) give the more explicit formula

P+Z

again for all h € & with ||h]| < 1. These computations are very similar to
those appearing in the proof of Theorem 5.1 of [20]. We include them for

(16) ¢p(1+h) (11— p),
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the sake of completeness. By (15),

n
NE

ep(1+R) (—1)™(php)™(p + ph)

3
1
[=

(1) (php)™ + Y_(—1)"(ph)™*

e

n=0 n=0
=p+ > (1" (eh)"p+ Y _(=1)" (k)"
n=1 - n=1

= p 3 (-1 (oh) (1L~ p).
n=1
As a consequence (see also Theorem 3.1 of [20]) the tangent map (Tp,)1 :
S — A is given by

(17) (Ten(X)=pX(1-p) for X €S5.

Actually, by Proposition 2.1, @, is an affine manifold parallel to the closed
subspace p.A(1 — p), which can also be regarded as its “tangent” space. In
this sense (T'p,); is just the natural compression of § onto p.A(1 — p).

Note that formulas (15) and (16) do not depend on the selected star
in A. Using this fact, formula (16) can be generalized to a power series
around each a € GT by using (16) with the star #, at ¢ = @p(a). Indeed,
note that for every b € GT, (,}s = ({,)a)e-1p is induced from (,}, by
a~'b, which is a-positive. If h € S and ||h|| < {la~}|~}, then a + h € G,
la= Al = la=**ha™*2] < ||| la™*]| < 1 and

(18)  wple+h)=pgll +a7 h) =g+ (-1)" (g™ h)" (1 ~q),
n=1

showing the real analyticity of ¢, in Gt and also giving the way to compute
the tangent map (T'pp)a at every a € G,

Formulas (17), (18) and their consequence, the real analyticity of ¢, for
A = L(H), are the main results of [20]. Here we generalize these results to
an arbitrary C*-algebra A. In the following section, we explore some of their
interesting geometrical interpretations and applications.

4. Differential geometry of Q. The space @ of all idempotents of a
C*-algebra (or, more generally, of a Banach algebra) has a rich topological
and geometrical structure, studied for example in [17], [29], [11], [24], [7]
and [8].

We recall some facts on the structure of ) as a closed submanifold of A,
The reader is referred to [7] and [8] for details. The tangent space of @ at ¢
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is naturally identified with

(19) {(XeA:gX +Xg=X}={XeAd:qXg=(1-q)X(1-g) =0}
=qA(l-q) & (1-q)Aq

In terms of the matrix representation induced by ¢,

(20 r@.={(} §)<4}

The set P is a real submanifold of Q. The tangent space (TP), at pe P is
{Xed:pX+Xp=X, X* =X},

which in terms of the matrix representation induced by p is

(21) T(P), = { (g %) € A} = T(Q),NS.

The space @ (resp. P) is a discrete union of homogeneous spaces of G
(resp. U4) by means of the natural action

(22) GxQ—Q,
(resp. Uy x P — P, (u,p) — upu*).

There is a natural connection on @ (resp. P) which induces a linear
connection in the tangent bundle T'Q (resp. TP). The geodesics of this
connection, i.e. the curves «y such that the covariant derivative of + vanishes,

can be computed. For X € (TQ)p (resp. (T'P)p), the unique geodesic ¥ with
¥(0) = p and 4(0) = X is given by

(g.0) — gag™"

7(t) = X pe™ X,

where X = [X, p] = Xp—pX. Thus, the exponential map exp, : T(Q), — @
is given by

(23) expy(X) = ¥ pe=*" for X € T(Q),-
4.1. PROPGSITION, The inverse of the affine bijective map
I':Qp-pA(l-p), TI'lg)=q-p

of (8) is the resiriction of the ezponential map at p to the closed subspace
pA(1—p) C T(Q)p. That is, for x € pA(l — p), exp,(x) =p+ 2 € Q.

Proof. Let 2 € pA(1 — p). Then

0 =
exp,(x) = exp, (0 0)
0 - 0
=exp(0 Om)pexp(o :(1;) by (23)

() D)= )
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4.2. REMARK. The map ¢, of 3.1 can also be described using Proposi-
tion 4.1. In fact, consider the real analytic map

Up Gt = G(A),  up(e)= exp(—pEp{a)*la(l ~p)), a€GT.

Then, by 4.1, ¢p(a) = up(a)pup(a)~'. This is an explicit formula for an
invertible element which conjugates p with @p(a). This can be a useful tool
for lifting curves of idempotents to curves of invertible elements of .A.

Now we consider the map ¢, by letting p vary in P:

(24) p:Px Gt —Q, @pa)=pya)=pEy(a)a,
for p € P, o € G". Consider also the map ¢ : Q — P given by (1):
(25) $(@) =gq"(1~ (g~ ¢")»)™" forgeq

This map ¢ assigns to any ¢ € ¢ the unique p € P with the same range
as ¢.

4.3. PROPOSITION. The map » : P x Gt — @ is a C* fibration. For
q€Q, let p=¢(q) and z=q—p € pA(L —p). Then the fibre of q is

(26) e g = {( ,(x?; a;;)) 0 <@ and w*a1w<a3},
1

where the inequalities are considered in pAp end (1—p)A(1-p), respectively.
Moreover, the fibration ¢ splits by means of the C° global cross section

(27) 5:Q - PxGT,  slg) = (¢(a): [2¢ - 1)),
for g € Q, where |z| = (2*2)/2.

Proof. First we verify (26). Fix ¢ € Q. The only possible first coordinate
of every pair in ¢™1(q) must be p = ¢(q), since it is the unique projection
in P with the same range as g.

Given
a = (a‘i (.12) € G+,
as; ajs
we know by (14) that ¢(p,a) = ¢ if and only if as = a1(g¢ ~ p) = a12. Then
o= (1 %),
T ay o3
The inequalities 2*ayz < as in {1 —p)A(1 —p) and a; > 0 in pAp are easily
seen to be equivalent to the fact that

(o ) eor
T ag
This shows (286).

Set ¢ = 2¢ — 1. It is clear that € = 1, i.e. ¢ is a symmetry. Consider
its polar decomposition € = p), where A = |¢| € G* and p is a unitary
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clement of A. From the uniqueness of the polar decomposition it follows
that ¢ = ¢" = ¢!, i.e. g is a unitary selfadjoint symmetry. Then, since
q — (E —|— 1)/2,

ATl A = A—li-gil,\ -

1Ag+1)\: eA+1 e+l

3 2 T3 ¢
Therefore ¢ € Sx(A) and p(p, A} = (s(qg)) = ¢, proving that s is a cross
section of ¢. m

4.4. The space P is the selfadjoint part of the space Q. But each o € G+
induces the star #, and therefore another submanifold of Q) of #,-selfadjoint
idempotents. Let @ € G and denote the #,-selfadjoint part of Q by

(28) Py =P,(A) = {ge Q:q" = q).

We are going to relate the manifolds P and F,. There is an obvious way
of mapping P onto P, namely p — a~/?pa’/?. Its tangent map is the
restriction of the isometric isomorphism X +— a~1/2X a2 from S onto 8,
menticned in Section 2. We now study some less obvious maps between P
and F,.

For a fixed a € G, consider the map

(29) Yo P — Poy walp) = ¢lp, a),

Then ¢, is & diffeomorphism between the submanifolds P and P, of @, and
@z " is just the map ¢ of (25) restricted to P,. The problem which naturally
arises is the study of the tangent map of . in order to compare different Py,
a€ Gt

The tangent space (I'F,), for g € F, can be described as in (21),

@ @r={r={4 §)ea}=T@ins.

where the matricial representations are in terms of ¢. Therefore any
Y € (T'P,), is characterized by its 1,2 entry y = g¥":

(31) Y =y+yte =g¥ + ¥y
4.5. PROFPOSITION. Let p € P, o € GT and
0 =z
X = (w* 0) € (TP)y.
Set ¢ = po(p) € P,. Then, in terms of p,

0 a7'z(as ~ aar'a
(Tonlplx) = (§ o ) oy,

Therefore (Tipa}p(X) = y +yte and [[(Tea)p(X)la = [lyfa-

pe P
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Proof. We have the formula of Proposition 3.2,

va(p) = p(a) = pEy(a) a = p(pap + (1 — pla(l ~ p)) *a.

By the standard method of taking a smooth curve v in P such that v(0) = p
and ¥{0) = X, one gets

(Tpa)p(X) = (X —pEp(a)™* (Xap+paX — Xa(l—p)— (1-p)eX)]Ey(a)  a.

Since p and E,(a) commute, pEy(a)™1(1 — p)aX = 0. In matrix form in
terms of p, by direct computation it follows that

_ 0 =z al‘l 0 zaj -+ axx*  a1x - xag
(Tpa)p(X) = [(:c 0)‘( 0 0)( 0 0
] 1 a.i"lag
a3 'a} 1
al_lag
1

- ~o7 zay — a7 g a7 lzay Zle
x* 0 a3 " 03

[ —aTlagx*  a7(zas — zazaltas — asz*allas)
* x*a;laz )

Multiplying by g = ¢(p,a), from (14}, one obtains

9(Tpa)p(X)
{1 alas ~aytanz*  ayl(zaz — zatartay — acz*allag)
A0 0 z* z*a ay
{0 ai'z(as — akarlag)\ _
- 0 0 =Y,

as desired. The fact that ||y||s = ||Y |4 is clear by regarding them as elements
of (A, #,) and using (30).

5. The polar decomposition. In this section it is convenient to iden-
tify @ with the set of symmetries (or reflections) {¢ € A: &* = 1} and P
with the set of selfadjoint symmetries {¢ € A: p = g* = p~'} by means of
the afine map = — 2z — 1.

Recall that every invertible element ¢ of a unital C*-algebra admits po-
lar decompositions ¢ = pg1A1 = Agps with M, 2 € GF and 01,00 € Ua.
Moreover,

Av=lely g =7

In particular, if ¢ is a symmetry, its polar decompositions are € = |€*|¢ = glé]
and

(32) e=p*=o"leP

and g1 = g2 = [c*{"lc = c|c]“1.
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This remark defines the retraction

(33) 2:Q@—-P, )=

The map {2 has been studied from a differential geometric viewpoint in [7]. If
£ € @, it is casy to show that [¢*] = |¢|™" and [e*['/2p = g|e*|~1/2 (see [7})
This section is devoted to studying, for each a € G, the restriction

(34) 0y =0p, : Pp— P.

Observe that, with the identification mentioned above, P, = QNS, = QNi4,,
where U, = {u € G : u~" = u¥=} is the group of #,-unitary elements of 4.

5.1. PROPOSITION, For every a € Gt the map 12, : P, — P of (34) is
a diffeomorphism.

Proof. By the remarks above, for every ¢ € @,
(35) 2.(€) = o= [ee,
which is clearly a C*° map,

Set b = a'/? and consider, for a fixed p € P, the polar decomposition
of beb given by bgb = w|bpb|, with w € U4. Since bgb is invertible and
selfadjoint by (32), it is easy to prove (see [9]) that
whob = |bgb| € GT.

Let £ = b~ Lwb. It is clear by the construction that £ € P,. Also, g = A > 0,
since

w=u*=w"teP whob=bohw,

begb = wheb = |bob| € G
Therefore the polar decomposition of £ must be € = Ap. So A = |¢*| and
2,(¢) = p. Hence

(36) .Q;l(g) = a~1/2 (aljﬂga]./?‘aleQal/B'-«l ) 0:1/2,
which is also a C°° map, showing that 2, is a diffeomorphism. m

5.2, REMARK. The fibres of the retraction {2 over each p € P are in
some sense “orthogonal” to P. In erder to explain this remark, consider the
algebra A = M, (C) of all n x n matrices with complex entries. Then M, (C)
has a natural scalar product given by (X,Y) = tr(¥X). It is easy to prove
that for every p € P, (T'P}, is orthogonal to {T4271(P)),. The same result
holds in every C*-algebra with a trace 7. Then the map a — §2,{p)~* of (36)
can be considered as the “normal” movement which produces #.-selfadjoint
projections for every a € Gt.

On the other hand, the map ¢, of (14), which was also studied in [20],
gives another way to get #,-selfadjoint projections for every a € G*. In
terms of the geometry of () this way is, in the above sense, an oblique
movement. A related movement is to take, for each a € G, an #,-selfadjoint
projection g’ with ker ¢ = kerp.
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Combining, for a fixed a € G, the maps ¢, of {29) and (2, of (34), one
obtaing a €*° movement of the space P. The following proposition describes
this movement explicitly.

5.3. PROPOSITION. Let a € GT. Then the map 2,00, : P — Pisqa
diffeomorphism of P, Forp € P, let w,(p) =gq=p+z and e =2¢g—1. In
terms of p, we have ¢ = al_lag if

= (ai az)
a2 a3
1+ zz™ 0

' —1/2 -
(37) 125 0 pa(p) = ( 0 l-l—m*m) (xl —1)
=lgg"+ (1 - @)1 - (g +q" - 1).

Proof. In matrix form,

) 1 2z
E=2(pa(p)—1=(0 _1)
so that

e (1 0N[(1 2\ _(1 2\ _ e
T2zt -1 0 -1/ \2z* dx*x-+1) " '

On the other hand, by (27), ¢ € Pj.|(A). Therefore, by (14),

= (g )
z*h ¢
with b, ¢ positive. Straightforward computations show that
b= (1+ax*)"? and E=da"z+1-a2*(1-+z2*)  a
Since &*(1 + zz*) = (1 + z*z)z*, we obtain
F=drts+1- (1+o'c) o¥e = 4otz (1 + 2*2) "t
= (1 +z*z) " H4(z*z)? + d2*z + 1) = (1 + 2z"2) "L (22" + 1)
Then ¢ = (1 + z*z)"V?(2z*z + 1} and

(38) o] = 1 4 @ 0 —2 x
0 1 a*x ¥ 2z%xz+4+1/°

Now the two formulas of (37} follow by easy matrix computations. m

5.4. REMARK. It is interesting to observe that the factor ¢ + ¢* — 1 of
(37) has been characterized by Buckholtz [4] as the inverse of Pr(g) — Prer g-

A natural question about these movements is the following: for p € P,
how far can £2, o ¢.(p) be from p? In order to answer this question we

and
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consider the orbit
(39) Op :={r € P: {240 ¢u(p) = r for some a € GT}.

The next result is a metric characterization of O, based on some results
about the “unit disk”™ of the projective space of A defined by p (see [2]).

5.5. PROPOSITION. Lef p € P. Then
Op={reP:|r-pl <v2/2}.

Proof Fix a € Gt. Let ¢ = pq(p), ¢ = 29— 1 and v = 12, 0 @, (p).
By (27), r is also obtained if we replace a by |e|, since po(p) = ¢ = ¢ (p)
and r = £2,(q} = 2(q) = {2-{g). Note that |¢| is positive and g-unitary, i.e.
unitary for the signed inner product (,), given by ¢ = |ele = 2r — 1. Indeed,
by (32), le[*e = o7 elo = [ef™.

Since £ = gle] = lg|~1/2g|e|*/2, also ¢ = |g|~/2r|e[}/2. In [2] it is shown
that the square root of a p-unitary is also g-unitary. Then |¢|~1/? is g-unitary.
It is also shown in [2] that

I = Prpas-nll < v2/2
for all positive g-unitary A. Note that p = Pp(,) and then we must have
[p—r| < +/2/2. In Proposition 6.13 of [2] it is shown that for all » € P such

that |r — pi| < v/2/2, there exists a positive (2r — 1)-unitary A such that
p== PR()\/,.}\-—I). In this case r = {2, o gy (p) € Op. =

8. New short geodesics. Lengths of geodesics in P have been studied
in [25], [3], [23] and [2]. It has been proved that if p,r € P and ||p—=r| < 1,
then there exists a unique geodesic of P joining them which has minimal
length. On the other hand, the fibres {271 (P) are geodesically complete and
the geodesic joining ¢1,¢2 € 271 (P) is a shortest curve in @ (see [8]). This
final section is devoted to showing the existence of “short oblique geodesics”,
L.e. geodesics which are contained neither in P nor in the fibres.

More precisely, the idea of the present section is to use the different stars
#. for a € G in order to find short curves between pairs of nonselfadjoint
idempotents of A. Basically, we want to characterize those pairs g¢,r € Q
such that there exist o € G with ¢,r € P,. If ¢ and v remain close in Py,
they can be joined by a short curve in the space F,.

The first problem is that the positive a need not be unique. This can be
fixed up in the following manner:

6.1. LEMMA. Suppose that a € Gt and p,r € PN F,. Then |p—r| =
|lp—r||a and, if ||p— 7| <1, the short geodesics which join them in P and
P, are the same and have the same length.

Proof. Note that PN P, is the space of projections commuting with a.
Let B = {a}' N A, the relative commutant of a in A. Since a = a*, Bis a
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C*-algebra. Moreover, PN P, = P(B). Now, since ||p —~ 7| < 1, p and ¢ can
be joined by the unique short geodesic v along P{B) (see [25] or [2]) and v is
also a geodesic both for P and P,. The length of v is computed in the three
algebras in terms of the norm of the corresponding tangent vector X. But
since X & B, its norm is the same with the two scalar products involved. =

We now give a characterization of pairs of close idempotents p,q € @
such that p,q € P, for some a € GF. The characterization is done in terms
of a tangent vector X € T(Q), such that ¢ = eXpe=*. First we give a slight
improvement of the way of obtaining such X which appears in 2) of [25]:

6.2. PROPOSITION. Let p € P and q € Q with {|p—q|| < 1. Let ¢ = 2¢—1,
e=2p—1,

gp+ 1 g + 1
= —g—=w+{l-g(-p) vz=QT=pq+(1—p)(l-q)-
Then flvy = 1) = vz — 1|l = [lp— qlf < 1 and
(40) X = (Id~Ep)(logvy) = 3 (logvy ~ logva)

satisfies X € T(Q)p (i.e. pPXp={(1 - p)X(1 - p)=0) and ¢ = eXpe~X.
Proof. Note that p = p* = p~' € P. Then

1

gg—1
=5l -2l =la-rpl <1,

2

and similarly for vy. Let X; = logv; for ¢ = 1, 2. Since vy o = pug, and each
X; is obtained as a power series in v;, we also obtain X;p = ¢Xs. Then, if
X = 3(X1 — X,), we have Xp = —0X, and so X € T(Q),.

Note also that v10 = ev; and |v; — 1| <1 for i = 1,2. So vypoi’ = ¢.
Easy calculations show that #; and vo commute. As before, this implies that
Xy and X3 commute. Then

2
3
W = vy = vgy = XX o ( +2 é’)

for ~ 1) =

commutes with vy, ve, 0, €, p and ¢. Set

wl? g (Xt Xa) /2.

Since (X3 + X2)o = o(Xy + Xz), w™/? commutes with p. Note that

(41) szzxi_m_
2 2

This implies eX = eXtw=1/2 = 4;16~1/2 and therefore
eXpeX =vput = ¢.
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Finally, since X has zeros in its diagonal and (X, + X2)/2 is diagonal
in terms of p, we deduce from (41) that X = (Id —E,){(X;) and the proof is
complete. w

6.3. PROPOSITION. Let p € P and g € Q be such that ||p — ¢|| < 1. Let

X= (g g’) & T(P),

be as in (40) such that e*pe~X = g. Then the jollowing are equivalent:

(i) There exists a € Gt such that p,q € P,.
(i) There cxists a € Gt such that po = ap and X#e = - X.
(ili) There ezist b € G (pAp) and ¢ € GF((1L — p)A(L — p)) such that

Y = —cx’*b.

Proof. Condition (ii) can be written as

[ %
au(o
In matrix form

] *
R 0 0 y a; 0
“X““<0 a;l)(m* 0)(0 az
_ 0 artytar _ (0 -z
T \agtetay 0 TA-y 0 )

which is clearly equivalent to condition (jii).

Condition (i) holds if X#s = X, since in that case eX is #,-unitary
and then q € P,. In order to prove the converse, we consider #, instead of
* and so condition (i) means that p,g € P. Then, with the notations of 6.2,
we have vy = v and

0) and o 'X*a=-X.
a2

Xo— X3

g =%

Xo=logug =logv] = X] = X" =
showing (ii).

6.4. REMARK. Lot us call a direction (i.e. tangent vector) in @) good if it
is the direction of a short geodesic. Proposition 6.3 provides a way to obtain
good directions. Other good directions occur in the spaces pA(l — p) and
(1-p).Ap, determined by the affine spaces of projections with the same range
(Qp) or the same kernel ag p, where the straight lines can be considered as
short geodesics.

Other good directions can be found looking at pairs p,q € @ such that,
for some a € G, 2%(q) = p, where (2° means the retraction of (33), con-
sidering in .4 the star #,. These pairs can be characterized in a very similar
way to Proposition 6.3. In fact, in condition (iii) (with the same notations),
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—bx*c should be replaced by y = bx*c. These directicns are indeed

good because it is known [8] that along the fibres of each §2% there are short
geodesics that join any pair of elements (not only close pairs).
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