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Wold-type extension for N-tuples of commuting contractions

by
MAREK KOSIEK (Krakéw) and ALFREDO OCTAVIO (Caracas)

Abstract. Let (T, ..., Ty) be an N-tuple of commuting contractions on a separable,
complex, infinite-dimensional Hilbert space 3. We obtain the existence of a commuting
N-tuple (V1,..., Viy) of contractions on a superspace X of H such that each ¥; extends T},
j=1,...,N, and the N-tuple (V1,...,Vy) has a decomposition similar to the Wold-von
Neumann decomposition for colsometries (although the ¥; need not be coisometries). As
an application, we obtain a new proof of a result of Stocifski (see [9]).

1. Introduction. Let J{ be a complex, separable, infinite~-dimensional
Hilbert space. We denote by L£(H) the algebra of bounded linear transforma-
tions of . In studying the structure of contractions in L{H) one of the most
potent tools has been the dilation theory and its extension counterpart (see
(3], [6], 7]). One of the obstacles to developing a suitable structure theory
for N-tuples of commuting contractions is the impossibility of developing a
(unitary or isometric) dilation theory for such N-tuples (at least for N > 2).
Even in the case N = 2, the lack of a (joint) Wold-type decomposition. for
a joint isometric dilation represents a serious obstacle (see [6]).

In this paper we develop a version of an extension {or dilation) theory
for N-tuples. The idea is that instead of focusing on the geometric proper-
ties of isometries (or coisometries) we focus on its “decomposability”, i.e.,
given an N-tuple of commuting contractions in £{H), we find an N-tuple
of commuting operators on a superspace X that has a “(joint) Wold-type
decomposition”.

In order to do this we introduce a new class, denoted by Kp,., of V-tuples
of operators that, we believe, is the appropriate extension to several variables
of the well known class Cj...

This note is organized as follows. Section 2 is dedicated to the class K.
and its relation to invariant subspaces. In Section 3 we state and prove our
main result (the Extension Theorem). Finally, in Section 4 we explore some
applications and consequences of our main result.
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2. The class K;, and invariant subspaces. We say that an N-tuple
T=(I,...,Ty) of commuting contractions on H belongs to the class Ky,
if

inf |IT"z|| =0, =zeX.
nEZf

The T™ is to be understood in the usual multi-index sense, that is, if n =
(n1,...,7nn) is an N-tuple of nonnegative integers, then T" 1= T7" .. . TRV,
Note that the infimum of the sequence {HT”:::“}ZQY is equal to its limit. This
fact will be of importance in the proof of our main result. Furthermore, we
say that T = (T1,...,Tw) belongs to the class K. o if T* = (TY,. .., TH)
belongs to Kj,.. The class Ky is the intersection Ko, N K. o. These classes
are a natural generalization of the well studied classes C,., C. g, and Coo.
Note that T = (Ty,...,Twn) € Ko, if and only f 7% - ... - Ty € Co,..

We now give a generalization to several variables of the following well
known result of Sz.-Nagy and C. Foiag (see [10] or Theorem 2.2 of [1])

THEOREM 2.1. Let T be a contraction in L{H) and assume that for every
z e H, 2 #0, we have

lim [[T7z] # 0 # lim ||T*"z.
n—cd n— 00
Then T is quasisimilar to a unitary operator.

Note that, in what follows, guasisimilarity will be extended to several
variables in the strongest sense, i.e., if thereis an N -tuple U = (Uy,...,Uy)
of unitary operators and operators X, Y, with dense range and one-to-one,
such that for any j =1,..., N, I;X = XU; and YT = U;Y, we shall say
that the N-tuple 7' = (T1,...,Tw) is quasisimilar to the N ~tuple U.

The proof of the next result is similar to the proof of Theorem 2.1 given
in [1}; we include it here for completeness. This result is not new, a more
general version of it can be found in [2]. The simplicity of the proofs of the
last two results in this section, imitating the proofs of one-variable results, is

the main reason we believe that the classes K. .- are the correct generalization
of C.. to several variables.

THEOREM 2.2. Let T = (T4,...,Tw) with T; € LK) and || T3] < 1 for
Ji=1,...,N be such that

inf || T"z| s 0, inf [T x| £ 0, H 0.
BTl 0, int 770 40, west oz
Then T is quasisimilar to an N ~tuple of unitary operators.

Proof. We can define a new norm on by the formula

|z|| = inf |7z
nezf
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It is clear that || - || is indeed a norm and that ||z||’ < |lz| for every = € K.
Let K be the completion of H in this new norm and X : H — X the
inclusion operator. Then X is one-to-one and has dense range. For fixed 7,
we have ||Tyz|" = [lz||'. Thus, T; extends to an isometry U:.,- on XK. Since
Ker(T}) = (0) (by the hypothesis on T}), the range qf U; is de-nse n XK.
Therefore, U; X = XT;. With a similar argument applied to T} instead of
T;, we obtain a unitary operator U;, and an operator Z one-to-one and
with dense range, such that T3Z = ZU}. Let ¥ = ZZ*X*, which is clearly
one-to-one and with dense range. Then

T,Y = T22* X" = BUJZ*X* = Z(XZU;7")" = Z(U; U, X 20,7
= (U7 XT, 20,7 = ZU X2
=Z(U7'XZ) = Z2*X*U; = YU;. u
Since any unitary has (nontrivial) hyperinvariant subspaces, and since

quasisimilarity preserves the property of having (nontrivial) hyperinvariant
subspaces (see [1]), we obtain

TusoREM 2.3, Let T = (14,...,Tn) be an N-tuple of commuting con-

tractions on H. Then either T has a common nontriviel inveriant subspace
or T belongs to ot least one of the classes Ky, and K. p.

To achieve the necessary reduction one only needs to notice that
M:={zeH: inf |T"xz| =0}
nell

is a common invariant subspace for T. If M = H, then T € Ko.. If M
= (0), then a similar argument applied to T puts us in the case covered by
Theorem 2.2.

3. The Extension Theorem. The following is the main result of this
paper.

THEOREM 3.1. Let (T4,...,Tw) be an N -tuple of commuting contmctz:ons
on H. Then there emists o commuting N-tuple (V1,...,Vn) of contractions
on a superspace K o M with the following properties: 'Each V; extends Ty,
i=1,...,N, and there is o subspace M such that with respect to the de-
composition K = M @ M~ we have

S; 0
ue (%),
! ( 0 U
where the (commuting) N-tuple (S1,...,8n) is of class Ko,., while each U;

is an tsometry. Furthermore, the extension is minimal, am}' therefore unique
up o unitary equivelence, i.e., given another extension V' on a superspace
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K o H with the same properties, we con find o unitary operator W from
K onto its image such that WV; = V/W, for j=1,...,N.

NOTE. After completing this paper the authors have learned that a sim-
ilar description of M for a single operator appears (in a different context)
n [4], p. 192.

Proof. For cach z € H we define
& H T
)l = nlef;zfﬁ [Tz 3.

Note that | - ||» is a seminorm (recall that the infimum of the sequence
{”Tnmﬂ}zf is equal to its limit). The space N is defined as the completion
of the quotient space of H by the equivalence relation ~, where z ~ y if
lle — yllx = 0, for z,y € H. The space N is a Hilbert space, with inner
product denoted by (-, ), since || - ||~ satisfies the parallelogram law. Let
Xy denote the inclusion operator from J{ into N. The operator Xy has
dense range.

We now define a Hermitian, positive semidefinite inner product: for
z,y e H,

{2, 9w = (2, )3 — (Ko, Xov yhov

The space M is defined as the completion of the quotient Hilbert space of
XK by the equivalence relation =~ defined by 2z ~ y if (z —y, z —y)m = 0. Let

Xn denote the inclusion operator from H inte M. The operator X3 has
dense range.

We define X := M & N, with inner product
(1 @1, %2 ® yadx = (21, 22)m + (Y, ) for xp, 23 €M, g1, €N

It is clear that N = ML (relative to X). Let Xy : H — X be the isometry
X @ Xy, which permits us to identify J( with a subspace of K.
For z € K, the formula

S;XM &= XMij
defines an operator S} on a dense subspace of M, and similarly
U;X:N T = XN:’.}m

defines an operator U} on a dense subspace of N = ML, We now define
extensions to X of 57 and U}, denoted by S; and U; respectively. The op-

erator Uy defined 011 a dense mamfold X J'C of N is an isometry since for
all z € H,

1K Tyln newll 5llac nIEIE.CfHT zll3c = | Xov 2],

and so it can be extended to an isometry U; on the whole N.
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Now we shall see that §' = (51,...,9%) € Ko,.. For z € ¥ and an
N-tuple n = (ny,...,ny) of nonnegative integers, we have

”SmXM:I:HM (SmXM.’E SmXMx> = {Xm T 2, Xm T x )
= (T2, T x)gc — | XnT |3 = | T =|5; — mf I1T* 5

The right hand side is less than or equal to ||z]/2, — || X 2|3 = || Xoe z]Zc
Hence, taking appropriate n we get the contractivity of 5 (j = 1,...,N).
So we can extend them to the whole M. On the other hand, taking the
infimum in n we obtain inf, ez ||S” Xneallne = inf,ezn 15" X || = 0.
Again, since this holds on the dense subspace X3 H, it must hold on the

whole M.
Thus the operator on X defined by the matrix

S; 0
5=V 4)
has the desired properties.
We now prove the minimality and uniqueness up to unitary equivalence.
Indeed, let V' = (V{,..., V}} be another extension acting on X' containing

H as a proper subspace with a decomposition X' = M' & M’ L such that
with respect to this decomposition

S; 0
vi=(% 29,
! (0 Uj)

where the (commuting) N-tuple (§1, ..., Sn) is of class Ky,., while each ffj
is an isometry. Denote by Px the orthogenal projection onto a subspace R.
Let # € H. Then
mf ||T“o:|\gf inf || T"x||% =
nezl neZy
= lIlf “SHPMITH-JC/
nel

‘inf?r V™|

+ (| T Pypr2 i)

=t |3 Pl -+ [Prosll = [Pl
nE?’;fi\_’ :

Similarly,
ian T ][5 = ian(HS“PMﬂE%c + U™ Pyzll) = 1Pk
ned
Thus, HPM;4.$\|;;@ = Hpm.LTH'K for all z € H. Since, by construction, Py K

is dense in ML the map Pyo2 — Pupez for & € H defines a unitary
operator R from M- onto its image. We observe that

RYWV;Pyiz = R Py Viw = R Pra Tjz = Py Thee
= PMu.v;!CU = IG'PMusc = V;RJ"PmJ.m
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for every z € H and j = 1,..., N. Hence, R Vj| = V;RHML for j =
1....N.
Sinee for z € H, we have

1Pyl + [Paralie = el = | Prozllie + Py,

we get ||Puzllx = |[Pypllx, and so the map Pyz — Pyex for z € K
defines a unitary operator R from M~ onto its image. As before, we obtain
RVl = V/ Rl

Defining the unitary operator W on X as y — RPyy & R Py, we
obtain

WVJ=V;W forj=1,...,N.

Thus, each V; is unitarily equivalent to an operator acting on RM @ RN
C X, and the N-tuple WVW* = (WV,W*,..., WVNW") is an extension
of T' of the desired type acting on a, perhaps proper, subspace of X'. u

A similar proof can also be obtained in a different way (we give a sketch):
Let B =Ty -...- Ty and define g(x) := lim||B™z|| for z € H. Then g is
a seminorm on H that comes from a semidefinite scalar produect; take N
to be the completion of H with respect to it. The map z € H — z e N
is a contraction denoted by A : }{ — N; define Dy := (I — A* A% and
M =Dy := DyH (the defect operator and defect space of A respectively).
Then z +— Dz ® Ax is an isometric embedding of H into I = M & N.
Finally, we define 5; € £{M) by 8;D42 = DTz, and U; Az = AT,z (both
on a dense set, of course). Then, defining V; as in the previous preof, one
can check all the desired properties.

Using Proposition 1.6.2 of [10] one can extend the N-tuple (Uy,...,Uy)
of isometries to an V-tuple of unitaries acting on a larger space. Thus we
get the following result, which we shall call the Extension Theorem:

_ COROLLARY 3.2. Let (Ty,...,Tw) be an N-tuple of commuting contrac-
tions on H. Then there exists a commuting N-tuple (By,...,By) of con-
tractions on a superspace K O H with the following properties: Each B;

extends Ty, 7 =1,..., N, and there is o subspace M such that with respect
to the decomposition K = M ¢ M we have

_ (S 0
B’—(U Uj)’

Tphere t.he (commuting) N-tuple (S1,...,Sy) is of class Ko,., while each Uj
18 a unitary operator. Furthermore, the space K is the smallest one with this
property, and therefore unique up to unitary equivalence.

We poin't out. that in the case of a single contraction (N = 1), the Wold-
type extension given in Corollary 3.2 is smaller, in general, than the minimal
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coisometric extension (with its Wold—von Neumann decomposition). For ex-
ample, one can consider the case of a Co,. contraction, which is its own
Wold-type extension, but not its own minimal coisometric extension.

REMARK 3.3. One can obtain from Corollary 3.2 a direct construction of
the minimal coisometric extension of a single contraction 7', by extending
the Co,. part of the Wold-type extension of T to a backward shift (see,
for example, Section 2 of [1]). (The adjoint of such an extemsion is the
minimal isometric dilation of T.) Moreover, extending the unilateral shift
to the bilateral one, we get a simple construction of the minimal unitary
dilation of T".

Vice versa, given a contraction T' and the minimal isometric dilation
B* of T* we can obtain the Wold-type extension of T by restricting the
backward shift part of B to the proper minimal subspace given in the proof
of Theorem 3.1. It can be seen that if T is a colsometry, then it is ifs
own Wold-type extension. The situation for pairs of commuting contractions
(N = 2) is similar but much harder to discuss thoroughly because of the
lack of a joint Wold-von Newmann decomposition for pairs of commuting
coisometries. We leave the details for future work.

4. Diagonalization of isometries. The extension V = (Vi,..., V) of
T = (Ty,...,T) is somewhat analogous to the coisometric extension for a
single confraction (or for pairs). We can thus obtain a dilation theory for
N-tuples of commuting contractions by applying the result above to T =
(T,...,T%). The dilation (or extension) of the N-tuple T' may, obviously,
lack the geometric or norm properties of the single contraction (or the pair)
case, but will have a decomposition similar to that provided by the Wold—von
Neumann decomposition (which the pair case lacked). We remark that the
dilations so constructed would, of course, be power or strong dilations (i.e.,
dilations for all powers of T"). This may be enough to extend several results
known in the single contraction case to the case of N-tuples of contractions.
We have succeeded in using the Extension Theorem to show that an N-
tuple baving the polydisk as a spectral set and rich (Harte) spectrum has a
(common) invariant subspace. This extends previously known results even
in the case of pairs (where the spectral set hypothesis is always satisfied)
and it closes the first chapter of the Theory of Dual Algebras generated by
N-tuples of commuting contractions. The proof of this result is somewhat
technical and long. For these reasons, it is postponed to another article ({5]).

In this section we show (Propositions 4.1 and 4.2) that the Wold-type
extension always diagonalizes isometries. We will also use the Extension
Theorem {Corollary 3.2) to study the following problem: Given two com-
muting isometries Vi, Va acting on J}, let M be the subspace reducing Vi to
the shift part in its Wold decomposition; give conditions under which M is
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also reducing for Vz. In [8] the second named author showed that it is not
always reducing. We have already pointed out that this is the main difficulty
in using the joint coisometric extension of pairs of commuting contractions
in the Theory of Dual Algebras and that this difficulty was removed by the
authors (see [5]) by using the Extension Theorem (Corollary 3.2). Now we
show that we can get a well known result of Stocifiski [9], which implies that
the subspace is reducing if the isometries doubly commute (i.e., Vi commutes
with V3 and V3').

PROPOSITION 4.1. Let (T4,...,Tw) be an N -tuple of commuting contrac-
tions on H and let W be an isometry on H commuting with each Tj, § =
L,...,N. Let (V4,...,Vn) be the extension of (T1,...,Tn) to KX = Mo M-
given by Theorem 3.1. Then there is a unique (up to unifary equivalence)
isometry U onX commauting with Vi, j =1,..., N, and extending W such
that the subspace M is reducing for U.

Proof. Using the notation of the proof of Theorem 3.1 we define oper-
ators Wy, and W} on dense subspaces of M and N respectively as follows:

W;VEXM.’JJ =X MW.Z',
Wi Xnz = XnW,
It is easy to see that W3, commutes with all S} and W commutes with all

Ui, 7 =1,...,N. Moreover, the operator Wi defined on a dense manifold
Xy H of N is an isometry since for all z € K,

z e X,
ze X,

S
X Wl = i, [T Wollac = inf, 1T"wlsc = | Xocl,

and so it can be extended to an isometry Wiy on the whole N commuting
with all U}, j =1,...,N.

By the definition of the norm in X we can easily see that Wi is an
isometry on a dense manifold X of M and so it extends to an isometry
Wyt on M commuting with all §}, j =1,..., N.

Thus the operator on X defined by the matrix

= (Wy 0
U= ( 0 WN)
has the desired properties. m

By an easy modification of the proof of Proposition 4.1, using Proposition
L6.2 of [10], and the observation that isometries commubing on a dense
manifold must commute on the whole space, we also get the following

PBOPOSITION 4.2. Let (Ty,...,Tw) be an N-tuple of commuting con-
tmctchns on H and let {S,}acr be a collection of commuting isometries on
H which alse commute with each Tj. Let (V1,..., V) be the extension of
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(T, ,Tw) to K = M@ML given by Corollary 3.2. Then there is a collec-
tion {Us}acr of commuting isometries on X which also commute with all
Vi and extend {So} such that the subspace M is reducing for all U,.

We obtain the following result:

THEOREM 4.3. Let V' be an isometry on H and W a coisometry commut-
ing with V. Then we have the following decomposition reducing V' and W:

H = Hgp ® Hsy @ Hus @ Hyv,

where
(1) Vlgtgn 8 o shift, Wisy, @5 o backward shift,
(2) Vigtgy 18 @ shift, Wlacg, is unitary,
(3) Vlstys i unitary, W, is a backward shift,

(4) V|gtyy ond Wiy, are unitary.

Proof. By the Wold-von Neumann decomposition for V we get

H o= 9{5 (o] ﬂ‘fu,

where Hg reduces V' to a shift and Iy reduces V' to a unitary operator.
Consequently, V*|s¢, is a backward shift and V*|s¢,, is unitary.

Applying now Corollary 3.2 to V™, we get the same decomposition since
the extension is trivial in this case, which follows directly from the proof of
Corollary 3.2 or from the fact that the extension in Corollary 3.2 is mini-
mal.

By Proposition 4.1, the subspaces Hg and Hy reduce the isometry W™,
Now we use the Wold—von Neumann decomposition for each part of W*. So

Hg = Hsp ® Hsy, Hu=Huys & Hyv,
where Hgp, Hygp reduce W* to a shift, and Hgy, Hyy reduce W* to a
unitary operator. Consequently, the first two subspaces must reduce W to
a backward shift, and the last two to a unitary operator.

By the same argurment as before, all parts of the decomposition obtained
must reduce V', which implies the desired decomposition. m

Now we state, as an easy corollary, the result of Stocinski:

THEOREM 4.4. Let (V, W) be a pair of doubly commuting isometries on
H. Then we have the following decomposition reducing V' and W:

H = Hge @ Hsy @ Hyv @ Huv,
where

(1

(
(

) Vizees and Wigee, are (forward) shifls,

) Vkey is a shift, Wla, is unitary,

) Vigeys 18 unitary, Wlseys 4 o backward shiff,
) Viseyw and Wlscy, are unitary.

—
[T U )
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Theorem 4.4 also implies Theorem 4.3, since it can be shown that if ap
isometry commutes with a coisometry, then they must doubly commute.
This is an analog of the Fuglede theorem for another class of operators. It
is probably known but the authors have been unable tc find a reference for
it. We shall present it here as a consequence of Theorem 4.3. Independent
proofs are possible and simpler, nevertheless, we feel Theorem 4.3 presents
a complete picture of the problem.

ProPOSITION 4.5. Let V' € L(H) be an isometry and let W & L{H) be
a coisomelry. If V. commutes with W, then it commutes with W*.

Proof It is easy to see that if an operator commutes with a unitary
then they doubly commute. Therefore, by Theorem 4.3, we only have to
show that if a forward shift 5 commutes with a backward shift B then they
doubly commute. With respect to some decomposition of the space on which
it acts, S has the form

T

O o O
O OO
A e ==
T oo o

where I is the identity operator in a space of dimension equal to the multi-
plicity of 5. Since B commutes with 5, it must have the form

By 0 0 0
By By 0 0
B=| B3 B: By 0
By Bs By B

with respect to the same decomposition. But B can be a coisometry only

it By =0 for j =2,3,... Thus B, being diagonal, must doubly commute
with 5. a

We wish to thank Dan Timotin and 8. A. M. Marcantognini for their
comments and ideas about this paper.
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