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A method of approximate factorization
of positive definite matrix functions

by
GIGLA JANASHIA and BDEM LAGVILAVA (Thilisi)

Abstract. An algorithm of factorization of positive definite matrix functions of second
order is proposed.

1. Formulation of the problem. In [4], [5], [6] Wiener proved that
for a positive definite matrix function S(¢) = (fi;(t)); j17, where fi;(2),
[t| = 1, are integrable functions on the unit circle of the complex plane with

(1) log det(S(t)) € La,
there exists a factorization
(2) S(t) = xT(t) - (x ()",

where x 1 is an outer matrix function with entries from the Hardy space Hy
and (x*)* is its adjoint.

Condition (1) is necessary for the existence of such a factorization.

xT is defined up to a constant right unitary multiplier.

In the one-dimensional case the above result is due to Szegb and the
factorization can be explicitly given by a formula (see [1]), while in the
multidimensional case, r > 2, Wiener’s theorem states the pure existence.

The coefficients of the analytic functions in the factor matrix x™ are im-
portant for many applications, including the prediction theory of stationary
processes constructed by Wiener and Kolmogorov (see [6], [2]). Therefore
methods of approximate calculation of these coefficients for a given matrix
function S(t) are of great significance, Some of such methods under certain
restrictions on S(t) were described in the papers of Wiener and Masani (see
(7], [3]). The attempts of other authors to essentially improve these results
have not been successful.

In this paper, without imposing any additional restrictions on the matrix
function §(t) apart from the necessary and sufficient condition (1) for S(t) to
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be factorizable, we find a new effective factorization algorithm. Namely, we
construct a sequence of positive definite matrix functions Sy (t) convergent
to S{f) in the Ly norm and having an explicit factorization

(3) Snlt) = ¥ (1) - Ot (8))"
The convergence of ;! (¢} to xT(¢) in the Ly norm is proved.
In this paper we will only deal with the two-dimensional case which is

not only important in itself but also plays a decisive role for higher order
matrices.

NOTATION. As usual, L, is the class of p-integrable complex fumctions
on the unit circle. L;‘ (vesp. Ly ), p = 1, is the class of functions from L,
whose negative (resp. positive) Fourier coefficients are all 0. Functions from
L can be assumed to belong to the Hardy class Hp,

A matrix function is said to be in L, or L;‘ if its entries are in this class;
a sequence of matrix functions is said to be convergent in the L, norm if
their entries are convergent in this norm.

The “4* aor “— guperscript of a function emphasizes that the function
belongs to L} or L, respectively.

If f € Ly, then [f]* (resp. [f]™) will denote the function from LJ (resp.
L7) which has the same positive (negative) Fourier coefficients as f.

Let E. be the r-dimensional unit matrix and let

D={zeC:0<|z| <1}

2. Construction of 5, (f) and their factorization for the two-
dimensional case. A positive definite two-dimensional matrix function has
the form

_ (% o)
W 0= (5 o)

where a,b,¢c € Ly and a(t), ¢t), a(t)e(t) — |bE)|]> > 0 for a.a. t. Condition
(1) means that log(a(t)c(t) — [b(¢)|?) € Ly, which implies that

loga(t), log (ﬂif@:_'f?(t_”z_) & L.

a(t)
Under these conditions S(t) admits the representation
e 0 N (HE e
5 S(t) = 1 .
) 0= f+(t))( o @)’

where fit and f* are outer analytic functions from H, whose squares of
modulus coincide almost everywhere with a(t) and e(t) — [b(t)|?/a(t), re-
spectively, on the boundary of the unit disk, and
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(6) w(ty = b{t)/ 7 (£).

Observe that p € Ly, since |@(¢){2 = |b(t)|?/a(t) < c(t) € L.
Assume @ =t + 7, where T € L} and ¢~ € L;, and rewrite (5) as

SW:(E‘% (1)>(w‘1(t) f+0(t))(tl> %‘%) (flét) wl(t))'

n
(7) ety =Y wt™", n=1,2,..,
Rez=0)

where ¢~ ~ .00 vtk and let S.(t), n = L,2,..., be the following
sequence of positive definite matrix functions:

(8) Salt) ‘
+ = ) T
- (59 Dl o) o F9) 7 7F):

Obviously, |Sr, — S|, — 0. In the remaining part of this section we will
construct the factorization of the matrix function S,(t) (n is assumed to be

fixed).

We search for a unitary matrix function U,(¢),
{9) Un(t) - (Un(8))" = Ea,
with det(U,(¢)) = 1 almost everywhere such that

1 0 +
10 UL(t) € Ly .
) (it ) w05

A unitary matrix with determinant 1 is of the form

(% 5) tePsir=u

Thus condition (10) takes the form

Tt Ll (
(11) (— o gt gk F et | €L
pn (e (t) — fH (OB () en (BT () + FH {2z ()
Since @y, (t) has only n nonzero negative coefficients the desired functions
e and 8 must be polynomials of the same order n. Thus

(12) Uatt) = ( ot () ﬁ,i“(t)) |

~BE(E) o (t)

where

(13 ot ) = Satt,  fHE = bt
k=0 k=0
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and
(14) e+ 1870 =1, Jt|=1

Rewrite condition (11) as a system

{ pn (B)oi (8) — FHBT () = TF(8),
e (BB (1) + F(Bedk () = T3 (1),
where ¥;* and ¥, are some functions from L7. Equating the negative

Fourier coefficients of the functions in (15) to 0, we construct a system of
linear eguations and show that it has a nontrivial solution.

For simplicity, the matrix notation will be used:

(15)

Yo M Yn—1 Yn b h o1 In
S I S P o
o O - 0 0 000 - 0 I
ag bo 0 1
an=| ] Bz | ™, 02|, 1=]°],
a'n b'n 0 O

where v, k= 1,...,n, are defined by (7) and

) =3 .
k=0
The corresponding system is

. -
I B+ F-A,=1
(to avoid a trivial solution we take ¥, (0) =1).
Since f* is an outer analytic function, 1/f% is analytic in D. Hence

1 oQ
e N dpeh, 2l <,
k=0

do di da dne1  dn
1 0 dy dy dn—y dn_y
Fﬂ = 0 0 d'ﬂ dn«-—-ﬁ dn_2
0 0 0 - 0 dy
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By defining B, from the first equation of (16) and inserting it into the second
equation, we get
B = Fot Ty An,

L For Ty Ay + Py Ay = 1.

Thus
(17) (F70, - B D+ B A, = F78 - L
But the matrix €@ = F; ' I, is symmetric, since
0 for i+ 7 > n,
n—(i+j)
@ij - @JT - Z dk'Yi+j+k: for 4 -|-j < n.
k=0

Thus @ - O is positive definite and the determinant of the left matrix of (17)

is not 0 (moreover, all eigenvalues of this matrix are greater than 1). Thus

by defining A, from {17) we will find the coefficients ax, by, k =0,1,...,n.
Let us now show that the equality

(18) et (8)]® + 165 (8)/* = comst, [t =1,

holds for polynomials of the form (13) which satisfy (15). It follows from
(15) that

(et @) + 18507 = 2, (o (1) - ¥, (181 (B).
Therefore
1

(19) i (P + 18T = m@éi(*)ﬂd?{(ﬂ ~ P (687 (2)-

Although equation (19) holds for almost all ¢ from &D, one can consider the
right side of this equality as the boundary values of an analytic function &:

B() = T et () - PL(ABLE), =€ D.

Since f+(z) is an outer analytic function, $t(z) remains in the subclass N
of Nevanlinna’s class and since we know that &+ (2)]jz=1 € Lo because of
(19), we can conclude that ¢ &€ Hy, (see [1, Theorem 2.11]). But the left
side of equality (19) is positive. So the boundary values of a function from
H.o are positive almost everywhere. This implies that #* is constant and
(18) holds.

Having solutions a; and by, & = 0,1,...,n, of (16), we can obtain the
value of the constant after substituting ¢ = 1 into (18):

n 2 " 2
const:;Zak| +Izbkl .
k=0 k=0

Then we normalize the coefficients so that (14) hold and the matrix (12) be
unitary.
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Now we are fea,dy to show that

AN G L) 1 0
0 d0=(3 3) (oo rt0) o0
Equality (3) holds because of (8), (9) and (20). To show that x*(¢) is an

outer analytic matrix function, observe that
(21) det(x} (2)) = £ (2)f T (2),

Indeed, equality (20) can be continued naturally in D', using the definitions
of the functions (7) and (13) for [¢| < 1 and assuming

]
al(t)=Y aptF,

k=0

{z] < 1.

Br) =Y bt o<t <1
k=0

Then
det(I7,(¢)) =1, telD,
since (14) holds, and it follows from (20) that (21) is valid for z € . But

since we know a priori that both sides of {21) are analytic, they are equal
in the entire disk.

REMARK. Tt follows from the above arguments that if the matrix function
(4) is such that the function ¢ defined by (6) has only a finite number of
nonzero Fourier negative coefficients, then the factorization of S(t) can be
constructed in explicit form. In our opinion, this is the only case when
explicit factorization of a positive definite matrix function of second order
is possible.

3. Convergence of x}. As mentioned above, the factorization (2) is
defined up to a constant unitary multiplier. Namely, if we require the factor
matrix at the origin x*(0) to be positive definite, then the factorization is
unique.

We can assume that the functions fit and f1 in (5) are positive at 0,
which implies that

det(x;f(0)) = fF(0)fT(0) >0

(see (21)). We also have W3, (0) = 0 and 3, (0) > 0 (see (15), (16)), which
means that in the second row of the matrix yx;} (0) the first entry is zero and
the second one is positive:

(Xi(o))m = 0, (X;al- (0))22 >0, n=12...
The factorization (2) of the matrix function (4) for which
(22) det(x™(0) >0,  (H(0)n =0, (x7(0))22 >0
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is also unique. We will show that xT converges to this xt in the L norm,

(23) ik —xTllze — 0.
We will prove that the entries o} (£) and §;F (£) of the constructed gnitary
matrix functions U, (t) (see (12)) converge in measure, and thus obtain (23).
(Observe first that if some subsequences

(24) (C\fi)nem, (/BrT)RENO’
Np C N, are convergent in measure to « and 3, respectively, then
Lt sa=a", LLapg=p"
and, moreover,
g at — fTBY, o7 gt + fTat € L.
Hence, under these conditions, we have
) Tt t) @) ___)
20 = (et - FH OB, o870+ 10D )
since the passage to the limit in (3) implies the validity of (2), while the
equality

lim x5 (2)=xT(2), l|zl<1,

NoDn—+oo .
yields
det x* (2) = f1(2)f(2)
(see (21)), so that the conditions in (22) are also satisfied.
Let us now show that for each N1 C N there exists Ny C N; such that
(24) converges in measure. Since x* (£) is unique, this will complete the proof

of convergence.
Hankel’s operator H,- : HY, — Ly defined by

Hy-(a%) = lp7a™]”
is compact, since H,,— is the limit of the finite-dimensional operators H, ox in
the operator norm. Thus a convergent subsequence [p a1 n,, N2 C N1,
can be extracted from (¢~ o]y, . Then [pret] ey, is also convergent

and this implies the convergence of | o lnen, by the first equation of
(18). Considering now the operator 7. : Ho, — L,

H;. (6%) = (et
it becomes clear that a convergent subsequence | FBE N,y No © Nz, can

be extracted from {f* 8] e, S0 [F+Bilnen, is convergent in Lg, which
implies the convergence of 8; in measure.
The convergence of o is proved in a similar manner.
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Thus the validity of (23) is shown. The authors have also obtained some
results on the rate of this convergence.
Cases of dimension greater than two will be discussed in a forthcoming

paper.
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