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Isometric extensious, 2-cocycles
and ergodicity of skew products

by

ALEXANDRE L DANILENKO (Kharkov) and
MARIUSZ LEMANCZYK {Torus)

Abstract. We establish existence and uniqueness of a canonical form for isometric
extensions of an ergodic non-singular transformation 7. This is applied to describe the
structure of commutors of the isometric extensions. Moreover, for a compact group G, we
construct a G-valued T~cocycle « which generates the ergodic skew product extension Ty
and admits a prescribed subgroup in the centralizer of Ty,.

0. Introduction. Let T be an ergodic non-singular transformation of
a Lebesgue space (X, B, u). We consider isometric extensions of T, ie.
transformations S of X x G/H of the form § = Tg g0, To,H,0{2, Hg) =
(Tz, Hgo{z)). where H C G is a nested pair of compact groups and o : X —
G a Borel function. We show that every ergodic isometric extension is conju-~
gate to another one T gr o with the pair H' C G irreducible, which means
that H' contains no proper normal subgroups of &'. More importantly, if
this condition is satisfied then the corresponding triplet (G', H', o) is de-
termined uniquely up to cohomology (see §1 and Theorem 1.4 for details).
This extends the earlier results of T. Hamachi [Ha], where finite extensions
are studied.

Denote by C(T¢, i,) the centralizer of Tg g o, i.e. the group of all trans-

formations commuting with it, and by 5(21"'(;, H,a) the subgroup of those
commutors which can be pushed down to X. We apply the above results
to describe the structure of elements from C(T¢, z,.). Namely, every such
element has the form S ¢, 81 7(z, Hg) = (Sz, Hl(g) f(x}), where § € C(T),
{ is an automorphism of G with I{H) = H and f : X — G is a measur-
able map with l(a(z)) = f(z)a(Sz) f(Tz)~! (Proposition 2.1). This extends
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the well-known theorem from [Ne] (see also {Me], [JLM], [D1]), where the
particular case H = {lg¢} and T measure-preserving was considered.

We also study (in §3) the problem of extending a T-cocycle to a cocycle
of a larger group action which is related to the factor problem of isometric
extensions (cf. [Kw] and [Le]).

Let K be a compact (in the weak topology) subgroup of T'-commutors, G
an Abelian compact group and « : X ~+ G an ergodic cocycle. For simplicity,
we shall write Ty, instead of T, 14},a- Let 7 : C(Ta) — C(T') stand for the

natural projection. Clearly, G is embedded into o (Tw) as a closed normal
subgroup acting on X x G by left translations along the second coordinate.
If K  n{C(T,)) then we obtain a short exact sequence of compact groups

(0-1) 1= G—rHK) S K 1.

As usual, this sequence determines the structure of a K-module on G. In
turn, this structure plus a 2-cocycle of K with values in G (arising from a
Borel cross-section K -+ 7~1(K)) determine completely the group structure
on mHK).

In the final §4 we are concerned with the following question. Suppose
that a short exact sequence of compact groups is given:

(0-2) 1-G—=E—K—1

with G and K as above. Is it possible to find an ergodic cocycle oo : X — G
such that (0-2) is congruent (i.e. identical) to (0-1)7 We show that if such an
o exists then it must be a measurable solution of some functicnal equation
(see (4-3)) which, in fact, is determined completely by the 2-cohomology
class of the 2-cocycle of K associated with (0-2). More precisely, o appears
to be a transfer function for a cocycle of a free measurable action of K (it
is well known that every cocycle of a free type I action is a coboundary).
There is, however, abundance of such solutions even if we do not distinguish
T-cohomologous cocycles (in the dynamical system sense). Thus our problem
is to find out: are there ergodic solutions? We consider separately 3 cases.

First, assume that (0-2) has no splitting quotient-extensions. This means
that there are no K-invariant subgroups N of &, N # @, such that the
N-quotient sequence

l1-G/N—-E/N K -1

splits. In the language of 2-cocycies this can be rephrased as follows: there
are no Borel cross-sections K — E such that the associated 2-cocycle of K
takes values in N. One of the simplest examples of such group extensions is

1= Z2Z —-T—T— 1.

We show that—rather surprisingly—every measurable solution of (4-3) is
an ergodic T-cocycle.
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Next, consider the opposite situation: (0-2) splits. Then it is easy to find
a non-ergodic solution of (4-3). Nevertheless, we prove that ergodic ones also
exist (provided that the K -quotient of (X, x) is not finite).

Finally, in the general—mixed—case we combine the arguments of both
extremal situations to deduce that our problem always has an affirmative
solution (provided that the K-quotient of (X, ) is not finite).

Notice that if the K-quotient of (X, 1) is finite, then T' has pure point
spectrum. This case is also studied: we record necessary and sufficient con-
ditions for affirmative solution of our problem (Theorem 4.1).

The first named author expresses his gratitude to N. Copernicus Uni-
versity in Torufl {Poland} for the warm hospitality during his work on this
Daper.

1. Canonical group covers. Let T and S be non-singular invertible
transformations of standard probability spaces (X,%B,u) and (¥, €, ) re-
spectively. S is called an extension of T (and T is a factor of §) if there
exists a Borel onto map p: Y — X such that #op™! ~ 4 and pS = Tp. Let
S and §' be two extensions of T'. We write S7 » 9 if there is a Borel onto
map t: Y’ — Y such that v/ o~ ~ v and the diagram

v 5

i ! Yf
P P
t \XJ;X/ t

A e AN
Y Y

commutes. If ¢ is invertible, then we say that S and 5" are conjugate and
write §' ~ S.

Let G be a compact metric group and Ag the probability Haar measure
on (. Suppose that T is ergodic. A Borel map a : X — & is called &
cocycle of T with values in G. (We do not distinguish between two maps if
they agree almost everywhere.) Let H be a closed subgroup of G and Agng
the probability G-invariant measure on the homogeneous space H\G (the
(G-action by right translations is implicit). Define a transformation T m,a
of (X x (H\G), u % Ag\g) by setting

TG,H,& (37’ Hg) = (Tma Hga(m))'

Clearly TG, g, 5 an extension of T' with the factor map pla, Hg) = z.
We call Tg g, an isometric extension of T with the group cover (G, H,a).
Ta 14,0 is s2id to be a group extension of T and denoted by T if no con-
fusion arises, Since we study dynamical systems up to conjugation, exten-
sions conjugate to isometric (group) ones are also called isemetric (group)
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extensions. It is well known that T, is then conjugate to a group exten-
sion, more precisely to an H-extension, of Tg i . We say that o has dense
range in G if T, is ergodic. Assume that # : X — G is a cocycle coho-
mologous to «, ie. there exists a Borel function ¢ : X — @ with 8(z) =
#(z)talz)(Tz). Then Ty y g is conjugate to T, gr,q; the canonical conju-
gacy map t: X x H\G — X »x H\G is given by t{z, Hg) = (z, Hge(z)). If
N is a closed normal subgroup of G with N ¢ H, we define an isomorphism
t: X x (H/INWG/N) = X x (H\G) by setting

t(z,(H/N} - Ng) = (=, Hg).

Clearly, to T n u/N N« = 16,12 0%, where the cocycle N -a is determined
by (N - o)(z) = Na(z). Thus Te/nm/8n.e = Ta,Ha

An inclusion H C G is called irreducible if the corresponding G-action
on H\G by right translationg is faithful or, equivalently, H does not contain
any non-trivial normal subgroup of G. It follows from the above observation
that every isometric extension is conjugate to some Tg m o with H C G
irreducible (indeed, for every pair H' C G’ there exists a biggest normal
subgroup N’ of &' with N' C H').

Let T, 1, be ergodic. By [Z1] there exists a closed subgroup K of G and
an a-cohomologous cocycle 3 of T which takes values and has dense range in
K. Since T 17,5 is also ergodic, it follows that Hgol = G for some gy ¢ G.
Without loss of generality we may assume that HK = G (otherwise set
K'=goKgy! and §'(z) = gof(z)gy * and consider T zr.p). Then Ty pr g =
Tx mnk,s and the conjugacy map t : X x (H\G) — X x (H N KN\K) is
defined by

i(z, Hk) = (z, (H N K)k)
for all k¥ € K. Notice that if H C G is irreducible, so is H M K C K. Thus
we have proved

ProrosiTioN 1.1. Let S be an ergodic isometric extension of T. Then
there is a group cover (G, H, &) such that H C G is irreducible, o has dense
range in G, and 8§ ~ T g,

We call (G, H,a) a canonical group cover of T if H C G is irreducible
(and T, b, ergodic).

ReEMARK 1.2. If T' is measure-preserving then so is every isometric sxten-
sion of T In this case M. Mentzen [Me, Theorem 1] proved Proposition 1.1
without the assertion that (G, H, @) is a canonical group cover. (He used
techniques connected with joinings of dynamical systems.)

REMARK 1.3. Theorem 3.1 of [Ha] states that given an ergodic finite-
to-cne extension S of T', there is a canonical group cover (G, H,a) of T
such that § ~ Tg g, and G is finite. We give a short proof of this claim.
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It follows from the ergodicity of S that there is n € N such that the map
X 3o+ Card({y | p{y} = z}) is equal to n a.e. Thus we can assume that
V=X x{0,...,n—1} and S(z, 7} = (T, a{z)"L[5]}, for a Borel function
@ : X — X(n), where Y(n} stands for the group of all permutations of
J:={0,...,n—1}. Without loss of generality we can assume that o viewed
as a T-cocycle takes values and has dense range in a subgroup G < Z(n)
{otherwise replace o with a cohomologous cocycle §: X — X(n) with this
property; this results in a new S{F), but S(8) =~ 5. Since S is assumed
ergodic and for each j € J,

U s x (i)

neZ
is S-invariant and of positive measure, we deduce that G acts ergodically (i.e.
transitively) on J. Set H = {g € G | g[0] = 0}. Clearly H C G is irreducible.
Observe now that (G, H,a) is canonical and moreover § is isomorphic to
T6,m,0 via (z, Hg) r (2, ), where g[j] = 0.

Qur purpose is now to prove

TurorEM 1.4. Let T be an ergodic non-singular transformation of
(X, B, u). Assume thot (G, H,a), (G',H', o) are two group covers of T,
the first one cancnical, the second one with o' having dense range in G'. If
Tom e = ToHe and t: X x (HN\G') = X x (H\G) is the corresponding
factor map then:

(i) there are a continuous epimorphism [ : G' — G and a Borel func-
tion f : X — G such that I(H') C H, t(z, H'g') = (x, HI(¢') f(z)) and
Ue/(2)) = F(&)ale)F(T2)~,

(ii) I=*(H) = H' if and only if t is an isomorphism,

(iii) if U[H' is one-to-one then H' C G' is irreducible,
(iv) if H C G is irreducible and t is an isomorphism then [ is one-to-
one and (H'} = H.

Proof. {i) Consider the product cocycle o x o' of T' with values in
G x (. By [Z1] there exists a closed subgroup II C G x G' and two
Borel functions ¢ : X — G and 1 : X ~» G' such that the cocycle 8 x §
takes values and has dense range in IT, where 3(z) = ¢(z)  e{x)¢(T'x) and
G'(z) = ¥(z)" o/ (z)¢(Tx). Since @ and o’ have dense ranges in & and G re-
spectively, the two coordinate projections I — G, II — G’ are onto. Notice
that t(z, H'g') = (z,t;(z, H'g')) for a Borel map t; : X x (H\G') — H\G.
Since tTg gr.or = 16, 1,at, the map 0 : X x (H\G") = X x (H x G) given
by

(1-1) o(z, H'g') = t1(z, H' g'v{z) V) p(z) -



128 A. L. Danilenko and M. Lemandceyk
satisfies
(1-2) o(Tz, H'g'B'(z)) = olz, H'g")B(z)

for p x Agng-ae. (z,H'g’). Since IT — G’ is onto, Ag is the pullback
of the Haar measure A;y on I7. It follows that {1-2) holds for u x Ap-a.e.
(z,g,9') € X x II. We define a Borel function F': X x IT — H\G by setting
F(z,9,9") = o(z, H'g')g~ . Then

F(Tx,98(z),q'6' () = o(Tx, H'g'8'(2))8(z) " g™
= Q(‘Ti H’gl) = F(wvg: )

for p x Apr-a.e. (z,9,4"). Hence there is gy € G such that F(z,g,9") = Hgy
and thus

(1-3) o(z

for p x Ag-a.e. (z,g,¢"). Without loss of generality we may assume that
go = 1g (otherwise replace 3 by the cocycle 8"(z) = g5 ' f(z)go and instead
of IT consider the group IT' = {(95 9g0,9") € G x G | (g,¢") € I}).
Let Ng = {9 € G | {g,1es) € II}. Then Ng is a normal subgroup of G.
Moreover, it is easy to deduce from (1-3) that for each n € Ng we have
Hgn = Hg for Ag-a.e. g € G, Since H C @ is irreducible, n = 1. Hence
Ng is trivial and IT = {(I(¢"),¢') | ¢' € G'} for a continuous epimorphism
I:G'"— G. Thus

(1-4) Blz) = (8 (z))

for a.e. z. Moreover, (1-3) (always with gg = 1) entails g(z, H'¢') = Hi(g')
for (p x Agr)-ae (z,8) € X x G'. Hence o(x,H'g") = p(H'g') for ae.
(z,H'g"), where §: H\G' — H\G is a continuous map given by g(H'g’) =
Hl(g"). Notice that [(H') C H and the diagram

JH'g") = Hgog

G'—E>G

l

H\G' -2~ m\G

commutes. We deduce from (1-1) and (1-4) that ¢ (z, H'g’") = Hi(g')f(z)
and I{e/(z)) = f(z)e(z) f(Tz) !, where f(z) = 1((z))p(z) ", as desired.
(ii), (iii) are now obvious and (iv) follows from (i) and (ii). =

REMARK 1.5. Consider the category of triplets (G, H, ), where G is a
compact group, H a subgroup of G and « : X — G an ergodic cocycle of T'.
We say that there is a morphism of (G, H,a) onto (G', H', o') if there are
non-singular maps ¢ : X x G~ X x G’ and ¥ : X x H\G — X x H\G'
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such that the following diagram commutes:

To

X x G\ Xxa
X x H\G Tore XxH\é/
<4 \ / -
X xH \G’ Tette X x H\G'
7 T, ™~

Xxa Xxqo

where the skew arrows are the natural projections along the second coordi-
nate. It follows from Theorem 1.4 that Tg g o is a minimal object in this
category if and only if it is canonical. In the particular case of finite ex-
tensions, i.e. when G and (' are finite (see Remark 1.3), this criterion was
proved by T'. Hamachi [Ha, Theorem 5.1]. However our argument is different.
Notice also that the existence of the minimal objects (without the criterion)
was established in [JLM, Proposition 1.1].

2. Centralizers of isometric extensions. Throughout this section
T is an ergodic non-singular invertible transformation of (X,B, ) and
(G,H, ) a canonical group cover of T'. The centralizer C(T) of T is the
monoid of all y-non-singular transformations commuting with 7". The sub-
group of invertible ones will be denoted by T (T). T is called coalescent if
C(T) = C.(T).

We say that S € C.(T) can be lifted to C(Tg,x,q) if there is a p X Agy\ g~
non-singular transformation 5 of X x H\G with § € C(T,#,) and pS =
Sp, where p : X x H\G — X is the first coordinate projection. An easy
modification of the argument used in the proof of Theorem 1.4 yields

PROPOSITION 2.1. Every lift S of S € C,(T) to C(Tg u,) has the form
S(z, Hg) = Si+(w, Hg) := (S, HU(g) (2)),

where f : X — G is o measurable map and 1 : G — G 15 a continuous group
epimorphism with [(H) C H and

(2-1) lafe)) = Fa)e(Sz)f(Ta) "

Moreover, S5 i3 invertible if and only if so s 1. If this is the case then
I{H)=H.

COROLLARY 2.2. If § can be hfted to C(Tg u,e) then it can also be lifted
to C(Ty,).
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ProrosiTiON 2.3. Let T' have pure point spectrum. Then

(i) Bvery element of C(Tq p,a) i85 a lift of some transformation from
C.(T).
(i) If T, is coalescent then so is To po.
(iii) More generally, if Tn.o is coalescent for each closed normal subgroup
N C G then T,k o is coalescent for each closed subgroup K C G (cf. [JLM,
Corollary 8.1]).

Proof. (i) One should slightly modify the argument of {D1, Proposi-
tion 6.1] and apply Proposition 2.1.
(ii) follows directly from (i) while (iii) from (ii). =

REMARK 2.4. Note that Propositions 2.1 and 2.3(1) extend the ecarlier
results of [Ne] and [Me, Theorem 4], where the case of group extensions (i.e.
H = {1g}) of measure-preserving transformations was studied.

Given & € G, we denote by Ady, the inner automorphism of G defined
by k, i.e. Ad(g) = kgk~". Let Ng(H) stand for the normalizer of H in G,
ie. Ng(H)={geG|gHg ' = H}.

PROPOSITION 2.5. Every lift Id of the identity 1d of X to C(Te,pq) is
of the form

Id(z, Hy) = (z, Hkg) = Idpq, x(z, Hg)

for some k € Ng(H), where k is regarded as a constant function from X
to G. Moreover, Idaq, x ts the identity of X x H\G if end only if k€ H.

Proof. The result follows from Proposition 2.1, Corollary 2.2 and [D1,
Lemma 5.2]. w

'This proposition implies that all lifts of the identity are invertible. More-
over, if § € C.(T} and 5,5~ can both be lifted to C(T% 51,) then every
lift of S is invertible. Put

Ly(T,a) ={S € C.{T) | §,57" can be lifted to C(Tg, i)},
C(To,m,0) = {5 € C(Tama) | S is a lift of some § € Ly (T, a)}.
The two sets are groups. We also notice that
o Ne(H)/H 3 kH v+ o(kH) :=1dpa, » € C(To.2.0)
is a well defined one-to-one group homomorphism.

For 5 € C.(T"), consider a unitary operator Us in L?(X, 1) given by

dpo S
T (z).

Usf(z) = f(Sz)

The weak topology on C,(T') is inherited from the strong operator topology
on the unitary group U(L?(X,u)) via the embedding § — Ug. It is well
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known that C.(T) endowed with the weak topology is a Polish group. A
sequence S, € Ci(T) weakly converges to § € C,.(T) if and only if
dpo S, _ ducS
du du

in the L} (X, u)-norm and p(S;1AAS72A) — 0 as n — oo for each 4 € B.
It is easy to see that C(Tg,m,q) is a closed subgroup of C.(T g.o) and thus
Polish, Moreover, the map 7y : 5’(TG,H,Q) — C,(T") given by 7 (S1,7) = S
is a continuous group homomorphism. By Proposition 2.5 the range of ¢
is equal to 75" ({Id}} and hence closed. Furnish Ng(H)/H with the quo-
tient topology. Then it is easy to verify that o is continuous and hence
bicontinuous by the open mapping theorem for Polish groups. We endow
Lu(T,0) = C(Tg,mea)/ g ({1d}) with the quotient topology; call it the
Lyg-topology. By [Br], Ly (T, @) is a Polish group and

(2-2) 1— Ng(H)/H S E(Tema) =% La(T,0) — 1

is a short exact sequence of Polish groups. Note that the Lg-topology is
stronger than the weak one restricted to Ly (T, a). Hence Ly(T, ) is a
Borel subset of C,(17).

Denote by AutG the group of all continucus automorphisms of G. It
is Polish when equipped with the topology of uniform convergence. Note
that AutgG = {I € AwtG | {((H) = H} is a closed subgroup of AutG;
IngG = {Ady | k € Ng(H)} and TmngG = {Ady | k € H} are closed
normal subgreups of AutzG. We put Out g G == AutyG/Inng G, Outp G 1=
AutHG/ﬂEHG and endow them with the quotient topologies (Polish by
[Br]). We also put

Ty : E’(TG’H,Q) > S;J 1 frl-lleG & _O__u’tHG',
7 Lg(Ta)3 8 —1-TanpgG € OutyG,

where the latter [ is determined by (2-1). Proposition 2.5 implies that 7y
is well defined. Notice also that Ty and Ty are group homomorphisms.
It is rather standard to show that they are continuous (see [GLS, §4],
(D1, §§5,6]).

We write WC(T) for the weak closure of {T™ | n € Z} in C, (T'). T is said
to have the weak closure property (WCP) if C.(T') = WC(T). All ergodic
rotations, rank 1 transformations [Ki], Gaussian-Kronecker transformations
[FL] have the WCP.

COROLLARY 2.6 (Weak Closure Theorem for Cocycles, cf. [GLS, Corol-
lary 5.5]) Let T have the WCP and Lg(T,a) = C.(T). Then Ci(Ta H.0)
is equal to the weak closure of {T§ y  o(kH) |n€Z, ke Ng(H)}.
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Proof. Since Ly (7', o) = C.(T) and the Ly-topology is stronger than
the weak one, it follows that they are equal. Use (2-2) to complete the
proof. m

By [GLS, Proposition 5.7] if T has pure point spectrum and Liy(T,a)
= C.(T) then T, has pure point spectrum and G is Abelian. Since
Liuoy(Tha) € Lg(T, ) by Corollary 2.2, we deduce

Cororvary 2.7. If T has pure point spectrum and H # {lg} then
Lu(T, o) # C(T).

3. Factors of isometric extensions. Let (G, H,®) be a canonical
group cover of T. A compact subgroup K C Cu(Te,m,0) is called diagonal
if o(Ng(H)/H) N K = {1d}. Such groups were studied in [Kw] and [Le| in
connection with the factor problem of group extensions (a diagonal subgroup
determines the factor of sets which are fixed by all its elements and under
some additional assumptions, all factors arise in this way). In particular, an
important question is whether given a compact subgroup K C Ly(T, a),
there is a diagonal subgroup X C a(TG, H,) With 75 (K) = K. A partial
answer to this question was given in [Le] in the case of G Abelian and H
trivial (see also an earlier paper [K'w]). In this section we extend their results
to arbitrary isometric extensions.

LEMMA 3.1. Let K be a weakly closed subgroup of Ly(T,a). Then the
restrictions of the Ly -lopology and the weak topology to K are the same.

Proof. Repeat the argument used in the proof of Corollary 2.6. m

It follows that a subgroup of Ly (T, ) is Ly-compact if and only if it
is weakly compact. Given such a subgroup K, we consider the associated
short exact sequence of compact groups (cf. (2-2))

(3-1) 1= Ne(H)/H 5 a7 (K) 25 K — 1.

Actually, w;,-l(K ) is compact as a topological group extension of a compact
group by another compact one. We recall some concepts from cohomology
of groups. Let s : Lg(T,a) — C(Tg,u) be a Borel normalized cross-
section of wg (see (2-2)), i.e. 7y o 5 = Id and s(Id) = Id. Define a Borel
function ¢ : Ly(T, o) x Ly(T,a) — Ng(H)/H by setting ¢(S1,5:) :=
5(51)5(52)8(818;)~". Then c is a “noncommutative” 2-cocycle, i.e.

C(Sl, 52)6(5132, 83) = Ads(gl) [C(Sz, Sa)]C(S1, SzSg) and
C(S, Id) = C(Id, S) = 1N5(H)/H
for all 54, 92,53, 8 € Ly (T, «). Notice that given another Borel cross-section
s’ : Lg(T,a) — C(Ta,x,), we have s'(S) = d(S)s(S) for a Borel map
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d: Ly(T,a) = Ne(H)/H and
CI(Sl,Sz) = d(Sl) Adﬂgﬂ[d(Sg)}C(ShSg)d(slsg)_l,

i.e. the associated 2-cocycles c and ¢’ are 2-cohomologous. By a 2-coboundary
we mean a 2-cocycle 2-cohomologous to the trivial one.

PROPOSITION 3.2. The following are equivalent:

(i) there exists a diagonal subgroup K c C(Tg, Ho) with ma(K) = K,
(i) (3-1) splits,
(iii) the restriction of ¢ to K x K is a 2-coboundary (this property does
not depend on the particular choice of a cross-section),
(iv) there is a Borel cross-section s whose restriction to K is a continuous
homomaorphism into C (Te,H,a)-

Proof. (i)e(ii), (iii)=-(ii) are well known. (iv)=-(ili) is obvious. It suf-
fices to show that (i)=»(iv). For 8 € K, we set s(S):=S € K if np(§) = §.
Since K is diagonal, s is well defined. Moreover, s is continuous. Now
we extend it to the entire Ly(T,a) in an arbitrary Borel way such that
rgos=Id m

Now we will show that the properties (i)—{ii) are closely related to the
problem of extending Z-cocycles to cocycles of larger actions (studied in
[DG], [GLS], [P1]). For simplicity we shall assume that H is trivial.

Let a locally compact group A act (on the left) on (X, %, i) via non-
singular automorphisms and v : A 3 @ — v, € AutG be a continuous
homomorphism. A Borel map : A x X — G is an (A, v)-cocycle if

,B(Cbb, 9.'.') = ﬁ(a'! bx)va (B(, .'E)) a.8.

for every a,b € A, If v is trivial we call 8 an A-cocycle. Two (A, v)-cocycles
B and v are cohomologous if there exists a Borel function f : X — G such
that

Bla,z) = flaz)y(e, z)va(f(2))™"  ae.
for each @ € A. §is called an (A, v)-coboundery if it is cohomologous to the
trivial (A,v)-cocycle. Given a non-singular transformation T' and a Borel
function a : X — G, we define a Z-cocycle (or simply T-cocycle) & by
setting
a(l,z)=ax)™", =zeX
Let K be a subgroup of C\{T'). Assume that T™ ¢ K for every n # 0. We

say that o can be extended to K if there is a homomorphism 7 : K 3 § v
ls € Aut G and a (K, I)-cocycle 38 such that

(3-2) a(Sz)18(8, 1) = B(S, Tx)ls(a(z)™) ae.
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for each § € K. Actually, let A :== Z x K act on X as (n,S)z := T"Sxz.
Define a homomorphism v : A — Aut G by setting v(, 5) += ls and put

8((n,9),z) :=a(n, Sz)B(S,z) forall(n,S)e A, zc X.

It is easy to verify that & is a well defined (A4, v)-cocycle and §((1z,1d),z) =
a(z)™!. A similar definition can be given for non-free T-commuting actions
of compact groups.

CoRrOLLARY 3.3. Let K be a compact subgroup of Lyy,1(T, cx) such that
T ¢ K for every n = 0. Then o can be extended to K if and only if one
of (i)-(iv) from Proposition 3.2 is satisfied. If this is the case then o is
cohomologous to o T-cocycle of with o’ o S =lgoa’ forall S & K.

Proof Let M(X,G) stand for the group of G-valued measurable func-
tions on X endowed with the (Polish) topology of convergence in measure. It
is easy to deduce from Proposition 2.1 that Proposition 3.2(iv) is equivalent
to the following fact: there exist two maps

K38 lgeAut@d, [f: K38+~ fse M(X,G)

such that K 3 8w Sy, 75 € O(T,) is a continuous group homomorphism.
This entails that [ is a continuous group homomorphism and f a continuous
map satisfying

(3—3) fsg =lgofe-fso S’ for all S, S eK.

We set 5(S,z) = fs(z)~!, z € X, S € K. It follows from (3-3) that §is a
(K, I}-cocycle. Then a can be extended to K if and only if (3-2) is fulfilled,
which according to (2-1) is equivalent to saying that § € Ly 1 (T, o).

It is a well known fact that every cocycle of a free type I action is a
coboundary (see [Sc| and [Z2]). Recall that every measurable action of a
compact group is of type I. Hence there exists a function f : X — G with
B(8,z) = f(S2)"s(f{z)) ae. for each S € K. In view of (3-2),

(34)  olSw) T (S2) s (F(2)) = F(STe) s (f(Tx))ls(a(z)™)
a.e. for each § € K. Put o/(z) := f(z)afz)f(Tz)™?, z € X. Tt follows
from (3-4) that ¢ is as desired. m

REMARK 3.4. Let K be as above. We define an action of W{"l‘t;}(K) on
X by Sisx = Sz. It is not free and the stability group at each z € X
equals w{‘lz}(ld), ie. G. We set 3(Si5,2) := f(z)  forall z € X, S5 €
77{_119 1(K). Then fis a (w{‘l:'"G}(K ), T{1g})-cocycle. It is easy to verify that o
can always be extended to 71-{11(;}(1'{ ), since this is equivalent to (2-1). Notice
that 5(Idaa, %, &) = k= at a.e. 2 for each k € G.
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4. Constructing cocycles with prescribed extensions of lifting
groups. Let K be a compact subgroup of the centralizer of an ergodic non-
singular avtomorphism 7' of (X, B, u). We shall assume that G is Abelian
and H = {lg}. Consider a topological (compact) group extension of K
by Gt
(1)

Our purpose here is to find a cocycle o : X — G with dense range in G
such that K < L(T,a) and (4-1) is congruent to (3-1), i.e. there exists a
continuous isomorphism E — 7~ (K such that the diagram

1 e E—"—K 1
(4-2) Id l d

| s G 7 () — K 1

1-G—-E&H K 1.

commutes. Assume that such an e exists. To simplify our notation we shall
write L(T, &), 7, 7 without the lower index {1g} (see §2). Notice that (4-1)
determines a continuous group homomorphism [ : K — AutG (indeed, E
acts on G by inner automorphisms and since & is Abelian, this gives rise to
a representation of E/G, i.e. a representation of K ). Since Aut ¢ = Out G,
we deduce from (4-2) that [ equals 7 (restricted to K). Recall that every
transformation R & 7~ !(K) is of the form R = Sy ; where S € L(T, a) and
the function f € M(X, G) satisfies (2-1}. Moreover,

778 = {9,571 f — f = const a.e.}.

Hence any Borel cross-section r of the projection 7 : 7 1(K) — K can be
written as r(S) = S5 p(g,.), where F': K x X — G is a Borel map satisfying

(4-3) Fg(S,z) — F3(5,Tz) = a(Sz) — Is(a(x))
at a.e. x for every § € K. Next, r generates a 2-cocycle c: K x K — G by
the standard formula
r(S1)r(82) = Ida,e(s4,55) 7(S152),
which is equivalent to
(4-4) F(5182, 2) + ¢(S1,82) = F(51, Saz) + ls, (F(S2, 7))

at a.e. x for all Sy, 52 € K. It is well known that the 2-cohomology class of ¢
is independent of the particular choice of the cross-section r and determined
by (4-1) completely. To summarize we see that the main problem of this
section can be restated in equivalent terms as follows: are there an ergodic
T-cocycle & : X — G and a Borel function F': K x X — G such that (4-3)
and (4-4) hold? :
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Let us first solve {4-4). Denote by (Y,€,v, R) the factor of (X, B,u,T)
determined by K. Without loss in generality we may assume that:

DX =YxK, u=vxAg,
(ii) K acts on X as S(y,8") = (v, 85 ) for {y,8) € X, S€ K,
(iii) T = Ry for a cocycle ¢ : ¥ — K with dense range in K (the last
condition only for v contimious).

It is easy to verify that the map F : K x (¥ x K) — & given by
F(S (y,5) = ¢85, 5) satisfies (4-4).
Next, since K C C,(T), it follows that the map

KxX3(8z)—F(S8Ts)ed
also satisfies (4-4). Then the difference
Kx X3 (S z) F(Sz)-F(5Tz)eG

is a (K, I)-cocycle. But every (K, I)-cocycle is a coboundary since K is com-
pact and acts freely. Hence there exists a Borel function oo : X — @& such
that (4-3) holds.

Thus our problem reduces to the following: is it possible to find such
an o which has dense range in @ as a T-cocycle? (Note that the set of T-
cohomology classes of the solutions of (4-3) does not change if one chooses
another solution of (4-4).) Denote by Sp(-) the point spectrum (i.e. the group
of eigenvalues).

THECREM 4.1, Let there be given an ergodic non-singular cutomor-
phism T, a compact subgroup K C C(T) and an extension (4-1) of K
by a compact Abelian group G. If K is of infinite index in C(T') then there
ezisis an ergodic T-cocycle o : X — G such that K C L(T,a) and (4-2)
commutes, If K is of finite index in C(T) then such an o exists if and only
if G/N is monothetic and there is an ergodic rotation T' : G/N — G/N
with Sp(T™) N Sp(T”} = {1}, where m = #(C(T)/K) and N is a minimal
E-normal subgroup N of G such that 1 -+ G/N — E/N — K — 1 splits,
In the second case both T' and T, have pure point spectrum.

Proof. We proceed in several steps. Let us say that (4-1) has a splitting
quotieni-extension if there is a proper closed subgroup N ¢ G which is
normal in E and such that the quotient-extension of (4-1), namely 1 —
G/N — E/N - K — 1, splits. Equivalently, ¢ is 2-cchomologous to a
2-cocycle with values in N,

(I) Suppose first that (4-1) has no splitting quotient-extensions. We claim
that o viewed as a T-cocycle has dense range in G. Suppose the contrary:
there is a proper subgroup &' C G and a Borel function f : X — @ such
that the T-cocycle ¥(z) := f(Tz) + a(z) — f(z) takes values and has dense
range in G'. Hence, in view of (4-3),
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#5) (= (S2)+F(S,2)+1s(f(2))) — (= F(STz) + F(S,Tz) +Is(f (Tz)))

=7(8z) —Is(v(z))
for a.e. z € X and S € K. We need an auxiliary

LEmMMA 4.2 [Z1]. Let Gy and Go be closed subgroups of G and &1 :
X — Gy, 02 1 X — Gy two T-cocycles with dense ranges in Gy and Gy
respectively. If 61 and 82 are cohomologous (in @) then Gy = Gj.

We continue the proof of Theorem 4.1. Tt is clear that yo $ and lg o+ are
cocycles of T with dense ranges in G’ and [g{G") respectively. It follows from
(4-5) that they are cohomologous. By Lemma 4.2, &’ is lg-invariant for all
S € K, i.e G'is anormal subgroup of E. Hence the quotient homomorphism
of I, say [ : K — Aut(G/G"), is well defined. Put f = go f, F = go F,
¢=gqoc, where ¢ : G — G/G is the quotient map. Passing to the quotient
group in (4-5) we obtain

~F(82) + F(S,2) +I5(F(2)) = ~F(8Ta) + (S, Tx) + Is(f(Ta)
for a.e. x € X and § € K. Since T is ergodic,

(4-6) F(S,z) = [(Sz) - Is(f(2)) + a(S)

for p % Ag-a.e. (z,S), where a : K — G/@ is a Borel map. It is easy to
see that F satisfes (4-4) with ¢ instead of c. Notice that € is a 2-cocycle
associated with the cross-section gos : K — G/G'. It follows from (4-4) and
(4-6) that ¢ is a 2-coboundary. This implies that ¢ is 2-cohomologous to a
2-cocycle with values in G, a contradiction.

(II) We now consider another particular case: {4-1) splits. Then we can
assume that ¢ is trivial. It follows that F' is trivial and the left hand side of
(4-3} is zero. Hence we seek a T-cocycle o : X — G with dense range in G
and such that a(Sz) — lg(a(z)) = 0 a.e. for each § € K. Let Mg (X,G) =
{a e M(X,G) | o8 =lgcafoal§ e K} Clearly, Mg(X,G) is a
closed subgroup of M(X, G). It is easy to show that given o € My (X, G),
there is a unique d € M(Y, G) such that
(4-7) a((y, §)) = ls(d(y))

for a.e. (y,8) € X. Moreover, the map Mg(X,G)3a—de M{Y,G)isa
homeomorphism. Let K »; G stand for the semidirect product of X and G
via I. The following statement is a direct corollary of [D2, Theorem 4.4].

LEmMMA 4.3, If v is continuous (i.e. non-atomic) then the subset
£ :={d e M(Y,G) | the R-cocycle
$:Y 3y (¢y),dy)) € K %, G is ergodic}
i$ a dense G5 in M(Y, Q).
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We continue the proof of Theorem 4.1. Take an arbitrary d from £ (which
is nop-empty by Lemma 4.3} and define a T-cocycle a by (4-7). Then a
Mg (X, G). Moreover,

(Ro)al(y,8),g) = (Ry, Sé(y), g + Is(d(y))) = (Ry, (5, 9) - (¢(v), d(y)))
-~ (Rya (S: g) ! w(y))z

i.e. (Rg)a is conjugate to Ry. Since the latter transformation is ergodic, so
is (R4)e- Hence o has dense range in &, as desired.

Now let v be discrete. Observe that v is necessarily finite, since oth-
erwise R is a free (aperiodic) transitive transformation and hence has no
ergodic cocycles. Thus we may assume that there exists m € N such that
(Y,v) = (Z/mZ, Az mz) and Ry = y + 1 for all y € Z/mZ. Now ¢ should
be viewed as a cocycle of a non-free Z-action generated by R. By [Z2] this
cocycle is determined by a group homomorphism from the stability group,
namely pZ C Z to K. Since T' is ergodic, K is an Abelian monothetic
group and T has pure point spectrum. More precisely, we may assume
that

(a} X = {0,1,...
multiplication law

,m— 1} x K is an Abelian monothetic group with

(n,8) 8 (n',8') = (n+n/, 5+ 8 + girrn)imly

for some S € K with {55 | n € Z} dense in K, where -+ stands for addition
mod m and [} for the integer part,

(b) u is Haar measure on X,
(¢) T acts by the formula T'(n, §) = (n,5) s (1,0).

Notice that v is discrete if and only if X is of finite index in C(T) and
m = #(C(T)/K).

Arguing in a similar way, we deduce that a desired T-cocycle o with
dense range in (7 exists if and only if

(i} I is trivial (i.e. E = K x G),

(ii) there is go € & such that the subgroup of K x G generated by (So, 90)
is dense.

We remark that (i} is equivalent to

(i)’ there is go € G such that the gp-rotation T” on (G, Ag) is ergodic
and Sp(T™) N Sp(T”) = {1}.

Notice that T, has pure point spectrum.
(IIT) Now consider the remaining case.
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LeMMA 4.4. Let N1 D Ny D ... be a countable chain of E-normal
subgroups of G such that the quotient short exact sequence 1 — G/N, —
E/N, — K Eoy 1 splits for every n € N. Then Jor N = (., Nn, the
N -quotient sequence

1-G/N—-E/N K —1
also splits.

Proof. Without loss of generality we may assume that N' = {15}
Thus we must prove that (4-1) splits. Denote by gn,; : F/N, — E/N; and
gn + B — E/N, the natural quotient maps, n > . Clearly, g, 10¢, = ¢ for all
n > 1. By hypothesis there are continuous homomorphisims s, : K — E/N,
with pn ¢ 8, = Id. Take a countable dense subset K’ of K. Passing to
a subsequernce if necessary, we may assume that gn; o s,(S) converges in
E/Nyas n — oo for every § € K’ and I € N (use a standard diagonal
process). Since E {and hence every quotient group of ) is compact, there are
continuous homomorphisms s, : K — E/N, such that g, o 5,(5) — ${(5)
asn — oo forevery S € K, € N. Clearly, p;os; = Id. Moreover, g, ;0s;, = 5]
for all n > I. We define a map s’ : K — E by setting g, o §(.5) = s,{5)
for all n € N, § € K. Since B = proj lim, (E/Ny,,¢n,;), it follows that
S is a well defined continuous homomorphism and po §' = Id, ie. (4-1)
splits. m

We continue the proof of Theorem 4.1. Let N be the minimal E-normal
subgroup of G determining the {maximal) splitting quotient-extension of
(4-1). Such a group exists by Lemma 4.3 and the Zorn lemma (indeed,
since (7 is second countable, it is enough to consider only countable chains
of G-subgroups). Take any o satisfying (4-3). As in (II), we perturb o by
adding a function f : X — G such that

(a) feS=ago fae foreach § € K,

(b) the T-cocycle go ay : X — G/N has dense range in G/N, where
o = + f and ¢ stands for the natural projection G — G/N.

We claim that o has dense range in G. Suppose the contrary: there
exists a closed subgroup G ¢ G such that oy is cohomologous fo a cocycle
with dense range in G'. As in (I) we see that G’ is normal in E and the
associated quotient-extension

1—-G/G > EB/G - K—1
splits. We need the following simple lemma.

LEMMA 4.5. Let G be the direct product of two E-normal subgroups G
and Gg. Suppose that the top and bottom lHines of the diagram
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1 G E/Gy K 1
PlT T Ild
1—=G1x G2 E K 1
PZL l ild
1 Gy E/Gy K 1

split, where p; : Gy x Gy — G, is the natural projection, i = 1,2. Then the
middle line also splits.

We now complete the proof of Theorem 4.1. It follows from (b) that
g(G1) = G/N, i.e. G1 and N generate the whole G. Since G/(G1 N N) =
G/Gy x G/N, we deduce from Lemma 4.5 that the sequence

1—-G/(GiNN) = E/(GiNN}—+ K -1

splits. By the choice of N we have G' NN = N, i.e. G' C N. Let ¢’ stand for
the natural projection G — G/G’. By the assumption the T-cocycle ¢' o o
is a coboundary. But on the other hand ¢’ o @y is a quotient cocycle of go oy
and has dense range in G/G'. It follows that G = &', a contradiction, We
leave the case of v discrete to the reader (combine the above argument with
that of (I)).

Thus Theorem 4.1 is proved completely. =

REMARK 4.6. Notice that the cohomology class of a is not uniquely
determined by (4-1). It is interesting to observe that in case (I)—absence of
splitting quotient-extensions for (4-1)-—every measurable solution o of (4-3)
is a T-cocycle with dense range in G.

REMARK 4.7. If G is totally disconnected but E (and hence K) is con-
nected, then (4-1) has no splitting quotient-extensions. Indeed, otherwise
there is a E-normal subgroup ¥ & G such that

1+ G/N—-E/N-K—1

splits. Hence E/N is homeomorphic to the direct product of G/N and K,
a contradiction. We observe, in particular, that

1—=ZnZ —-+T—T—1
satisfies the conditions of the remark.

REMARK 4.8. Suppose that K acts trivially on G, i.e. Ig = Id for each
S € K. Then G is contained in the center of £ and hence each subgroup of
G is E-normal. Let ¢ : K x K — G denote the 2-cocycle as above. Then {oc
is a multiplier (see [Pa/, [Le]) for every character £ € G. It is easy to see that
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(4-1) has no splitting quotient-extensions if and only if £ o ¢ is non-trivial
(i.e. non-2-coboundary) for every character £ € G \ {1z}

REMARK 4.9. Let T' have pure point spectrum and « be an ergedic
G-valued cocycle of T such that L(T, e) = C(T). 1t is well known that then
C(T.) = C(T) ([Ne], [D1]) and T\, has pure point spectrum [GLS]. Thus
we have a short exact sequence of compact Abelian groups

(4-8) 1—=G—=CT,) 5 C(T) — 1.

Hence @ is a trivial C(T)-module. Denote by H2(C(T), &) the set of all
2-cohomology classes of G-valued 2-cocycles of C(T') associated with (4-8)
for all possible choices of ergodic a with L(T,a) = C(T). The following
follows from the argument used in the proof of Theorem 4.1:

(i) if o, a’ are two ergodic T-cocycles which correspond to 2-cocycles
¢,c with [¢] = [¢/] € H2(C(T), @) then the difference o — o' is cohomologous
to a constant,

(i) if v, are two ergodic T-cocycles which correspond to 2-cocycles
e, ¢ with [¢] 5 [¢] in H 2(C(T), @) then o and o are non-cohomologous.

EXAMPLE 4.10. Let Zy stand for the (compact) group of 2-adic integers
and T' € Aut(Zs, ugz,) be the ergodic 2-adic translation. Clearly, C(T) = Zs.
Consider two short exact sequences

1 — Z{3Z — Z/3Z X Ly — Zn — 1,
1 — Zf27 — BJ2Z X Ty — o — 1.

It follows from Theorem 4.1 that for the first one {resp. the second omne)
there is a (resp. there is not any) T-cocycle with dense range in Z/3Z (resp.
Z/2Z) such that (4-2) commutes.

EXAMPLE 4.11. Note that H*(T,T) = 0, so each ergodic circle-valued
cocycle v over an irrational rotation T with L(T", o) = C(T') is cohomologous
toa constant, while H2(T, Z/2Z) = H*(T,Z/2Z) # 0, so there is an ergodic
Z/2Z-valued cocycle over T' which is not cohornclogous to a constant.
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The density property for JB*-triples
by

SEAN DINEEN, MICHAEL MACKEY
and PAULINE MELLON (Dublin)

Abstract. We obtain conditions on a JB™-algebra X so that the canonical embedding
of X into its associated quasi-invertible manifold has dense range. We prove that if a
JB*-triple has this density property then the quasi-invertible manifold is homogeneous
for biholomorphic mappings. Explicit formulae for the bikolomorphic mappings are also
given.

1. Imtroduction. There exist, up to biholomorphic equivalence, pre-
cisely two one-dimensional simply connected symmetric complex manifolds,
and these can be realised as the open unit disc

A={zeC:|d <1}
and the Riemann sphere € := C U {oc}. We have the standard inclusions
(1) A-C—CT

and C is dense in €. Moreover, each biholomorphic map of A extends
to a biholomorphic map of C. In the finite-dimensional situation each n-
dimensional bounded symmetric domain D, determines, and is determined
by, its unigue compact dual D.. The domain Dy, can be realised as the open
unit hall of a norm on C®, and D, which is an n-dimensional compact sym-
metric manifold, can be realised as the quasi-invertible manifold associated
with Dy, (see [8]) and we have the canonical inclusions
(2) Dy — C" — D
with C* dense in D.. Once again, biholomorphic maps of Dy, extend to
biholomorphic maps of D..

In the Banach space setting, Kaup [6] has characterised bounded sym-
metric domains as those complex manifolds which can be realised as the

open unit ball of a JB*-triple. With every JB*-triple X one can associate
a quasi-invertible complex manifold Mx modelled on X and we again have

1991 Mathematics Subject Classification: 17C36, 46G20.

r1a4l



