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An exponential estimate for convolution powers

by
ROGER L. JONES (Chicago, IL)

Abstract. We establish an exponential estimate for the relationship between the
ergodic maximal function and the maximal operator associated with convolution powers
of a probability measure.

1. Introduction. Let 7 : X — X denote a measurable, invertible,
ergodic peint transformation from a probability space (X, X, m) to itself.
For f € L}(X), define

1 n
*(z) = sup ————— 7rz)).
@)= s oy 3 1)
Let i denote a probability measure on Z and define
[s,]
Y s f(rim).

j=—o0

pf(z) =

For n > 1 define
1" f ) = u(e" ) ().
(See [2] for a discussion of these averaging operators, and conditions associ-

ated with a.e. convergence for f € L?, p > 1. Also see [1] where for a large
class of measures, (i, Bellow and Calderdn establish a.e. convergence for all

felLt)
In [2] the following condition was introduced.
DermviTion 1.1. A probability measure y on Z has bounded angular
ratio if |fi(y)| =1 only for v = 1, and
o) =~
lvj=1 1= [E{7)

1991 Mathematics Subject Clessification: Primary 42B25; Secondary 28D05.
Key words and phrases: maximal functions, exponential estimates, convolution powers.
R. Jones is partially supported by NSF' Grant DMS-9531526.

[195]



196 R.L. Jones

The reason for this condition was the following theorem.
THEOREM 1.2 ([2]). Let p have bounded angular ratio.

1. For f € IP, 1 < p < o0, u™f(x) converges a.e.
2. For 1 < p < oo we have

o) flp-

Further, we establish in [2] that if the bounded angular ratio condition
fails, then there are bounded functions f such that the averages u™f di-
verge a.e. Hence, the bounded angular ratio condition is essential to have a
convergence result,

We also established the following theorem, which shows there is a large
class of measures with the bounded angular ratio property. In particular,
the theorem implies any symmetric measure with finite second moment will
satisfy the required property.

HS*-;p " flllp <

THEOREM 1.3. If .

> hu(k) =

k=—oc0

i k2 u(k) < oo

k== —o0n

0 and

then u has bounded angular ratio, and u”f(z) converges a.e. for f € IP,
l<p<oo.

Let 1* () = sup, |u"f(z).

2. The exponential estimate. In this paper we establish the following
result, which shows that for a large class of measures, p, the set where f*
is large, and the set where u* f is large, have substantial intersection. This
is somewhat surprising, since at least for small values of n, 4" f can be very
different from the Cesaro averages of the iterates of r applied to f.

THEOREM 2.1. Assume p has finite second moment and 3" ku(k) = 0.

Then there are constants o: and B (depending only on p) such that for all
y >0 and all A > 0 we have

m{z: f* (@) <y, p* ) > Ay} € ce
for all f € L}M(X).
REMARK 2.2. Let J denote the conjugate function, and let M f denote

the Hardy-Littlewood maximal function. In [3] Hunt showed there exist
positive constants ¢ and C' such that the following relationship holds:

miz € {~m,m): Mf(z) <y, |flz)| > Ay} < Ce™,
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for all y > 0, A > 0 and f € L*(—m,x). Theorem 2.1 shows that there is
a similar relationship between two maximal functions that arise in ergodic
theory. The argument below is similar to the argument given by Hunt.

REMARK 2.3. During the course of the proof we will need the agsumption
of finite second moment and that E(u) = 0, since we will need to apply
a result of Bellow and Calderdn which has been established only in that
setting.

Proof of Theorern 2.1. In the following, o and § will denote positive
constants, but « and § may not always denote the same constants from one
occurrence to the next.

We begin by using the Calderén—Zygmund decomposition to write f as
a sum of two functions with special properties.

LemMa 2.4 (Calderén-Zygmund decomposition). Fiz A >0 and f > 0.
Let B = {z: f*(z) < A}. We can now write f = g+ b, where g and b have
the following properties.

1. The “good” function g satisfies ||g|lee < 2A.
2. The set B can be decomposed into disjoint sets By,n=0,1,...
that for n > 0, the “bad” function b satisfies

(a) b=3"00
Up=a 7 B
(b} For each n, if © € By, we have 3 p_; by (T :c) =0.
(c) For each n, zfas E B, we have 3 _; |bn(T k) < 2.
(d) Tz m(Cr) < &IFIl2-
Proof. Let B = {z : f*(z) < A} be the base for the standard Kakutani
sky-scraper construction. Define B, = {m eB:r*z ¢ B, k=1,...,n, but
™+t e B}, For n 2 1, let Cp = | Jj_; 7" Ba.
We first show that for n > 1 and = € B, we have

, such

1 bn where each by, is supported on a set Cy, of the form

Al .

To see this, note that z € B,, implies R"-lﬁ Sopeg FlrRm) < A Hence
al Z Flr*z) < ,___A < 24,

and since f(z) > 0, the r1ght hand side of the statement follows.
We next show that for x € B, we have

-—va'm)z
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108 R. L. Jones

To see this we use a covering argument. Let © € By, and define g = 7. Since
20 ¢ B, we know there is an integer ro such that Fo_lf;f S0 F(rEmg) > A
(Note that here we only need to look in the positive direction, since 7~ zg &
B, and f*(771z) < A. Also note that all the points zp, Ta,. .., T 02 are
in C, since if not, the set would include a point of B, and we lknow this
cannot happen.) Let lp = 0.

If {;_y and rj_1 have been chosen, let z; = TT-"—H-le_.]_- If this point is
not in the column, we are done. Otherwise, since &; € 'y, we know there
exist non-negative integers [ and r such that

1 T &
— 3>\
r+l+1k§lf(T 25) >

We first note that all the points 7%z; for — < k < r are contained in
the column Gy, since otherwise there would be a point in B with maximal
function greater than A. There may be more than one possible choice for /
and . From the set of possible pairs (I,7), select the pair such that r is as
large as possible, and denote this pair by (I;,7;). Since the z;’s selected by
this process are distinct, and there are only n possible points in the set, the
process terminates.
We now have a finite collection of sets,

8 = {’I"_z-"'fl,‘j, T—1j+]‘mj, Ciey TTjﬂij},
such that the average of f over each of these sets is greater than A, and no
point is in more than two of the sets. (It is to make sure that this bounded
overlap condition holds that we selected r; to be the largest possible r in the
above construction. This ensures that if some point is in three or more of the

sets, then the selection procedure must have been violated.) Consequently,
we have

k1
e DIFICOPD P I EPPITERIE S VL
k=1 i yes; i

We now define g(z) = f(z) for x € B. If ¢ € O for some n, let zo € By
be such that 7%zy = 2 for some 0 < k < n. Define

olo) = = 3" Frta).
k=1 ‘

Hence we have ||g|lcc £ 27, Define b(z) = f(z) — g{x). Then b is sup-
ported in the union of the columns C,,. Let by(z) = b(x)xc, (x). By the
construction, and the above observations, all the desired properties of b fol-
low, with the final property holding because |J, Cy, C {2 : f* > A}, the Gy
are disjoint, and the maximal ergodic theorem gives us m{z : f*(z) > A} <

2 A1l
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REMARK 2.5. In [5] a version of this decomposition is introduced in the
ergodic theory setting. However, there the maximal function considered is
the usual “forward looking” maximal function, hence some of the necessary
estimates are easier. Also see Stein 9] for a discussion in the R™ setting.
In Jones, Kaufman, Rosenblatt and Wierdl [6] and in Jones, Ostrovskii and
Rosenblatt [7] a version of this decomposition on Z is used to prove square
function inequalities.

We now apply the Calderén—Zygmund decomposition to the function f,
but at height 2y. 5 5 B

Let C; = C;UTiC; UT7C;, and let C = U?_:1 C;. Forz e C%and k > 0,
define
)= nf{l > 0:7{x) € Ci},
vk, i, x) = inf{l > v*(k — 1,4,z) +1: 7H(z) € Ci},
)= inf{l > 0: 77 z) € C;},
ve(k,i,2) = inf{l > v*(k — 1,3,2) +1: 77 (z) € C;}.

v*(1,4,
ve (1,4, 2

We have
miz: fz) <y, p*F(=) > My} <miz: f¥(z) <y, piglz) > dy/2}
+m{z: f*(z) <y, p*blz) > Ay/2}.
We need to show that both of these terms can be dominated by ae .

The first term is easy. Since ||g|lcc < 4y, and p* is a contraction on L,
we clearly have

miz: f*(z) <y, p glz) > Iy/2} =0
for A > 8. Hence all we need to do is select a and 8 so that ae™®% > 1.
Then for A < 8 the result is obvious since we are on a probability space. For
A > 8, clearly 0 < ae P,
Thus it remains to work with the second tern:. Note that for « € 5, we
have f*(z) > y, so it will be enough to consider only = € ce.
We first need an estimate of p*b(z). For @ € C°, we have

ﬂ:"(zbi(m))’ < isgp| i Mn(j)bi("'jm)l
i i1 j=--00

p*b(z) = sup

o oo vt (k,i,x)+i vy (ke i,z) i
<Sap(Y| 2 womeal+| S w@ne))
i=1 " k=l i=v*(kix) te=w, (oyiye)

oo v (kim)ti

SZsup):| S u”(l)bi(flw)|
i=1

Mo k=1 l=u* (ki)
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oo val(kd,m)+i

+Zsup§j] S Enr)

=1 " k=l =y (ki)
= Ay (z) + A-(z).

The estimates for A (z) and A_(z) are the same. To see this, we just
replace 7 by ¢ = 7%, Hence we only need to estimate A (z).

For the next step, we will need the following lemma, due to Bellow and
Calderén [1].

LEMMA 2.6 (Bellow-Calderén). If p has bounded engular rotio and
> b oo [KIPu{k) < oo then there exists a constant c,, which depends only

on i, such that ,
- u(@)] < eulyl/lel”

REMARK 2.7. This lemma was the key to the Bellow—Calderdn proof that
u* is a weak type (1,1) operator. The lemma gave them exactly the same
control of the “smoothness” of the convolution powers which is used in the
standard proof that the Hilbert transform is weak type (1,1). Here we use
it because it gives us the same type of “smoothness” that was used by Hunt
in his argument involving the conjugate function.

sup |1" (& —y)

We deduce, using the fact that the average of b on the column C; is

zero, that
oo ¥¥(k,im)+i

Ay(z) < ZSHDZ >

=1 h=1l=p*(k,i,x)

6™ () = 1™ (- (o, )] - ()|

v (ki) i
P D) . bi(r'e)|
i=1 k=1 V*(k : 5‘3) 1:—.1/%:',:3)

v (ki ,x) +1i

| 2 xc,(Tiz)
<4ycuZZu*(k i,1)? <8yeuy ) i TR

32
1= k=1 iml k=1 jmw*(kd,2)

< SvCuZ Z

1=1 j=w* (1,4,m)

g )
=3 X0 (Tﬂm)'

Define the function d(z) by d(z) = inf{l : 7*(z) € C° or 7~'z € C°}. Note
that for x € C;, we have d(z) > i. We can now write

d{r?z)xc, (9 =, d(r? i
A+(I < Syc.u Z Z ) < 81}0’_,, Z (T c);(zc'(’r )
i=1 j=1 j=1

= 8ycu®y (xc) (@),
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where P (xc){(z) = ):;”;1 d(m¥z)xc(m9z)/§2. Using the same estimate for
A_(z), we see that for z € C° we have wb(z) < 8e,yP(xc){z) where

(xo)(z) = Z w
J#0
Write E = {z : $(x¢)(z) > A/(8¢c,)} and define

®(xc)(z) = P+ (xc)(z) +P-

_ xe{)
V@) = B oa(2/mB))
We then have

A
8e,

log(2/m(E))

1A

®(xc)(z) dz

S xg(z)
m(E)log(2/m(E))
< S )Z d(TJm)XC'(TJE) dr
JF#0

< Jd(@)xo () Z

J#0

> - [ 1 1
SNLLH> W(T"Jm;(ﬁ—m)dm

<4\ I (z)dz <4 | 7(z)log? (u“f(:c)) v+ C < B
X X

where in the next to the last step we used the fact that the L' norm of the
maximal function is controlled by the L log" L norm of the function; see [5].

Comnsequently, we see that A < falog(2/m(E)), or (with a different
choice of & and ) that m(E) < ae™®*, as required. m

REMARK 2.8. Letting y = A, we see that
m{f* <A, p*f > X} <o
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Now letting A — oo, we see that m{f* < oo, p*f = oo} = 0. Hence
u*f < co a.e. Applying the Stein-Sawvyer principle, we have a proof that
p* f is weak (1,1). However the proof by Bellow and Calderén [1] is easier.

REMARK 2.9. If 1 has finite support and mean value zero, Reinhold (8]
has shown that u*f(z) < c.f*(«), giving the much stronger relationship
that for large enough A, the sets {f* < y} and {p*f > Ay} are actually
disjoint. However, in general, 4 may not have finite support, and we cannot
apply her result.
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