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FREQUENCY ANALYSIS OF PRECONDITIONED

WAVEFORM RELAXATION ITERATIONS

Abstract. The error analysis of preconditioned waveform relaxation iter-
ations for differential systems is presented. This analysis extends and refines
previous results by Burrage, Jackiewicz, Nørsett and Renaut by incorporat-
ing all terms in the expansion of the error of waveform relaxation iterations
in the Laplace transform domain. Lower bounds for the size of the win-
dow of rapid convergence are also obtained. The theory is illustrated for
waveform relaxation methods applied to differential systems resulting from
semi-discretization of the heat equation in one and two dimensions. This
theory and some heuristic arguments predict that preconditioning is most
effective for the first few iterations.

1. Introduction. Consider the linear system of differential equations

(1.1)

{
u′(t) +Qu(t) = f(t), t ∈ [0, T ],
u(0) = u0,

with a constant matrix Q of dimension N ×N . To solve (1.1) the matrix Q
is split as

(1.2) Q = M +D

and we define iterations of the form
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(1.3)





d

dt
u(k+1)(t) +Mu(k+1)(t) = f(t)−Du(k)(t), t ∈ [0, T ],

u(k+1)(0) = u0,

k = 0, 1, . . . , where u(0) is a given initial guess. These waveform relaxation
iterations were first proposed by Lelarasmee et al. [5] and were extensively
studied in the last few years by Miekkala and Nevanlinna [6], Nevanlinna
[7], Leimkuhler [4], Burrage et al. [2], [3] and others. We refer to the recent
book by Burrage [1] for a good introduction to this topic and for a review
of the current literature in this area.

It is well known that the iterations (1.3) converge superlinearly on any
interval and for any splitting of the matrix Q (see [6]). However, the conver-
gence is often slow for (1.3) to be useful for practical purposes and it is of
interest to accelerate the speed of this convergence. One of the techniques
to accomplish this goal is the exponential preconditioning proposed in [2].
The idea behind this technique is the following. If we split the matrix Q as
in (1.2) and make the transformation

w(t) = etDu(t),

then the equation (1.1) can be rewritten in the form

(1.4)

{
w′(t) +B(t)w(t) = etDf(t), t ∈ [0, T ],
w(0) = u0,

where B(t) = etDMe−tD . Furthermore, the splitting B(t) = M−N(t) leads
to the iterations

(1.5)





d

dt
w(k+1)(t) +Mw(k+1)(t) = N(t)w(k)(t) + etDf(t), t ∈ [0, T ],

w(k+1)(0) = u0,

which may converge faster than the iterations (1.3) if the matrix M is chosen
in a proper way.

Denote the error of w(k) by ε(k). Then subtracting (1.4) from (1.5) we
obtain the error equation

(1.6)





d

dt
ε(k+1)(t) +Mε(k+1)(t) = N(t)ε(k)(t), t ∈ [0, T ],

ε(k+1)(0) = 0,

k = 0, 1, . . . Define the operator

KPu(t) =

t\
0

e(s−t)MN(s) ds

and denote by ̺α(·) the spectral radius in the space of functions with the
weighted norm
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‖y‖α := sup{e−αt|y(t)| : t ∈ [0,∞)} < ∞.

Then

ε(k+1)(t) = KP ε
(k)(t)

and it follows from the results of Miekkala and Nevanlinna [6] that

(1.7) ̺α(KP ) = sup{̺(KP (s)) : Re(s) = α},
where ̺(KP (s)) is the spectral radius of a matrix KP (s) which may be
interpreted as the Laplace transform of the kernel of the operator KP . In
the next section we will use KP (s) and (1.7) to estimate the size of the
window of convergence of the waveform relaxation iterations (1.5).

2. Error analysis in Laplace transform domain. It was demon-
strated in [2] that the matrix N(t) has the expansion

N(t) = M −
∞∑

i=0

ti

i!
∆i, where ∆i =

i∑

j=0

(
i

j

)
Di−jM(−D)j

and the matrices ∆i are related by the recurrence relation

∆i+1 = D∆i −∆iD, i = 0, 1, . . . , ∆0 = M.

The equation (1.6) now takes the form

(2.1)





d

dt
ε(k+1)(t) +Mε(k+1)(t) = −

∞∑

i=1

ti

i!
∆iε

(k)(t), t ∈ [0, T ],

ε(k+1)(0) = 0,

k = 0, 1, . . . , and applying the Laplace transform we get

(2.2) (sI +M)ε̂ (k+1)(s) =

∞∑

i=1

(−1)i+1

i!
∆i

di

dsi
ε̂ (k)(s).

Here, I is the identity matrix of dimension N .

In [2] the relation (2.2) was analyzed by taking into account only the term
corresponding to ∆1 and assuming that ε(0)(t) = tv for some fixed vector
v ∈ R

N . In this paper we will take into account all terms in the expression
on the right hand side of (2.2) and consider a more general initial error of
the form ε(0)(t) = trv. Under these assumptions the equation (2.2) for k = 0
takes the form

ε̂ (1)(s) = KP,r(s)ε̂
(0)(s),

where

(2.3) KP,r(s) =

∞∑

i=1

(i+ r)!

i! r!
s−i(sI +M)−1∆i.
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Taking into account only the first term in (2.3) we obtain the matrix

(2.4) K1
P,r(s) =

r + 1

s
(sI +M)−1∆1,

which was used in [2] for r = 1 as an approximation to KP (s).

We will employ (2.3) to investigate the speed of convergence of the cor-
responding waveform relaxation iterations (1.5). We will illustrate first this
approach for the linear system obtained from semidiscretization of the heat
equation in one space variable. This system takes the form

(2.5)

{
y′(t) +Qy(t) = 0, t > 0,
y(0) = y0,

where y ∈ R
N , and

Q =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



∈ R

N×N .

We assume that N = bn for some positive integers b and n and consider
the splitting (1.2) with the block diagonal matrix M corresponding to the
Gauss–Jacobi method with block size b. It is then possible to obtain closed
form expressions for KP,r(s) given by (2.3). This matrix is given by

KP,r(s) =
1

2
(sI +M)−1

{((
s

s− 1

)r+1

−
(

s

s+ 1

)r+1)
∆1(2.6)

+ 2

((
s

s− 1

)r+1

+

(
s

s+ 1

)r+1

− 2

)
∆2

}

for b ≥ 3 and

KP,r(s) =
1

4
(sI +M)−1

{((
s

s− 2

)r+1

−
(

s

s+ 2

)r+1)
(∆1 + Γ1)(2.7)

+ 2

((
s

s+ 1

)r+1

−
(

s

s− 1

)r+1)
Γ1

+
1

2

((
s

s− 2
)r+1 +

(
s

s+ 2

)r+1

− 2

)
(∆2 + Γ2)

+ 2

(
2−

(
s

s− 1

)r+1

−
(

s

s+ 1

)r+1)
Γ2

}
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for b = 2, where Γ1 and Γ2 are N ×N matrices with

(Γ1)ij =





1 if (i, j) ∈ {(1, 3), (N,N − 2)},
−1 if (i, j) ∈ {(3, 1), (N − 2, N)},
0 otherwise,

(Γ2)ij =
{
1 if (i, j) ∈ {(1, 2), (2, 1), (N − 1, N), (N,N − 1)},
0 otherwise.

To justify these expressions for KP,r(s) observe that

D =




0 D̂
D̂T 0 D̂

. . .
. . .

. . .

D̂T 0 D̂
D̂T 0



∈ R

N×N ,

∆1 =




0 ∆̂1

−∆̂T
1 0 ∆̂1

. . .
. . .

. . .

−∆̂T
1 0 ∆̂1

−∆̂T
1 0



∈ R

N×N ,

where D̂ and ∆̂1 are b× b matrices defined by

(D̂)ij =

{
−1 if (i, j) = (b, 1),
0 otherwise,

(∆̂1)ij =

{−1 if (i, j) = (b− 1, 1),
1 if (i, j) = (b, 2),
0 otherwise.

These expressions for D̂ and ∆̂1 and b ≥ 3 imply that

∆3 = ∆1, ∆i+2 = ∆i, i ≥ 1.

hence,

(sI +M)KP,r(s) =
sr+1

r!

∞∑

i=1

(i+ r)!

i!
s−(i+r+1)∆i

= (−1)r
sr+1

r!

dr

dsr

∞∑

i=1

s−i−1∆i

= (−1)r
sr+1

r!

dr

dsr

( ∞∑

j=1

s−2j∆1 +

∞∑

j=1

s−2j−1∆2

)

= (−1)r
sr+1

r!

dr

dsr

(
1

s2 − 1
∆1 +

1

s(s2 − 1)
∆2

)
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=
1

2
(−1)r

sr+1

2r!

dr

dsr

{(
1

s− 1
− 1

s+ 1

)
∆1

+

(
1

s− 1
+

1

s+ 1
− 2

s

)
∆2

}

=
1

2
sr+1

{(
1

(s− 1)r+1
− 1

(s+ 1)r+1

)
∆1

+

(
1

(s − 1)r+1
+

1

(s+ 1)r+1
− 2

sr+1

)
∆2

}
,

which proves (2.6). If b = 2 then it can be verified that

∆2i−1 = 22i−2(∆1 + Γ1)− Γ1, ∆2i = 22i−2(∆2 + Γ2)− Γ2

for i ≥ 1. Calculations similar to those for b ≥ 3 prove (2.7).
Using heuristic arguments Leimkuhler [4] argued (compare also [2]) that

the preconditioned waveform relaxation iterations (1.5) with initial error of
the form ε(0)(t) = trv are convergent on the window approximately equal

to [0, T̂ ] where T̂ = 1/Re(ŝ) and where ŝ is such that

̺(KP,r(s)) < 1 for Re(s) > 1/Re(ŝ).

Using pseudospectra of waveform relaxation operators Jackiewicz, Owren
and Welfert [3] demonstrated that a more accurate estimate of the window

of convergence is the interval [0, T̂ ], where T̂ = 4/Re(ŝ). We have plotted
in Fig. 1 the graphs of

sup{̺(KP,r(s)) : Re(s) = x}
against x for r = 1 and r = 4 (dashed lines). For comparison we have also
plotted the graphs of

sup{̺(K1
P,r(s)) : Re(s) = x}

for r = 1 and r = 4 (dashed-dotted lines), where K1
P,r(s) is defined by (2.4),

and the graph of

sup{̺(KN (s)) : Re(s) = x}
(solid line), where KN (s) is the Laplace transform of the operator corre-
sponding to the waveform relaxation iterations without preconditioning de-
fined by (1.3). All these graphs correspond to N = 64 and b = 32.

We can see from this figure that using ̺(KP,r(s)) we obtain a different
and more accurate prediction about the size of the window of convergence
of the iterations (1.5) than that obtained by using ̺(K1

P,r(s)) as was done in

[2]. For example we should expect that (1.5) with ε(0)(t) = tv will converge
on the window approximately equal to [0, 2.8] if we use ̺(KP,r(s)) and on
the window approximately equal to [0, 4.4] if we use ̺(K1

P,r(s)). The latter
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estimate is too optimistic and the numerical experiments presented in [2]
confirm that the new estimate is more accurate. Similarly, we can predict
using ̺(KP,r(s)) that (1.5) should converge faster than (1.3) on the window
approximately equal to [0, 1.72]. This corresponds to 4/x where x ≈ 2.3 is
the intersection of the solid and dashed curves in Fig. 1 corresponding to
KN (s) and KP,r(s). Using K1

P,r(s) we get the estimate [0, 2] of this window.
The numerical results given in [2] confirm again that the former estimate is
more accurate.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

r=1 r=4r=1 r=4

Fig. 1. Spectral radii corresponding to the one-dimensional heat equation. Dashed lines:
sup{̺(KP,r(s)) : Re(s) = x}; dashed-dotted lines: sup{̺(K1P,r(s)) : Re(s) = x}; solid
line: sup{̺(KN (s)) : Re(s) = x}.

Since ‖∆i‖ ≤ ∑i

j=0

(
i

j

)
‖D‖i‖M‖ = ‖M‖ · ‖2D‖i, we have

‖KP,k(s)‖ ≤
∞∑

i=1

(i+ k)!

i!k!
|s|−i‖(sI +M)−1‖ · ‖M‖ · ‖2D‖i

= ‖M‖ · ‖(sI +M)−1‖ (k + 1)sk

(s− ‖2D‖)k+1
= O(s−2).

This estimate shows that ε̂ k(s) = O(s−q−2k) if ε̂ (0)(s) = O(s−q). How-
ever, the coefficient M(k) in ‖ε̂ (k)(s)‖ ≤ M(k)|s|−q−2k tends to infinity as
k → ∞. This suggests that for a small but fixed interval [0, T ] the precon-
ditioning is the most effective for the first few iterations. The numerical
experiments presented in Fig. 1 seem to confirm this suggestion.
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3. Spectral radius estimation. To graph sup{̺(K(s)) : Re(s) = x}
as a function of x, where K(s) = KP,r(s) or K(s) = K1

P,r(s) are given
by (2.3) or (2.4), respectively, it is important to know where the function
y 7→ ̺(K(x + iy)) attains its maximum for fixed x. There are impor-
tant examples where this maximum is reached at y = 0 (compare [6]),
but this is not always the case. In what follows we will estimate the
size of the interval where this maximum is attained. This information
is important from practical point of view since to find the maximum of
̺(K(x + iy)) for fixed x we need only search the corresponding compact
interval.

Suppose that

̺(K(x+ iym)) = sup{̺(K(x+ iy)) : y ∈ R}.
Assume first that λ is an eigenvalue of K1

P,r(s) given by (2.4) and that u is
the corresponding eigenvector. Then

2∆1u = λs(sI +M)u

and it follows that

2δ1 = λs(s+m), where δ1 =
u∗∆1u

u∗u
, m =

u∗Mu

u∗u
> 0,

and u∗ is the complex conjugate of the vector u. Let s = x + iy, x > 0.
Then

|λ| < 2|δ1|
|s|2 =

2|δ1|
x2 + y2

and this implies that ̺(K1
P,r(x+ iy)) ≤ ̺(K1

P,r(x)) for

y2 ≥ 2|δ1|
̺(K1

P,r(x))
− x2.

Since ̺(K1
P,r(s̄)) = ̺(K1

P,r(s)) and

|δ1| ≤
{
2 for b = 2, 3,
1 for b ≥ 4,

we obtain

0 ≤ ym ≤
√

a

̺(K1
P,1(x))

− x2,

where

(3.1) a =

{
4 for b = 2, 3,
2 for b ≥ 4.

Assume next that b ≥ 3 and consider the matrix KP,1(s) given by (2.3).
The formula (2.6) yields
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KP,1(s) = (sI +M)−1

(
2s3

(s2 − 1)2
∆1 +

3s2 − 1

(s2 − 1)2
∆2

)
.

Assuming that KP,1(s)u = λu we obtain

λ(s+m) =
2s3

(s2 − 1)2
δ1 +

3s2 − 1

(s2 − 1)2
δ2,

where δ1 and m are defined as before and δ2 is given by

δ2 =
u∗∆2u

u∗u
.

For x > 1 and a ≥ 2|δ1|+ 3|δ2| we can bound |λ| as follows:

|λ| < 2|s|2|δ1|+ 3|s| · |δ2|
|s2 − 1|2 ≤ (2|δ1|+ 3|δ2|)|s|2

|s2 − 1|2

≤ a|s|2
|s− 1|2|s+ 1|2 =

a(x2 + y2)

(x2 − 1)2 + 2(x2 + 1)y2 + y4
.

If we put

η =
a

̺(KP,1(x))
,

then the inequality |λ| ≥ ̺(KP,1(x)) takes the form

y4 + (2x2 + 2− η)y2 + (x2 − 1)2 − ηx2 ≥ 0,

which is equivalent to

y2 ≥
√

4x2 − η + η2/4− x2 − 1 + η/2.

Since a ≥ 2|δ1|+ 3|δ2| and

|δ2| ≤
{
2 for b = 3,
1 for b ≥ 4,

we can conclude that ̺(KP,1(x + iy)) attains its maximum for fixed x > 1
at ym which can be bounded by

0 ≤ ym ≤
√√

4x2 − η + η2/4− x2 − 1 + η/2,

where η is defined above and a can be chosen as

(3.2) a =

{
10 for b = 3,
5 for b ≥ 4.

We have plotted in Fig. 2 the spectral radii ̺(KP,1(x+ iy)) (solid lines)
and ̺(K1

P,1(x+ iy)) (dashed-dotted lines) against y for N = 64, b = 32 and
for fixed x = 2, x = 2.5 and x = 3. We can see that ̺(KP,1(x+ iy)) attains
its maximum for ym 6= 0 and ̺(K1

P,1(x+ iy)) seems to attain its maximum
for ym = 0.
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Fig. 2. Spectral radii ̺(KP,1(x + iy)) (solid lines) and ̺(K1P,1(x + iy)) (dashed-dotted
lines) for the one-dimensional heat equation

4. Abscissa of ω-convergence. Leimkuhler [4] introduced the notion
of abscissa of ω-convergence ξω defined by

ξω = inf{ξ : ̺ξ(K) < ω},
whereK is the waveform relaxation operator. He demonstrated that |Knf |

T̂ω

is approximately bounded by eωn|f |
T̂ω

, where T̂ω = 1/ξω is interpreted as

the size of the window of ω-convergence and | · |
T̂ω

is the uniform norm in the

space of continuous functions defined on [0, T̂ω]. The above estimate is rather

crude and it was demonstrated in [3] that T̂ω = 4/ξω better approximates
the size of the window of ω-convergence than the heuristic estimate proposed
in [4]. (Compare also the discussion in Section 2.) We will use the more

accurate estimate T̂ω = 4/ξω in the remainder of this section.
In the Laplace transform domain the formula for ξω takes the form

ξω = inf {x : sup{̺(K(s)) < ω : Re(s) = x}} .
In this section we will find upper bounds on ξω for K(s) = K1

P,1(s) and
K(s) = KP,1(s) given by (2.4) and (2.3), respectively. We have

̺(K1
P,1(s)) ≤

2|δ1|
x2 + y2

<
2|δ1|
x2

for s = x+ iy. Hence,

ξω ≤
√

a/ω,
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where a is defined by (3.1). This translates into the bound on the window
of ω-convergence of the form

(4.1) T̂ω ≥ 4
√

a/ω.

For block size b ≥ 3 and K(s) = KP,1(s) we obtain

̺(KP,1(s)) ≤
a(x2 + y2)

(x2 − 1)2 + 2(x2 + 1)y2 + y4
,

where a is given by (3.2). This implies

̺(KP,1(s)) ≤
ax2

(x2 − 1)2
and ξω ≤ 1

2
(
√

a/ω +
√

a/ω + 4 ).

Hence,

(4.2) T̂ω ≥ 8
√
ω√

a+
√
a+ 4ω

.

In the case of (2.5) with N = 64 and b = 32 we obtain for ω = 1 the
inequalities

T̂1 ≥ 2.83 using (4.1), and

T̂1 ≥ 1.53 using (4.2).

The first inequality is too optimistic while the second one is in quite a good
agreement with numerical results presented in [2]. We recall that using

Fig. 1 the corresponding estimates were found to be T̂1 ≈ 2.3 and T̂1 ≈ 2.0,
respectively.

5. Semidiscretization of the heat equation in two space vari-

ables. Semidiscretization of the heat equation in two space variables leads
to the linear system of the form (2.5) with

Q =




T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T



∈ R

N2
×N2

,

where I is the identity matrix of dimension N ×N and T is defined by

T =




4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4



∈ R

N×N .
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We consider the splitting of the matrix Q corresponding to the block Gauss–
Jacobi method with the additional requirement that the block size is a mul-
tiple of N . This means that Q = M +D where

M = diag(M̂, . . . , M̂︸ ︷︷ ︸
s times

)

and

M̂ =




T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T



∈ R

Nb×Nb

with bs = N for some integers b and s. Then it is easy to verify that the
corresponding matrix KP,r(s) can again be expressed by (2.6) for b ≥ 3 and
by (2.7) for b = 2, where ∆1, ∆2, Γ1 and Γ2 are defined as in Section 2
but with ones replaced by I’s and with zeros replaced by zero matrices of
dimension N ×N . As a consequence all the results of Sections 2–4 are also
applicable to the waveform relaxation methods approximating the linear
system corresponding to the heat equation in two space variables.

0 1 2 3 4 5 6
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

r=1 r=4r=1 r=4

Fig. 3. Spectral radii corresponding to the two-dimensional heat equation. Dashed lines:
sup{̺(KP,r(s)) : Re(s) = x}; dashed-dotted lines: sup{̺(K1P,r(s)) : Re(s) = x}; solid
line: sup{̺(KN (s)) : Re(s) = x}

We have plotted in Fig. 3 the maxima of the spectral radii ̺(KP,r(s))
and ̺(K1

P,r(s)) for fixed x = Re(s) and r = 1 and r = 4. We have also
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Fig. 4. Spectral radii ̺(KP,1(x + iy)) (solid lines) and ̺(K1P,1(x + iy)) (dashed-dotted
lines) for the two-dimensional heat equation

plotted in Fig. 4 the spectral radii ̺(KP,1(x + iy)) and ̺(K1
P,1(x + iy)) as

functions of y for x = 2, x = 2.5 and x = 3. The graphs in Figs. 3 and 4
correspond to N = 8 (N2 = 64) and b = 4 (Nb = 32). These figures are
analogues of Figs. 1 and 2 corresponding to the one-dimensional case. The
spectral radii in Fig. 3 corresponding to preconditioned waveform relaxation
iterations do not differ much from the corresponding radii in Fig. 1 for the
one-dimensional case. The difference between these radii is somewhat more
pronounced in Figs. 2 and 4 because of the different scale on the vertical
axes. We can see again that the analysis of convergence of preconditioned
waveform relaxation iterations based on KP,r(s) gives more accurate esti-
mates of the window of ω-convergence that the analysis based on K1

P,r(s)
which was employed in [2].

6. Concluding remarks. Error analysis of preconditioned waveform
relaxation iterations for linear systems of differential equations is performed.
This analysis is carried out in the Laplace transform domain and takes into
account all terms in the corresponding error equation. Closed form expres-
sions are obtained for the Laplace transform KP,r(s) of the kernel of the
waveform relaxation operator with initial error of the form e(0)(t) = trv,
where v is an arbitrary vector of appropriate dimension. These expressions
lead to the more accurate estimates of the window of ω-convergence than
those in [2], which were based on the first term only in the expansion for
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KP,r(s). The new estimates are in quite a good agreement with the numer-
ical results for linear systems resulting from semidiscretization of the heat
equation in one and two dimensions.

Figs. 1 and 3 also illustrate that the convergence is slower for greater
p. We conclude that preconditioning is the most effective for the first few
iterations.
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