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GRADIENT METHOD FOR NON-INJECTIVE

OPERATORS IN HILBERT SPACE

WITH APPLICATION TO NEUMANN PROBLEMS

Abstract. The gradient method is developed for non-injective non-linear
operators in Hilbert space that satisfy a translation invariance condition.
The focus is on a class of non-differentiable operators. Linear convergence
in norm is obtained. The method can be applied to quasilinear elliptic
boundary value problems with Neumann boundary conditions.

1. Introduction. The abstract version of the gradient method has
undergone extensive development since it was applied by Kantorovich in
Hilbert space to linear equations via minimizing the quadratic functio-
nal ([6], [7]). Modifications, including the conjugate gradient method,
were soon developed for linear equations and extended to non-linear
equations with uniformly positive derivatives (see e.g. [1], [2], [7] and the
references there). The gradient method also extends to non-differentiable
operators ([8]).

The abstract results give rise to numerical methods for quasilinear elliptic
boundary value problems. Namely, the gradient method reduces the quasi-
linear Dirichlet problem to linear Poisson equations, which can be solved
by any suitable well-known method. The use of finite difference method or
finite element method to these auxiliary equations has been elaborated in
[5] and [4], respectively.

We quote the following theorem which yields the optimal linear conver-
gence of the abstract gradient method:
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Theorem 1 (cf. [8], [9]). Let H be a real Hilbert space and A : H → H
have the following properties:

(i) A is Gateaux differentiable;

(ii) for any u, k,w, h ∈ H the mapping s, t 7→ A′(u + sk + tw)h is

continuous from R
2 to H;

(iii) for any u ∈ H the operator A′(u) is self-adjoint ;

(iv) there are constants M ≥ m > 0 such that for all u, h ∈ H,

m‖h‖2 ≤ 〈A′(u)h, h〉 ≤ M‖h‖2.

Then for any b ∈ H the equation

A(u) = b

has a unique solution u∗ ∈ H and for any u0 ∈ H the sequence

un+1 := un −
2

M +m
(A(un)− b) (n ∈ N)

converges to u∗ according to the linear estimate

‖un − u∗‖ ≤
1

m
‖A(u0)− b‖

(

M −m

M +m

)n

(n ∈ N).

All the versions of the gradient method assume that the non-linear oper-
ator studied is one-to-one; moreover, uniform ellipticity is usually assumed
(as is in the quoted theorem) for the derivative of the operator or its trans-
form in order to achieve linear convergence to the unique solution.

The aim of this paper is to extend the gradient method to a class of
operators that are not one-to-one. We investigate the case when the loss
of injectivity is caused by a kind of translation invariance of the non-linear
operator, and uniform ellipticity is preserved on the orthocomplement of
the corresponding subspace. Using the resulting factor space, first the
straightforward extension of the gradient method is given when the op-
erator is Gateaux differentiable. Then the method is extended to certain
non-differentiable operators by means of a suitable energy space. Linear
convergence is proved to an appropriately determined element of the set of
solutions.

It is shown that the method obtained in Hilbert space can be applied
to quasilinear elliptic boundary value problems with Neumann boundary
conditions. The quasilinear Neumann problem is reduced to auxiliary linear
Poisson problems with Neumann boundary conditions. (Similarly to the
quoted results on the Dirichlet problem, the solution of the auxiliary equa-
tions might be achieved by any suitably chosen well-known method. The
numerical study of such a coupling of methods is out of the scope and length
of this paper.)
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2. The gradient method for translation invariant operators.

The following notion will be fundamental in this paper:

Definition. Let H be a real Hilbert space and H0 ⊂ H a closed sub-
space. A non-linear operator A in H is called translation invariant with

respect to H0 if for any u ∈ D(A) and h ∈ H0 we have u + h ∈ D(A) and
A(u+ h) = A(u).

Remark 2.1. If A is Gateaux differentiable and translation invariant
with respect to H0 then for any u ∈ D(A) we have H0 ⊂ kerA′(u).

First the straightforward construction of the gradient method for
Gateaux differentiable translation invariant operators is given. We con-
sider the equation

(2.1) A(u) = b

in H.

Theorem 2.1. Let H be a real Hilbert space with scalar product 〈·, ·〉 and
corresponding norm ‖ · ‖. Let A : H → H be a non-linear operator which is

translation invariant with respect to some H0 ⊂ H. Assume that A has the

following properties:

(i) A is Gateaux differentiable;
(ii) for any u, k,w, h ∈ H the mapping s, t 7→ A′(u + sk + tw)h is

continuous from R
2 to H;

(iii) for any u ∈ H the operator A′(u) is self-adjoint ;

(iv) there are constants M ≥ m > 0 such that for all u ∈ H and v ∈ H⊥
0 ,

m‖v‖2 ≤ 〈A′(u)v, v〉 ≤ M‖v‖2.

(In contrast , by Remark 2.1, we have 〈A′(u)v, v〉 = 0 for v ∈ H0.) Then the

following assertions hold.

(1) R(A) = A(0) +H⊥
0 .

(2) For any b ∈ R(A) there exists a unique u∗ ∈ H⊥
0 such that for any

h ∈ H0,

(2.2) A(u∗ + h) = b

and thus all solutions of (2.1) are obtained.

(3) For any u0 ∈ H⊥
0 the sequence

(2.3) un+1 = un −
2

M +m
(A(un)− b) (n ∈ N)

converges to u∗ according to the linear estimate

(2.4) ‖un − u∗‖ ≤
1

m
‖A(u0)− b‖

(

M −m

M +m

)n

(n ∈ N).
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P r o o f. Let F = H/H0. For any v ∈ H denote by [v] = v + H0 the
equivalence class of v. For any U ∈ F denote by U⊥ the unique vector
u ∈ U ∩H⊥

0 . Then the scalar product on F is defined by

〈U, V 〉F ≡ 〈U⊥, V⊥〉 (U, V ∈ F).

We introduce the operator A : F → F ,

A(U) = [A(U⊥)].

It is clear that A inherits properties (i)–(iii) of A and the analogue of (iv)
holds on the whole space F , which means that A satisfies the conditions of
Theorem 1 on F . This enables us to prove assertions (1)–(3) of our theorem.

(1) For any u ∈ H, h ∈ H0 we have 〈A(u) − A(0), h〉 = 〈A′(θu)u, h〉 =
〈u,A′(θu)h〉 = 0 (from H0 ⊂ kerA′(θu)), i.e. A(u)−A(0) ∈ H⊥

0 . Thus

R(A) ⊂ A(0) +H⊥
0 .

Now let b ∈ A(0)+H⊥
0 . Theorem 1 on A yields that R(A) = F , hence there

exists U ∈ F such that A(U) = [b], i.e. A(u) = b+ h with suitable u ∈ H,
h ∈ H0. Here both A(u) and b belong to A(0) + H⊥

0 , hence h ∈ H⊥
0 , i.e.

h = 0. Thus b ∈ R(A), i.e.

A(0) +H⊥
0 ⊂ R(A).

(2) Let b ∈ R(A). By Theorem 1(1) on A the solution U∗ ∈ F of
the equation A(U) = [b] is unique. Let u∗ = (U∗)⊥. Then the following
assertions are equivalent: A(u) = b ⇔ A([u]) = [b] ⇔ [u] = [u∗] ⇔ u =
u∗ + h with suitable h ∈ H0.

(3) Let b ∈ R(A), B = [b], u0 ∈ H⊥
0 , U0 = [u0],

(2.5) Un+1 = Un −
2

M +m
(A(Un)−B) (n ∈ N).

By Theorem 1 we have

(2.6) ‖Un − U∗‖F ≤
1

m
‖A(U0)−B‖F

(

M −m

M +m

)n

(n ∈ N).

It is easy to check by induction that the sequence (2.3) satisfies

un = (Un)⊥.

Hence ‖Un−U∗‖F = ‖un−u∗‖ and ‖A(U0)−B‖F = ‖A(u0)− b‖, i.e. (2.4)
and (2.6) coincide.

(The proof might also have been done by transforming A to be invariant
on H⊥

0 , which is clearly the same idea in a different setting.)

Remark 2.2. If A(0) = 0 then A(u) = b has a solution if and only if
〈b, v〉 = 0 (v ∈ H0).



Gradient method for non-injective operators 337

Now the gradient method obtained is extended to a class of non-differ-
entiable operators. This requires a notion of energy space for semidefinite
operators.

Definition. Let H be a real Hilbert space with scalar product 〈·, ·〉,
D ⊂ H a dense subspace, and B : D → H a symmetric, positive-semidefinite
linear operator whose kernel is closed in H. For any u ∈ H we use the
notation

u = u0 + u⊥ (u0 ∈ kerB, u⊥ ∈ (kerB)⊥).

Then the energy space of B is the completion of D under the scalar product

(2.7) 〈u, v〉B ≡ 〈Bu, v〉 + 〈u0, v0〉 (u, v ∈ D)

and is denoted by HB.

Remark 2.3. Let u ∈ D. Then u ⊥ kerB in HB if and only if u ⊥ kerB
in H. Hence D ∩ (kerB)⊥ is the same in HB as in H.

P r o o f. For all u ∈ D, v ∈ kerB we have 〈u⊥, v〉 = 0 and v = v0. Hence
〈u, v〉B = 〈u,Bv〉+ 〈u0, v〉 = 〈u, v〉.

Theorem 2.2. Let H be a real Hilbert space with scalar product 〈·, ·〉,
D ⊂ H a dense subspace, T : D → H a non-linear operator which is trans-

lation invariant with respect to some H0 ⊂ H and satisfies T (0) = 0. Let

B : D → H be a symmetric, positive-semidefinite linear operator with the

following properties:

(i) R(B) ⊃ R(T );

(ii) kerB = H0;

(iii) there exists a constant p> 0 such that 〈Bu, u〉 ≥ p‖u‖2 (u∈D∩H⊥
0 );

(iv) there exists a non-linear operator A : HB → HB that satisfies con-

ditions (i)–(iv) of Theorem 2.1 on HB;

(v) BA|D = T .

Consider the equation

(2.8) T (u) = g

in H, where the right side g ∈ H satisfies

(2.9) 〈g, v〉 = 0 (v ∈ H0).

Then the following assertions hold :

(1) There exists a unique u∗ ∈ HB such that u∗ ⊥ H0 in HB and the set

of generalized solutions of (2.8) is {u∗ + h : h ∈ H0}, i.e. for any h ∈ H0,

(2.10) 〈A(u∗ + h), v〉B = 〈g, v〉 (v ∈ HB).

If g ∈ R(T ) then (2.10) is equivalent to
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(2.11) T (u∗ + h) = g.

(If condition (2.9) fails to hold then (2.8) has no generalized solution.)

(2) Let u0 ∈ D ∩H⊥
0 and , for all n ∈ N,

(2.12) un+1 = un −
2

M +m
zn where Bzn = T (un)− g, zn ∈ D ∩H⊥

0 .

Then the sequence (un) is uniquely defined and converges to u∗ according to

the linear estimate

(2.13) ‖un − u∗‖B ≤
1

mp1/2
‖T (u0)− g‖

(

M −m

M +m

)n

(n ∈ N).

The proof is preceded by auxiliary lemmas under the hypotheses of the
theorem. All the time D ∩H⊥

0 is the same in HB as in H (by Remark 2.3).

Lemma 2.1. We have

(2.14) A|D = (B|D∩H⊥

0

)−1T.

P r o o f. kerB = H0 implies that B|D∩H⊥

0

is injective and R(B) =

R(B|D∩H⊥

0

). Hence (B|D∩H⊥

0

)−1 can be applied to BA|D = T (condition

(v) of Theorem 2.2) to obtain (2.14).

Lemma 2.2. R(B) ⊂ H⊥
0 in H.

P r o o f. Let u ∈ D, h ∈ H0. Then 〈Bu, h〉 = 〈u,Bh〉 = 0.

Lemma 2.3. R(A|D) ⊂ D ∩H⊥
0 .

P r o o f. Assumption (v) of Theorem 2.2 includes R(A|D) ⊂ D(B) = D.
Further, T (0) = 0 implies A(0) = 0, thus assertion (1) of Theorem 2.1 yields
that R(A) = H⊥

0 .

Lemma 2.4. For any u, v ∈ D,

〈T (u), v〉 = 〈A(u), v〉B .

P r o o f. Let u, v ∈ D. Lemma 2.3 yields A(u)0 = 0, thus 〈A(u), v〉B =
〈BA(u), v〉 = 〈T (u), v〉.

Lemma 2.5. For any w ∈ D ∩H⊥
0 ,

(2.15) ‖w‖B ≤ p−1/2‖Bw‖.

P r o o f. Let w ∈ D ∩H⊥
0 . Then

(2.16) ‖w‖2B = 〈Bw,w〉 ≥ p‖w‖2

by assumption (iii), hence
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‖w‖2B = 〈Bw,w〉 ≤ ‖Bw‖ · ‖w‖ ≤ p−1/2‖Bw‖ · ‖w‖B ,

which implies (2.15).

Proof of Theorem 2.2. Let b = (B|D∩H⊥

0

)−1g. Then b ∈ D ∩H⊥
0 implies

(2.17) 〈b, v〉B = 〈Bb, v〉+ 〈b0, v0〉 = 〈Bb, v〉 = 〈g, v〉 (v ∈ D).

Hence 〈A(u), v〉B = 〈g, v〉 (v ∈ HB) is equivalent to A(u) = b in HB since
D is dense in HB.

We are going to apply Theorem 2.1 to the equation

A(u) = b

in HB. This can be done since, due to Lemma 2.1, A inherits translation
invariance from T and, by assumption (iv), A satisfies the other condi-
tions of Theorem 2.1 in HB. The assertions of Theorem 2.2 will now be
verified.

(1) Theorem 2.1 yields that R(A) = H⊥
0 in HB, thus b ∈ R(A). Hence

(2.2) holds, which is equivalent to (2.10).

Now let g ∈ R(T ). If z ∈ D such that T (z) = g, z = z⊥ + z0 (z⊥ ∈ H⊥
0 ,

z0 ∈ H0) and h ∈ H0 is arbitrary, then by Lemma 2.4 and translation
invariance we have

〈g, v〉 = 〈T (z), v〉 = 〈A(z⊥ + z0), v〉B = 〈A(z⊥ + h), v〉B

for all v ∈ D, hence for all v ∈ HB by density. Thus the classical solution
is a generalized solution; further, the uniqueness of u∗ in H⊥

0 means that
z⊥ = u∗ corresponding to g, i.e. all generalized solutions are classical
solutions.

(Due to Remark 2.2, (2.17) and density of D in HB, a generalized so-
lution exists if and only if 〈b, v〉B = 〈g, v〉 = 0 (v ∈ D). Hence (2.9) is
necessary for the existence.)

(2) Let u0 ∈ D ∩H⊥
0 and, for all n ∈ N,

(2.18) un+1 = un −
2

M +m
(A(un)− b) (n ∈ N).

Then, by induction, un ∈ D∩H⊥
0 (n ∈ N). Namely, if un ∈ D∩H⊥

0 for some
n ∈ N then A(un) ∈ D ∩ H⊥

0 (Lemma 2.3) and b ∈ D ∩ H⊥
0 by definition,

hence un+1 ∈ D ∩H⊥
0 .

Consequently, Lemma 2.1 yields that for all n ∈ N,

un+1 = un −
2

M +m
(B|D∩H⊥

0

)−1(T (un)− g),

i.e. (2.12) and (2.18) coincide.
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Finally, Theorem 2.1 yields for (2.18) the estimate

(2.19) ‖un − u∗‖B ≤
1

m
‖A(u0)− b‖B

(

M −m

M +m

)n

.

By Lemma 2.5, ‖A(u0) − b‖B ≤ p−1/2‖BA(u0)− Bb‖ = p−1/2‖T (u0)− g‖,
hence (2.13) is proved.

Remark 2.4. Inequality (2.16) yields

‖un − u∗‖ ≤
1

mp
‖T (u0)− g‖

(

M −m

M +m

)n

,

i.e. the sequence (un) converges to u∗ in the original norm of H as well.

Remark 2.5. If assumption (iii) of Theorem 2.2 is omitted, then the
linear convergence obtained in (2.19) is preserved in the norm of HB, but
(2.19) cannot be transformed to (2.13), and moreover, convergence in the
original norm is lost.

3. Quasilinear elliptic problems with Neumann boundary con-

ditions. The following boundary value problem is considered on a bounded
domain Ω ⊂ R

N :

(3.1) T (u) ≡ −div(f(x,∇u)∇u) = g(x),
∂u

∂ν

∣

∣

∣

∣

∂Ω

= 0,

satisfying the conditions

(C1) ∂Ω ∈ C2,γ with some 0 < γ < 1.

(C2) f ∈ C1,γ(Ω×R
N ,R+) and g ∈ C0,γ(Ω) are real scalar-valued func-

tions.

(C3) Let Φ : Ω × R
N → R

N be defined by Φ(x, p) = f(x, p)p. Then
there exist constants 0 < m ≤ M such that for any (x, p) ∈ Ω×R

N

the matrix ∂Φ
∂p (x, p) is symmetric and has eigenvalues between m

and M .

Remark 3.1. As a special case, condition (C3) is satisfied if there exists
a function b ∈ C1,γ(R+) such that f(x, p) = b(|p|2), i.e. we have

T (u) ≡ −div(b(|∇u|2)∇u)

where 0 < m ≤ b(y) ≤ m′ and 0 ≤ yb(y) ≤ µ hold with suitable constants
m′ ≥ m > 0 and µ > 0. This type of operator arises e.g. in plasticity theory
or in the study of magnetic state.

The domain of T is defined as

(3.2) D(T ) ≡ D =

{

u ∈ C2,γ(Ω) :
∂u

∂ν

∣

∣

∣

∣

∂Ω

= 0

}

.
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We introduce the real Hilbert space H = L2(Ω) with scalar product
〈u, v〉 ≡

T
Ω
uv dx, and further, the real Sobolev space H1(Ω) with scalar

product

(3.3) 〈u, v〉m ≡
\
Ω

∇u · ∇v dx+
1

|Ω|2

( \
Ω

u dx
)( \

Ω

v dx
)

(where |Ω| stands for the Lebesgue measure of Ω), i.e. the mean values of
u and v are used instead of the usual scalar product

〈u, v〉1 ≡
\
Ω

∇u · ∇v dx+
\
Ω

uv dx.

Remark 3.2. The norms ‖ ‖m and ‖ ‖1 (corresponding to the above
scalar products) are equivalent. Namely, for any u ∈ H1(Ω) the Poincaré
inequality ([10]) \

Ω

u2 dx ≤ βΩ

[ \
Ω

|∇u|2 dx+
( \

Ω

u dx
)2]

(with suitable constant βΩ > 0) implies

(3.4)
\
Ω

u2 dx ≤ KΩ‖u‖
2
m

with KΩ = βΩ max{1, |Ω|2}, hence

(3.5) ‖u‖21 ≤ c2Ω‖u‖
2
m

with cΩ = (1+KΩ)
1/2, depending only on Ω. The converse is obvious from

the Cauchy–Schwarz inequality.

A weak solution of (3.1) is defined in the usual way as a function
u∗ ∈ H1(Ω) satisfying

(3.6)
\
Ω

f(x,∇u∗)∇u∗ · ∇v dx =
\
Ω

gv dx (v ∈ H1(Ω)).

Remark 3.3. Let u ∈ D. Then u is a weak solution if and only if it is a
classical solution of (3.1). This follows from (3.1) by applying the divergence
theorem: for any v ∈ C1(Ω),\

Ω

T (u)v dx =
\
Ω

f(x,∇u)∇u · ∇v dx−
\

∂Ω

f(x,∇u)
∂u

∂ν
v dσ.

We define

(3.7) H0 = {u ∈ L2(Ω) : u(x) ≡ const on Ω}.
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Remark 3.4. (a) We have, both in L2(Ω) and in H1(Ω),

u ∈ H⊥
0 ⇔

\
Ω

u dx = 0.

(b) If u ∈ H1(Ω) and u ∈ H⊥
0 then ‖u‖2m =

T
Ω
|∇u|2 dx.

Lemma 3.1. The formula

(3.8) 〈A(u), v〉m =
\
Ω

f(x,∇u)∇u · ∇v dx (v ∈ H1(Ω))

defines an operator A : H1(Ω) → H1(Ω) which satisfies conditions (i)–(iv)
of Theorem 2.1.

P r o o f. Assumption (C3) implies that for all i, j = 1, . . . , N and (x, p) ∈
Ω × R

N ,
∣

∣

∣

∣

∂Φi

∂pj
(x, p)

∣

∣

∣

∣

≤ M.

Hence Lagrange’s inequality yields that for all (x, p) ∈ Ω × R
N we have

|Φ(x, p)| ≤ |Φ(x, 0)| +MN1/2|p|.

Now let u, v ∈ H1(Ω). Then
∣

∣

∣

\
Ω

f(x,∇u)∇u · ∇v dx
∣

∣

∣

=
∣

∣

∣

\
Ω

Φ(x,∇u)∇v dx
∣

∣

∣
≤
\
Ω

(|Φ(x, 0)| +MN1/2|∇u|)|∇v| dx

≤ (‖Φ(x, 0)‖∞|Ω|1/2 +MN1/2‖∇u‖L2(Ω))‖∇v‖L2(Ω),

hence for all fixed u ∈ H1(Ω) Riesz’s theorem yields the existence of A(u)
∈ H1(Ω) such that (3.8) holds. Now we prove that the conditions (i)–(iv)
of Theorem 2.1 are satisfied for A in H1(Ω).

(i) For any u ∈ H1(Ω) let S(u) ∈ B(H1(Ω)) be the bounded linear
operator defined by

〈S(u)h, v〉m ≡
\
Ω

∂Φ

∂p
(x,∇u)∇h · ∇v dx (h, v ∈ H1(Ω)).

The existence of S(u) is provided by Riesz’s theorem, now using the estimate
M‖∇h‖L2(Ω)‖∇v‖L2(Ω) for the right side integral. We will prove that

A′(u) = S(u) (u ∈ H1(Ω))

in the Gateaux sense. Let u, h ∈ H1(Ω) and E := {v ∈ H1(Ω) : ‖v‖m = 1}.
Then
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Ku,h(t) ≡
1

t
‖A(u+ th)−A(u)− tS(u)h‖m

=
1

t
sup
v∈E

〈A(u+ th)−A(u)− tS(u)h, v〉m

=
1

t
sup
v∈E

\
Ω

[

Φ(x,∇u+ t∇h)− Φ(x,∇u)− t
∂Φ

∂p
(x,∇u)∇h

]

· ∇v dx

= sup
v∈E

\
Ω

[

∂Φ

∂p
(x,∇u+ tθ(x, t)∇h)−

∂Φ

∂p
(x,∇u)

]

∇h · ∇v dx

= sup
v∈E

∥

∥

∥

∥

(

∂Φ

∂p
(x,∇u+ tθ(x, t)∇h)

−
∂Φ

∂p
(x,∇u)

)

∇h

∥

∥

∥

∥

L2(Ω)

‖∇v‖L2(Ω).

Here ‖∇v‖L2(Ω) ≤ ‖v‖m ≤ 1. Further, |tθ(x, t)∇h(x)| ≤ |t∇h(x)| → 0

(as t → 0) almost everywhere on Ω, hence the continuity of ∂Φ
∂p :

Ω × R
N → R

N×N implies that the function in the first L2(Ω)-norm term
converges a.e. to 0 as t → 0. Since the integrand is majorized by (2M |∇h|)2

(which belongs to L1(Ω)), Lebesgue’s theorem yields that the resulting ex-
pression tends to 0 as t → 0, thus

lim
t→0

Ku,h(t) = 0.

(ii) We can prove similarly to (i) that for fixed functions u, k,w, h ∈
H1(Ω) the mapping s, t 7→ A′(u + sk + tw)h is continuous from R

2 to
H1(Ω). Namely,

ωu,k,w,h(s, t) := ‖A′(u+ sk + tw)h −A′(u)h‖m

= sup
v∈E

〈A′(u+ sk + tw)h−A′(u)h, v〉m

= sup
v∈E

\
Ω

[

∂Φ

∂p
(x,∇u+ s∇k+ t∇w)−

∂Φ

∂p
(x,∇u)

]

∇h · ∇v dx.

Using the continuity of the function ∂Φ
∂p and Lebesgue’s theorem, we conclude

just as above that

lim
s,t→0

ωu,k,w,h(s, t) = 0.

(iii) It follows immediately from the assumed symmetry of the matrix
∂Φ
∂p

that A′(u) is self-adjoint.

(iv) For any u, v ∈ H1(Ω),

〈A′(u), v, v〉m =
\
Ω

∂Φ

∂p
(x,∇u)∇v · ∇v dx.
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Hence from assumption (C3) we have, for any u ∈ H1(Ω), v ∈ H⊥
0 ,

m‖v‖2m = m‖∇v‖2L2(Ω) ≤ 〈A′(u)v, v〉m ≤ M‖∇v‖2L2(Ω) = M‖v‖2m

(using Remark 3.4(b)).

Corollary 3.1. R(A) ⊂ H⊥
0 .

This follows from Theorem 2.1 since A(0) = 0.
Now we are in a position to apply the gradient method to problem (3.1).

Theorem 3.1. Let the conditions (C1)–(C3) be satisfied and assume thatT
Ω
g dx = 0. Then:

(1) Problem (3.1) has a unique weak solution u∗ ∈ H1(Ω) such thatT
Ω
u∗ dx = 0. The set of solutions is {u∗ + c : c ∈ R}. (If assumptionT

Ω
g dx = 0 fails then there exists no weak solution.)
(2) Let u0 ∈ D,

T
Ω
u0 dx = 0. For any n ∈ N let

(3.9) un+1 = un − 2
M+mzn, where zn ∈ C2,γ(Ω) is the (unique) solution

of equation −∆zn = T (un)− g, ∂zn
∂ν

∣

∣

∂Ω
= 0,

T
Ω
zn dx = 0.

Then (un) converges to u∗ according to the linear estimate

(3.10) ‖∇un −∇u∗‖L2(Ω)

≤
1

mp1/2
‖T (u0)− g‖L2(Ω)

(

M −m

M +m

)n

(n ∈ N)

(where p is the smallest positive eigenvalue of −∆ on D).

Remark 3.5. In the usualH1(Ω) norm we have (from (3.5)) the estimate

‖un − u∗‖1 ≤
cΩ

mp1/2
‖T (u0)− g‖L2(Ω)

(

M −m

M +m

)n

(n ∈ N),

since for un − u∗ ∈ H⊥
0 the left side of (3.10) equals ‖un − u∗‖m.

P r o o f (of Theorem 3.1). We will apply Theorem 2.2 in H = L2(Ω).
The subspace D from (3.2) is dense in L2(Ω) and T is translation invariant
with respect to H0 (cf. (3.7)). Let the operator B be defined in H by

B ≡ −∆ on D(B) ≡ D.

Then 〈Bu, v〉 =
T
Ω
∇u ·∇v dx (u, v ∈ D), hence B is symmetric and positive

semidefinite. Further, kerB = H0 since ∆u = 0 and ∂u
∂ν

∣

∣

∂Ω
= 0 imply that

u is constant. To construct HB , we note that for any u ∈ D the function u0

introduced in (2.7) is given by

u0 =
1

|Ω|

\
Ω

u dx.

Hence we have

〈u, v〉B = 〈u, v〉m (u, v ∈ D).
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SinceD is dense inH1(Ω), this yields that HB = H1(Ω) with scalar product
(3.3). It remains to check conditions (i)–(v) of Theorem 2.2 for B.

(i) R(T ) ⊂ C0,γ(Ω) since condition (C2) implies that for any u ∈
C2,γ(Ω) we have T (u) ∈ C0,γ(Ω). Further, R(B) = C0,γ(Ω) since the
Schauder estimate yields that for any g ∈ C0,γ(Ω) the weak solutions of
−∆u = g, ∂u

∂ν

∣

∣

∂Ω
= 0 belong to C2,γ(Ω) (cf. [3]).

(ii) We have seen at the beginning of the proof that kerB = H0.

(iii) For any u ∈ D ∩H⊥
0 , using Remark 3.4(b) and (3.4), we have

〈Bu, u〉 =
\
Ω

|∇u|2 = ‖u‖2m ≥ p‖u‖2L2(Ω)

with p = 1/KΩ . (The p is the smallest positive eigenvalue of −∆ on D.)

(iv) The operator A, introduced in Lemma 3.1, satisfies the conditions
of Theorem 2.1 in HB = H1(Ω) and H0 defined in (3.7).

(v) Let u, v ∈ D. Then

〈T (u), v〉 =
\
Ω

f(x,∇u)∇u · ∇v dx = 〈A(u), v〉m = 〈A(u), v〉B .

Corollary 3.1 implies 〈A(u), v〉B = 〈BA(u), v〉 (since A(u)0 = 0), which
in turn implies T (u) = BA(u) since D is dense in H1(Ω).

Consequently, we can apply Theorem 2.2 to problem (3.1). Here (2.10)
coincides with (3.6), hence assertion (1) of our theorem is proved. Further,
(2.12) coincides with (3.9) since

D ∩H⊥
0 =

{

u ∈ C2,γ(Ω) :
∂u

∂ν

∣

∣

∣

∣

∂Ω

= 0,
\
Ω

u dx = 0

}

in H1(Ω). Hence assertion (2) of Theorem 2.2 yields

‖un − u∗‖m ≤
1

mp1/2
‖T (u0)− g‖L2(Ω)

(

M −m

M +m

)n

(n ∈ N).

(Here p is the lower bound of B on H⊥
0 which, as mentioned in (iii), equals

the smallest positive eigenvalue of B on D.) By Remark 3.4(b), this is just
the desired estimate (3.10).

Remark 3.6. If ∂Ω fails to have the smoothness C2,γ in (C1) then we
can introduce

D ≡

{

u ∈ H2(Ω) :
∂u

∂ν

∣

∣

∣

∣

∂Ω

= 0 in trace sense

}

as the domain of T . Then in (C2) it is enough to assume g ∈ L2(Ω) and
f ∈ C1(Ω × R

N) with the extra condition
∣

∣

∂f
∂xi

(x, p)
∣

∣ ≤ const · |p| to ensure

that T maps into L2(Ω). In this setting Theorem 3.1 can be proved in the
same way as above.
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Remark 3.7. From the point of view of numerical realization, the essence
of the algorithm obtained is that the original non-linear problem (3.1) is
reduced to a sequence of auxiliary linear Poisson equations. This kind of
reduction is analogous to the case of Dirichlet problems, mentioned in the
introduction. The auxiliary equations can be solved by any suitable well-
known method, e.g. Fourier series or (as for the Dirichlet problem in [5]
and [4], resp.) finite difference method or finite element method.
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[5] H. Gajewsk i, K. Gr öger and K. Zachar ias, Nichtlineare Operatorgleichungen
und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.

[6] L. V. Kantorov ich, On an effective method of solving extremal problems for
quadratic functionals, Dokl. Akad. Nauk SSSR 48 (1945), 455–460.

[7] L. V. Kantorov ich and G. P. Aki lov, Functional Analysis, Pergamon Press,
1982.
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