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CHARACTERIZATIONS OF POWER DISTRIBUTIONS VIA

MOMENTS OF ORDER STATISTICS

AND RECORD VALUES

Abstract. Power distributions can be characterized by equalities involv-
ing three moments of order statistics. Similar equalities involving three
moments of k-record values can also be used for such a characterization.
The case of samples with random sizes is also considered.

1. Introduction. Too and Lin [8] have given a characterization of the
uniform distribution by an equality involving only two moments of order
statistics. We extend that result to power distributions. Moreover, we give
a characterization of power distributions in terms of moments of k-record
values. In Sections 4 and 5 we treat the characterization problem when
sample sizes are random (cf. [1], [6], [9]).

2. A characterization of power distributions. Let Xk:n be the
kth smallest order statistic of a random sample (X1, . . . ,Xn) from a dis-
tribution F . Let m be a negative integer. We start with the problem of
characterizing the power distribution function F defined as follows (cf. [1]):

(2.1) F (x) = 1− (1 +mx)−1/m, x ∈ (0,−1/m).

Theorem 1. With the above notation suppose that EX2
k:n < ∞ for

some pair (k, n). Then the equality

(2.2) EX2
k:n −

2

m

[

n[k]

(n−m)[k]
EXk:n−m − EXk:n

]

+
1

m2

[

n[k]

(n− 2m)[k]
−

2n[k]

(n−m)[k]
+ 1

]

= 0,

where n[k] = n(n− 1) . . . (n− k + 1), holds iff F is given by (2.1).
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P r o o f. Let F−1(t) = inf{x : F (x) ≥ t, t ∈ (0, 1)}. Taking into account
that

(2.3) EXl
k:n =

n!

(k − 1)!(n − k)!

1\
0

(F−1(t))ltk−1(1− t)n−kdt, l ≥ 1,

we see that E|Xk:n| < ∞, and E|Xk:n−m| < ∞. Furthermore, when F is
given by (2.1), we find that

EXk:s =
k

m

(

s

k

)

[B(k, s−m− k + 1)(2.4)

−B(k, n− k + 1)], n ≤ s ≤ n−m.

and

EX2
k:n =

k

m2

(

n

k

)

[B(k, n − k − 2m+ 1)− 2B(k, n − k −m+ 1)(2.5)

+B(k, n − k + 1)],

where B(a, b) is the Beta function, and so (2.2) holds true.
Conversely, assume that (2.2) holds. Applying (2.3) we see that (2.2)

can be written as
1\
0

(

F−1(t)−
(1− t)−m − 1

m

)2

tk−1(1− t)n−k dt = 0,

which implies that F (x) is given by (2.1).

When m = −1 Theorem 1 reduces to the following characterization of
the uniform distribution.

Corollary 1 (cf. [8]). Let EX2
k:n < ∞ for some pair (k, n). Then

(2.2′) EX2
k:n −

2k

n+ 1
EXk+1:n+1 +

k(k + 1)

(n+ 1)(n + 2)
= 0

iff F (x) = x on (0, 1).

In proving (2.2′) we use the equality

(n− k)EXk:n + kEXk+1:n = nEXk:n−1

with k = 1 (cf. [2]).
Using (2.4) and (2.5) we obtain the following characterizing conditions.

Theorem 1′. Under the assumptions of Theorem 1 the distribution

function F is given by (2.1) iff

EXk:s =
1

m

[

s[k]

(s−m)[k]
− 1

]

, s = n, n−m,

EX2
k:n =

1

m2

[

n[k]

(n− 2m)[k]
− 2

n[k]

(n−m)[k]
+ 1

]

.
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The same results can be derived for the distribution

(2.6) F (x) = 1− (1 +mx)−1/m, x > 0,

where m is a positive integer (cf. [1]). In this case (2.2) holds with n−2m−
k > 0.

3. Characterizations in terms of moments of k-record values.

Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with a common
distribution function F . For a fixed integer k ≥ 1 we define (cf. [3]) the
sequence of k-record values as follows:

Y (k)
n = XLk(n):Lk(n)+k−1, n ∈ N,

where the sequence {Lk(n), n ≥ 1} of k-record times is given by Lk(1) = 1,
Lk(n+ 1) = min{j : j > Lk(n), Xj:j+k−1 > XLk(n):Lk(n)+k−1}, n ∈ N.

A characterization of F in (2.1) is contained in the following theorem.

Theorem 2. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables

with a common distribution function F such that E|min(X1, . . . ,Xk)|
2p < ∞

for a fixed k ≥ 1 and some p > 1. Then F is given by (2.1) iff

(3.1) E(Y (k)
n )2 −

2

m

[(

k

k −m

)n

EY (k−m)
n − EY (k)

n

]

+
1

m2

(

1− 2

(

k

k −m

)n

+

(

k

k − 2m

)n)

= 0

for n = 1, 2, . . .

P r o o f. Suppose that F is given by (2.1). Then we have

EY (k)
n =

kn

(n− 1)!

1\
0

F−1(t)[− log(1− t)]n−1(1− t)k−1 dt(3.2)

=
1

m

[(

k

k −m

)m

− 1

]

and

(3.3) E(Y (k)
n )2 =

kn

(n− 1)!

1\
0

(F−1(t))2[− log(1− t)]n−1(1− t)k−1 dt

=
kn

(n− 1)!

1\
0

[(1 − t)−m − 1]2[− log(1− t)]n−1(1− t)k−1 dt

=
kn

(n− 1)!m2

[

Γ (n)

(k − 2m)n
−

2Γ (n)

(k −m)n
+

1

kn
Γ (n)

]

=
1

m2

[(

k

k − 2m

)n

− 2

(

k

k −m

)n

+ 1

]

,
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(3.4)

(

k

k −m

)n

EY (k−m)
n =

kn

m

(

1

(k − 2m)n
−

1

(k −m)n

)

,

which establishes (3.1).

Conversely, assuming that (3.1) is satisfied we see that

1\
0

[

F−1(t)−
(1− t)−m − 1

m

]2

[− log(1− t)]n−1(1− t)k−1 dt = 0.

Since the sequence {(− log(1− t))n, n ≥ 1}, is complete in L(0, 1) (cf. [7])
we conclude that F (x) is of the form (2.1).

Theorem 2′. Under the assumptions of Theorem 2 the distribution

function F (x) is given by (2.1) for k > 2m iff the following relations hold :

EY (s)
n =

1

m

[(

s

s−m

)n

− 1

]

, s = k, k −m,

E(Y (k)
n )2 =

1

m2

[(

k

k − 2m

)n

− 2

(

k

k −m

)n

+ 1

]

for n = 1, 2, . . .

Putting m = −1 we obtain the characterization results given in [6]. For
n = 1, m = −1 we obtain the result of Too and Lin [8].

Similar considerations lead to the analogous characterizations for the
distribution (2.6). Namely, we have the following results.

Theorem 3. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables

with a common distribution function F such that E|min(X1, . . . ,Xk)|
2p < ∞

for a fixed k ≥ 1 and some p > 1. Then F (x) has the form (2.6) iff for

k − 2m > 0, where m is a positive integer ,

E(Y (k)
n )2 −

2

m

[(

k

k −m

)n

EY (k−m)
n − EY (k−m−1)

n

]

+
1

m2

[

1− 2

(

k

k −m

)n

+

(

k

k − 2m

)n]

= 0

for n = 1, 2, . . .

Theorem 3′. Under the assumptions of Theorem 3, the distribution

function F is given by (2.6) iff for k − 2m > 0,

EY (s)
n =

1

m

[(

s

s−m

)n

− 1

]

, s = k, k −m,

E(Y (k)
n )2 =

1

m2

[(

k

k − 2m

)n

− 2

(

k

k −m

)n

+ 1

]

for n = 1, 2, . . .
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Letting m = 1 we obtain the following characterization result.

Corollary 2. F (x) = 1− (1 + x)−1, x > 0, iff

E(Y (k)
n )2−2

[(

k

k − 1

)n

EY (k−1)
n −EY (k)

n

]

+1−2

(

k

k − 1

)n

+

(

k

k − 2

)n

= 0.

4. Characterizations by moments of randomly indexed order

statistics. Let Xk:N be the kth smallest order statistics of a random sample
(X1, . . . ,XN ) with common distribution function F , where N is a random
variable independent of {Xn, n ≥ 1} with a probability function p(k) =
P [N = k], k = 1, 2, . . . We write Pk = P [N ≥ k].

In this section we give a characterization for the distribution (2.1) in
terms of moments of order statistics with a random index.

Theorem 4. With the above notation, suppose that E(X2
k:N |N ≥ k)

< ∞ for some k and a given probability function p(·) of N . Then

(4.1) E(X2
k:N |N ≥ k)

−
2

m

[

E

(

N[k]

(N −m)[k]
Xk:N−m

∣

∣

∣

∣

N ≥ k

)

−E(Xk:N |N ≥ k)

]

+
1

m2

[

E

(

N[k]

(N − 2m)[k]

∣

∣

∣

∣

N ≥ k

)

− 2E

(

N[k]

(N −m)[k]

∣

∣

∣

∣

N ≥ k

)

+ 1

]

= 0,

where N[k] = N(N − 1) . . . (N − k + 1), iff F is given by (2.1).

P r o o f. Let F−1(t) = inf{x : F (x) ≥ t, t ∈ (0, 1)}. We have

(4.2) EXl
k:n =

n!

(k − 1)!(n − k)!

1\
0

(F−1(t))ltk−1(1− t)n−k dt, l ≥ 1.

Suppose that F is given by (2.1). Since N is independent of {Xn, n ≥ 1},
from (2.3) we have

(4.3) E(Xk:N |N ≥ k) =
1

mPk

∞
∑

n=k

n!

(k − 1)!(n − k)!

×

1\
0

[(1− t)−m − 1]tk−1(1− t)n−k dt P [N = n]

=
1

m
E

((

N[k]

(N −m)[k]

∣

∣

∣

∣

N ≥ k

)

− 1

)

,
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(4.4) E

(

N[k]

(N −m)[k]
Xk:N−m

∣

∣

∣

∣

N ≥ k

)

=
1

mPk

∞
∑

n=k

(n−m)!

(k − 1)!(n − k −m)!

×
n(n− 1) . . . (n− k + 1)

(n−m)(n−m− 1) . . . (n−m− k + 1)

×

1\
0

((1− t)−m − 1)tk−1(1− t)n−m−k dt P [N = n]

=
1

m

[

E

(

N[k]

(N − 2m)[k]

∣

∣

∣

∣

N ≥ k

)

− E

(

N[k]

(N −m)[k]

∣

∣

∣

∣

N ≥ k

)]

and

(4.5) E(X2
k:N |N ≥ k)

=
1

m2

[

E

(

N[k]

(N − 2m)[k]

∣

∣

∣

∣

N ≥ k

)

− 2E

(

N[k]

(N −m)[k]

∣

∣

∣

∣

N ≥ k

)

+ 1

]

.

We see that (4.1) holds true.

Conversely, assume that (4.1) holds. It can be written as

∞
∑

n=k

1\
0

(

F−1(t)−
(1− t)−m − 1

m

)2

tk−1(1− t)n−k dt P [N = n] = 0,

which implies that F is given by (2.1).

Using (4.3)–(4.5) we have the following characterization conditions in
terms of conditional moments of order statistics.

Theorem 4′. Under the assumptions of Theorem 4 the distribution

function F is given by (2.1) iff

E(Xk:N |N ≥ k) =
1

m

[

E

(

N[k]

(N −m)[k]

∣

∣

∣

∣

N ≥ k

)

− 1

]

,

E

(

N[k]

(N −m)[k]
Xk:N−m

∣

∣

∣

∣

N ≥ k

)

=
1

m

[

E

(

N[k]

(N − 2m)[k]

∣

∣

∣

∣

N ≥ k

)

− E

(

N[k]

(N −m)[k]

)]

and

E(X2
k:N |N ≥ k) =

1

m2

[

E

(

N[k]

(N − 2m)[k]

∣

∣

∣

∣

N ≥ k

)

− 2E

(

N[k]

(N −m)[k]

∣

∣

∣

∣

N ≥ k

)

+ 1

]

.
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Corollary 3. Let N be a random variable with probability function

(4.7) P [N = n] =
αθn

n
, n = 1, 2, . . . ; α = −

1

ln(1− θ)
, θ ∈ (0, 1).

Then X has the distribution (2.1) iff

EX1:N =
1

m

[

θm
(

1− α

−m
∑

n=1

θn

n

)

− 1

]

,

E
N

N −m
X1:N−m =

1

m

[

θ2m − θm − θ2mα

−2m
∑

n=1

θn

n
+ θmα

−m
∑

n=1

θn

n

]

,

EX2
1:N =

1

m2

[

θ2m − 2θm − αθ2m
−2m
∑

n=1

θn

n
+ 2θmα

−m
∑

n=1

θn

n
+ 1

]

.

Remark. Putting m = −1 we obtain a characterization of the uniform
distribution in terms of X1:N , which after using the equality

EX2
1:N − E

N

N + 1
X1:N = αEX1 +

(

1−
1

θ

)

EX1:N

leads to the result of [9], i.e.

EX2
1:N − 2

[

αEX +

(

1−
1

θ

)

EX1:N

]

= −α

[

3

2
−

1

θ
−

(

1−
1

θ

)2

ln(1− θ)

]

.

5. Characterizations via moments of randomly indexed record

statistics

Theorem 5. Let Y
(k)
N be the kth record value, where N is a positive

integer-valued random variable independent of {Xn, n ≥ 1}, and suppose

that E(Y
(k)
N )2 < ∞. Then F is given by (2.1) iff

(5.1) E(Y
(k)
N )2 −

2

m

[

E

(

k

k −m

)N

Y
(k−m)
N − EY

(k)
N

]

+
1

m2

[

1− 2E

(

k

k −m

)N

+ E

(

k

k − 2m

)N]

= 0.

P r o o f. Suppose that F is given by (2.1). Since

E(Y (k)
n )l =

kn

(n− 1)!

1\
0

(F−1(t))l[− log(1− t)]n−1(1− t)k−1 dt

and N and {Xn, n ≥ 1} are independent, it follows that

EY
(k)
N =

1

m
E

[(

k

k −m

)N

− 1

]

,

E

(

k

k −m

)N

Y
(k−m)
N =

1

m

[

E

(

k

k − 2m

)N

−E

(

k

k −m

)N]

,
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E(Y
(k)
N )2 =

1

m2

[

E

(

k

k − 2m

)N

− 2E

(

k

k −m

)N

+ 1

]

,

which establishes (5.1).
Assuming now that (2.1) is satisfied we see that
∞
∑

n=1

kn

(n − 1)!

1\
0

(

F−1(t)−
(1− t)−m − 1

m

)2

× [− log(1− t)]n−1(1− t)k−1 dt P [N = n] = 0.

Since the sequence {(− log(1 − t))n, n ≥ 1} is complete in L(0, 1) (cf. [7])
it follows that F (x) has the form (2.1).

Putting m = −1 we have the following characterization.

Corollary 4. F (x) = x, x ∈ (0, 1), iff

E(Y
(k)
N )2 + 2

(

E

(

k

k + 1

)N

Y
(k+1)
N − EY

(k)
N

)

+ E

(

k

k + 2

)N

− 2E

(

k

k + 1

)N

+ 1 = 0

(cf. [5] with m = 1).

Corollary 5. Let N be a random variable with the probability function

(4.7). Then X has the distribution (2.1) iff

E(Y
(k)
N )2 −

2

m

[

E

(

k

k −m

)N

Y
(k−m)
N −EY

(k)
N

]

+
1

m2

[

1 + 2α log
k(1− θ)−m

k −m
− α log

k(1− θ)− 2m

k − 2m

]

.

Remark. F (x) = x, x ∈ (0, 1), iff

E(Y
(k)
N )2 + 2

(

E

(

k

k + 1

)N

Y
(k+1)
N − EY

(k)
N

)

+ 1 + 2α log
k(1− θ) + 1

k + 1
− α log

k(1 − θ) + 2

k + 2
= 0.
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