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Quasilinear vector differential equations

with maximal monotone terms

and nonlinear boundary conditions

by Ralf Bader (Münich) and Nikolaos S. Papageorgiou (Athens)

Abstract. We consider a quasilinear vector differential equation which involves the
p-Laplacian and a maximal monotone map. The boundary conditions are nonlinear and
are determined by a generally multivalued, maximal monotone map. We prove two exis-
tence theorems. The first assumes that the maximal monotone map involved is everywhere
defined and in the second we drop this requirement at the expense of strengthening the
growth hypothesis on the vector field. The proofs are based on the theory of operators of
monotone type and on the Leray–Schauder fixed point theorem. At the end we present
some special cases (including the classical Dirichlet, Neumann and periodic problems),
which illustrate the general and unifying features of our work.

1. Introduction. In this paper we study the following nonlinear bound-
ary value problem in RN :

(1)

{
(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + f(t, x(t), x′(t)) a.e. on T = [0, b],

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)), 2 ≤ p <∞.

Here A : RN → 2R
N

is a maximal monotone operator and ϕ : RN → RN is
defined by ϕ(r) = ‖r‖p−2r.

Recently nonlinear boundary value problems involving the p-Laplacian
have been studied by several authors. We mention the works of Boccardo–
Drábek–Giachetti–Kučera [2], Dang–Oppenheimer [3], del Pino–Elgueta–
Manásevich [4], del Pino–Manásevich–Murúa [5], Fabry–Fayyad [6], Guo
[7], Kandilakis–Papageorgiou [11] and Manásevich–Mawhin [12]. In all these
papers A ≡ 0 and with the exception of Manásevich–Mawhin, all the other
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works deal with the scalar problem (i.e. N = 1). It should be mentioned
that Dang–Oppenheimer (scalar problem) and Manásevich–Mawhin (vec-
tor problem) work with a more general p-Laplacian-like differential opera-
tor. Boccardo–Drábek–Giachetti–Kučera and del Pino–Elgueta–Manásevich
deal with the Dirichlet problem, del Pino–Manásevich–Murúa, Fabry–Fay-
yad and Manásevich–Mawhin examine the periodic problem and the first
of these three works proves a multiplicity result, Guo considers both the
periodic and the Neumann problem, Kandilakis–Papageorgiou consider the
Neumann problem and finally Dang–Oppenheimer investigate all three
problems (Dirichlet, Neumann and periodic problem). Also in the works
of Boccardo–Drábek–Giachetti–Kučera, del Pino–Elgueta–Manásevich, del
Pino–Manásevich–Murúa, Fabry–Fayyad, Guo (the Neumann problem)
and Kandilakis–Papageorgiou, the right hand side function f is independent
of x′. Most of these works use degree-theoretic techniques, while Kandila-
kis–Papageorgiou base their proof on variational arguments (critical point
theory for nonsmooth functionals, since they do not assume continuity of
f(t, ·)).

Our formulation here unifies the basic vector boundary value problems
(Dirichlet, Neumann and periodic problem) and goes beyond them. Also the
presence in (1) of the maximal monotone multivalued operator A incorpo-
rates second order systems with convex potential. Such systems were studied
by Mawhin–Willem [14] (see Section 1.7). In the book of Mawhin–Willem
the potential function is nonautonomous, but smooth. The fact that in our
case A can be multivalued allows us to include also problems with non-
smooth (convex) potential. Moreover, in Theorem 6 we do not require that
domA = {x ∈ RN : A(x) 6= ∅} = RN and so our formulation incorporates
second order variational inequalities (see Example (a), Section 4).

Our method of proof is based on the theory of operators of monotone
type, which leads to an eventual application of the Leray–Schauder fixed
point theorem.

2. Preliminaries. Since our approach uses the theory of nonlinear
operators of monotone type, in this section we recall some basic definitions
and facts from this theory that we will need. The basic references are the
books of Hu–Papageorgiou [10] and Zeidler [16].

Let X be a reflexive Banach space and X∗ its topological dual. A pos-
sibly multivalued map A : D ⊆ X → 2X∗

is said to be monotone if for all
x, y ∈ D and all x∗ ∈ A(x), y∗ ∈ A(y), we have (x∗ − y∗, x− y) ≥ 0, where
(·, ·) denotes the duality brackets for the pair (X,X∗). If (x∗−y∗, x−y) = 0
implies x = y, then we say that A is strictly monotone. A monotone map
for which the inequalities (x∗−y∗, x−y) ≥ 0 for all y ∈ D and all y∗ ∈ A(y)
imply x ∈ D and x∗ ∈ A(x) is said to be maximal monotone. It is clear
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from this definition that A is maximal monotone if and only if its graph
GrA = {[x, x∗] ∈ X × X∗ : x∗ ∈ A(x)} is maximal with respect to in-
clusion among the graphs of monotone maps. If A is maximal monotone,
then for any x ∈ D, the set A(x) is nonempty, closed and convex. More-
over, GrA is demiclosed , i.e. if [xn, x

∗
n] ∈ GrA, n ≥ 1, and either xn → x

in X and x∗n
w
→ x∗ in X∗, or xn

w
→ x in X and x∗n → x∗ in X∗, then

[x, x∗] ∈ GrA.

Let D = X and assume that A : X → X∗ is single-valued. We say that
A is demicontinuous if xn → x in X implies A(xn)

w
→ A(x), i.e. A is sequen-

tially continuous from X into X∗
w (here X∗

w denotes the Banach space X∗

equipped with the weak topology). A monotone, demicontinuous map A :
X → X∗ is maximal monotone. A map A : D ⊆ X → 2X∗

is said to be coer-

cive if D is bounded or D is unbounded and inf{‖x∗‖∗ : x∗ ∈ A(x)} → ∞ as
‖x‖ → ∞, x ∈ D (here ‖·‖ and ‖·‖∗ are the norms ofX andX∗ respectively).
A basic theorem says that a maximal monotone, coercive operator is surjec-
tive. In particular, a monotone, demicontinuous coercive map A : X→X∗ is
surjective.

Suppose X∗ is strictly convex and A : D⊆X → 2X∗

is maximal mono-
tone. We know that for every x ∈ D, A(x) is nonempty, closed and con-
vex. Thus we can define the single-valued map A0 : D ⊆ X → X∗ by
A0(x) = proj(0;A(x)), i.e. A0(x) is the unique element of A(x) with min-
imal norm. We call A0 the minimal section; it is important in the the-
ory of maximal monotone operators. Recall that a reflexive Banach space
can be equivalently renormed so that both X and X∗ are strictly convex
(Asplund’s theorem, see Hu–Papageorgiou [10]). If X = H = Hilbert
space, A : D ⊆ H → 2H is maximal monotone and λ > 0, we intro-
duce Jλ = (I + λA)−1 (the resolvent of A) and Aλ = λ−1(I − Jλ) (the
Yosida approximation of A). We have dom Jλ = domAλ = H for all λ > 0.
Moreover, for every λ > 0, Jλ is nonexpansive (i.e. Lipschitz with con-
stant 1), Aλ(x) ∈ A(Jλ(x)) for all x ∈ H, Aλ(·) is monotone and Lipschitz
with constant λ−1 (hence maximal monotone), and ‖Aλ(x)‖ ≤ ‖A0(x)‖
for all x ∈ D. In addition, limλ→0+Aλ(x) = A0(x) for all x ∈ D and
limλ→0+ Jλ(x) = proj(x;D) for all x ∈ H. A well known maximal mono-
tone operator is the subdifferential ∂ϕ of a convex, lower semicontinuous,
proper (i.e. not identically +∞) function ϕ. Recall that ∂ϕ : X → 2X∗

is de-
fined by ∂ϕ(x) = {x∗ ∈ X∗ : (x∗, y−x) ≤ ϕ(y)−ϕ(x) for all y ∈ Y }. Finally
if C ⊆ X is nonempty, then we denote by σ(·, C) : X∗ → R = R ∪ {+∞}
the support function of C, i.e. σ(x∗, C) = sup{(x∗, c) : c ∈ C}, which is
sublinear and weakly lower semicontinuous. So if C is closed and convex,
then C = {x ∈ X : (x∗, x) ≤ σ(x∗, C) for all x∗ ∈ X∗}.

Let Y and Z be Banach spaces. An operator K : Y → Z (not necessarily
linear) is said to be:
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(a) completely continuous if yn
w
→ y in Y implies K(yn) → K(y) in Z;

(b) compact ifK is continuous and maps bounded sets in Y into relatively
compact sets in Z.

In general these two notions are not comparable. However, if Y is reflex-
ive, then complete continuity of K implies compactness. Moreover, if K is
linear and Y is reflexive, then the two notions are equivalent.

As already mentioned, our proof ultimately relies on a fixed point ar-
gument which makes use of the “Leray–Schauder fixed point theorem”. For
the convenience of the reader we recall this result here (see Zeidler [15],
Theorem 6A, p. 245).

Theorem 1. If Y is a Banach space, K : Y → Y is compact and there

exists r > 0 such that y = λK(y) with 0 < λ < 1 implies ‖y‖ ≤ r (a
priori bound), then K has a fixed point (i.e. there exists y ∈ Y such that

y = K(y)).

Finally recall that if 2 ≤ p < ∞ and a, c ∈ R, then 22−p|a − c|p ≤
(|a|p−2a− |c|p−2c)(a− c).

Our hypotheses on the data of (1) are the following:

H(A)1. A : RN → 2R
N

is a maximal monotone map such that domA =
{x ∈ RN : A(x) 6= ∅} = RN and 0 ∈ A(0).

Remark. The hypothesis 0 ∈ A(0) is not an essential restriction, since
we can always have it by translating things if necessary. Also since domA =
RN , A0(·) is bounded on compact subsets of RN .

We can weaken the conditions on A (at the expense of strengthening the
growth hypothesis on f(t, x, ·)) as follows:

H(A)2. A : RN → 2R
N

is a maximal monotone map such that 0 ∈ A(0).

Remark. Again it is enough to assume that 0 ∈ domA and by transla-
tion we will have 0 ∈ A(0).

H(f)1. f : T × RN × RN → RN is a function such that

(i) for all (x, y) ∈ RN × RN , t 7→ f(t, x, y) is measurable;

(ii) for almost all t ∈ T, (x, y) 7→ f(t, x, y) is continuous;
(iii) for almost all t ∈ T and all x, y ∈ RN ,

(f(t, x, y), x)RN ≥ −a‖x‖p − γ‖x‖r‖y‖p−r − c(t)‖x‖s

with a, γ ≥ 0, 1 ≤ r, s < p and c ∈ L1(T );
(iv) there exists M > 0 such that if ‖x0‖ > M and (x0, y0)RN = 0, then

we can find δ > 0 and ξ > 0 such that for almost all t ∈ T ,

inf[(f(t, x, y), x)RN + ‖y‖p : ‖x− x0‖ + ‖y − y0‖ < δ] ≥ ξ > 0;
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(v) for almost all t ∈ T and all x, y ∈ RN ,

‖f(t, x, y)‖ ≤ γ1(t, ‖x‖) + γ2(t, ‖x‖)‖y‖
p−1

with sup0≤r≤k γ1(t, r) ≤ η1,k(t) a.e. on T , η1,k ∈ Lq(T ) (1/p+1/q = 1) and
sup0≤r≤k γ2(t, r) ≤ η2,k(t) a.e. on T , η2,k ∈ L∞(T ).

Remark. Hypothesis H(f)(iv) is a slight extension of the classical Nagu-
mo–Hartman condition for continuous vector fields (see Hartman [8], p.
433).

When domA 6= RN , we have to strengthen the growth condition on
f(t, x, ·). More precisely, we will need the following hypothesis:

H(f)2. f : T × RN × RN → RN is a function that satisfies (i)–(iv) of
H(f)1 and

(v) for almost all t ∈ T and all x, y ∈ RN , we have

‖f(t, x, y)‖ ≤ γ1(t, ‖x‖) + γ2(t, ‖x‖)‖y‖

with sup0≤r≤k γ1(t, r) ≤ η1,k(t) a.e. on T , η1,k∈L
2(T ) and sup0≤r≤k γ2(t, r)

≤ η2,k(t) a.e. on T , η2,k ∈ L2p/(p−2)(T ) (as usual let r/0 = ∞ for r > 0).

H(ξ). ξ : RN × RN → 2R
N×R

N

is a maximal monotone map such that
(0, 0) ∈ ξ(0, 0) and one of the following holds:

(i) for every (a′, d′) ∈ ξ(a, d), we have (a′, a)RN ≥ 0 and (d′, d)RN ≥ 0;
or

(ii) dom ξ = {(a, d) ∈ RN × RN : a = d}.

H0. For all (a, d) ∈ dom ξ and all (a′, d′) ∈ ξ(a, d),

(Aλ(a), a′)RN + (Aλ(d), d′)RN ≥ 0 for all λ > 0.

Remark. If ξ = ∂ψ with ψ : RN × RN → R convex (hence locally
Lipschitz), then if we denote by ∂iψ, i = 1, 2, the partial subdifferential of
ψ(a, d) with respect to a (resp. d), then ∂ψ(a, d) ⊆ ∂1ψ(a, d) × ∂2ψ(a, d).
In this setting the condition that (Aλ(a), a′)RN ≥ 0 and (Aλ(d), d′)RN ≥
0 for all (a′, d′) ∈ ξ(a, d), (a, d) ∈ dom ξ, is equivalent to saying that
ψ(Jλ(a), d) ≤ ψ(a, d) and ψ(a, Jλ(d)) ≤ ψ(a, d) respectively (see Hu–Papa-
georgiou [10]).

3. Auxiliary results. We start by solving the following auxiliary prob-
lem:

(2)

{
−(‖x′(t)‖p−2x′(t))′ + ‖x(t)‖p−2x(t) = h(t) a.e. on T,

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)), 2 ≤ p <∞.

Here h ∈ Lq(T,RN ) and 1/p + 1/q = 1. By a solution of problem (2) we
mean a function x ∈ C1(T,RN ) such that ‖x′(·)‖p−2x′(·) ∈ W 1,q(T,RN )
and x satisfies (2).
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Proposition 2. If ξ : RN ×RN → 2R
N×R

N

is a maximal monotone map

with (0, 0) ∈ ξ(0, 0), then problem (2) has a unique solution x ∈ C1(T,RN ).

P r o o f. Given v,w ∈ RN , we consider the following two-point boundary
value problem:

(3)

{
−(‖x′(t)‖p−2x′(t))′ + ‖x(t)‖p−2x(t) = h(t) a.e. on T,

x(0) = v, x(b) = w.

Let η(t) = (1− t/b)v+(t/b)w, so that η(0) = v, η(b) = w. We introduce
the function y(t) = x(t) − η(t) and rewrite problem (3) as a homogeneous
Dirichlet problem for y:

(4)






−(‖(y + η)′(t)‖p−2(y + η)′(t))′ + ‖(y + η)(t)‖p−2(y + η)(t)

= h(t) a.e. on T,
y(0) = y(b) = 0.

We solve (4) for y and then x = y + η will be the solution of (3). To solve
(4), let V1 : W 1,p

0 (T,RN ) →W−1,q(T,RN ) be defined by

〈V1(u), z〉 =

b\
0

‖u′ + η′‖p−2(u′ + η′, z′)RN dt+

b\
0

‖u+ η‖p−2(u+ η, z)RN dt

for all u, z ∈ W 1,p
0 (T,RN ). Here 〈·, ·〉 are the duality brackets for the pair

(W 1,p
0 (T,RN ),W−1,q(T,RN )). Then for u, z ∈W 1,p

0 (T,RN ), we have

〈V1(u) − V1(z), u− z〉

=

b\
0

‖u′ + η′‖p−2(u′ + η′, u′ − z′)RN dt+

b\
0

‖u+ η‖p−2(u+ η, u− z)RN dt

−
b\
0

‖z′ + η′‖p−2(z′ + η′, u′ − z′)RN dt −
b\
0

‖z + η‖p−2(z + η, u− z)RN dt.

Note that

(5)

b\
0

[‖u′ + η′‖p−2(u′ + η′, u′ − z′)RN −‖z′ + η′‖p−2(z′ + η′, u′ − z′)RN ] dt

≥
b\
0

(‖u′ + η′‖ − ‖z′ + η′‖)(‖u′ + η′‖p−1 − ‖z′ + η′‖p−1) dt

≥ 22−p
b\
0

∣∣‖u′ + η′‖ − ‖z′ + η′‖
∣∣p dt.
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Similarly we obtain

(6)

b\
0

[‖u+ η‖p−2(u+ η, u− z)RN − ‖z + η‖p−2(z + η, u − z)RN ] dt

≥ 22−p
b\
0

∣∣‖u+ η‖ − ‖z + η‖
∣∣p dt.

From (5) and (6), we infer that 〈V1(u) − V1(z), u − z〉 ≥ 0, i.e. V1(·) is
monotone. In fact, V1 is strictly monotone. Indeed, if 〈V1(u)−V1(z), u− z〉
= 0, then

b\
0

∣∣‖u′ + η′‖ − ‖z′ + η′‖
∣∣p dt+

b\
0

∣∣‖u+ η‖ − ‖z + η‖
∣∣p dt = 0,

hence
‖(u′ + η′)(t)‖ = ‖(z′ + η′)(t)‖ = k1(t),

‖(u+ η)(t)‖ = ‖(z + η)(t)‖ = k2(t)

for almost all t ∈ T . So we have

0 =

b\
0

k1(t)
p−2‖u′(t) − z′(t)‖2 dt+

b\
0

k2(t)
p−2‖u(t) − z(t)‖2 dt,

thus u′ = z′ and u = z, and so V1 is strictly monotone.
Also using the extended dominated convergence theorem (see for example

Hu–Papageorgiou [10], Theorem A.2.54, p. 907), we can easily check that
V1 is demicontinuous. Moreover,

〈V1(u), u〉 =

b\
0

‖u′ + η′‖p−2(u′ + η′, u′)RN dt+

b\
0

‖u+ η‖p−2(u+ η, u)RN dt

≥ ‖u′ + η′‖p
p − ‖u′ + η′‖p−1

p ‖η′‖p + ‖u+ η‖p
p − ‖u+ η‖p−1

p ‖η‖p

≥ ‖u+ η‖p
1,p − µ1‖u+ η‖p−1

1,p for some µ1 > 0.

Here ‖ · ‖1,p denotes the norm of the Sobolev space W 1,p
0 (T,RN ). So V1 is

coercive. Therefore V1, being monotone, demicontinuous (hence maximal
monotone) and coercive, is surjective. So there exists y ∈W 1,p

0 (T,RN ) such
that V1(y) = h. Evidently by the strict monotonicity of V1, this y is unique.

Let ψ ∈ C∞
0 (T,RN ) and denote by (·, ·)pq the duality brackets for the

pair (Lp(T,RN ), Lq(T,RN )). We have 〈V1(y), ψ〉 = (h, ψ)pq , hence

b\
0

‖y′ + η′‖p−2(y′ + η′, ψ′)RN dt+

b\
0

‖y + η‖p−2(y + η, ψ)RN dt =

b\
0

(h, ψ)RN dt

and so
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−〈(‖y′ + η′‖p−2(y′ + η′))′, ψ〉 + 〈‖y + η‖p−2(y + η), ψ〉

= 〈h, ψ〉 (by Green’s identity).

Since (‖y′ + η′‖p−2(y′ + η′))′ ∈ W−1,q(T,RN ) (see the representation the-
orem for the space W−1,q(T,RN ) in Adams [1], Theorem 3.10, p. 50) and
since C∞

0 (T,RN ) is dense in the predual space W 1,p
0 (T,RN ) (recall that

W 1,p
0 (T,RN )∗ = W−1,q(T,RN )), we conclude that

−(‖y′ + η′‖p−2(y′ + η′))′ + ‖y + η‖p−2(y + η) = h

and hence

‖y′ + η′‖p−2(y′ + η′) ∈W 1,q(T,RN ).

Let x = y + η ∈ C1(T,RN ) with ‖x′‖p−2x′ ∈ W 1,q(T,RN ). This is the
unique solution of (3).

Now let s : RN × RN → C1(T,RN ) be the map which to each (v,w) ∈
RN ×RN assigns the unique solution s(v,w) = x ∈ C1(T,RN ) of (3). Then
let ̺ : RN × RN → RN × RN be defined by

̺(v,w) = (−‖s(v,w)′(0)‖p−2s(v,w)′(0), ‖s(v,w)′(b)‖p−2s(v,w)′(b)).

Claim 1. ̺ is monotone.

Let x = s(α, β) and x1 = s(α1, β1). Using Green’s identity, we have
(
̺(α, β) − ̺(α1, β1),

(
α− α1

β − β1

))

R2N

=(‖x′(b)‖p−2x′(b) − ‖x′1(b)‖
p−2x′1(b), β − β1)RN

− (‖x′(0)‖p−2x′(0) − ‖x′1(0)‖
p−2x′1(0), α − α1)RN

=

b\
0

‖x′(t)‖p−2(x′(t), x′(t) − x′1(t))RN dt

−
b\
0

‖x′1(t)‖
p−2(x′1(t), x

′(t) − x′1(t))RN dt

+

b\
0

((‖x′(t)‖p−2x′(t))′ − (‖x′1(t)‖
p−2x′1(t))

′, x(t) − x1(t))RN dt.

Note that
b\
0

‖x′(t)‖p−2(x′(t), x′(t) − x′1(t))RN dt

−
b\
0

‖x′1(t)‖
p−2(x′1(t), x

′(t) − x′1(t))RN dt ≥ 0
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(see Section 2). Also because x = s(α, β) and x1 = s(α1, β1), we have

b\
0

((‖x′(t)‖p−2x′(t))′ − (‖x′1(t)‖
p−2x′1(t))

′, x(t) − x1(t))RN dt

=

b\
0

(‖x(t)‖p−2x(t) − ‖x1(t)‖
p−2x1(t), x(t) − x1(t))RN dt ≥ 0.

Thus finally we obtain
(
̺(α, β) − ̺(α1, β1),

(
α− α1

β − β1

))

R2N

≥ 0,

which proves the claim.

Claim 2. ̺ : RN × RN → RN × RN is continuous.

Assume that αn → α and βn → β in RN and set xn = s(αn, βn), n ≥ 1,
x = s(α, β). As before we introduce ηn(t) = (1 − t/b)αn + (t/b)βn, n ≥ 1,
and η(t) = (1 − t/b)α+ (t/b)β and set yn = xn − ηn. We have

−
b\
0

((‖y′n + η′n‖
p−2(y′n + η′n))′, yn)RN dt

+

b\
0

‖yn + ηn‖
p−2(yn + ηn, yn)RN dt =

b\
0

(h(t), yn(t))RN dt,

that is,

b\
0

‖y′n + η′n‖
p−2(y′n + η′n, y

′
n)RN dt+

b\
0

‖yn + ηn‖
p−2(yn + ηn, yn)RN dt

=

b\
0

(h(t), yn(t))RN dt (by Green’s identity),

therefore

‖y′n + η′n‖
p
p − k3‖y

′
n + η′n‖

p−1
p + ‖yn + ηn‖

p
p − k4‖yn + ηn‖

p−1
p

≤ ‖h‖q‖yn + ηn‖p + k5

for some k3, k4, k5 > 0, and so {xn = yn + ηn}n≥1 ⊆ W 1,p(T,RN ) is
bounded. Thus {‖xn‖

p−2xn}n≥1, {‖x
′
n‖

p−2x′n}n≥1 ⊆ Lq(T,RN ) are both
bounded. Moreover, from (3) it follows that {‖x′n‖

p−2x′n}n≥1⊆W
1,q(T,RN )

is bounded. So we may assume that xn
w
→ u in W 1,p(T,RN ) and ‖x′n‖

p−2x′n
w
→ v in W 1,q(T,RN ) as n → ∞. In particular xn → u in C(T,RN) (recall
that W 1,p(T,RN ) is compactly embedded in C(T,RN )) and (‖x′n‖

p−2x′n)′
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w
→ v′ in Lq(T,RN ) as n→ ∞. Thus in the limit as n→ ∞, we obtain

{
−v′(t) + ‖u(t)‖p−2u(t) = h(t) a.e. on T,
u(0) = α, u(b) = β.

Since ‖x′n‖
p−2x′n

w
→ v in W 1,q(T,RN ), we have ‖x′n‖

p−2x′n → v in
C(T,RN ) (from the compact embedding of W 1,q(T,RN ) in C(T,RN )). Also
ϕ−1 exists and is continuous because ϕ(r) = ‖r‖p−2r is a homeomorphism.
Therefore ϕ−1(‖x′n‖

p−2x′n) = x′n → ϕ−1(v) in Lp(T,RN ) (in fact in
C(T,RN )), hence ϕ−1(v) = u′ and so v = ϕ(u′) = ‖u′‖p−2u′. Thus finally
we have {

−(‖u′(t)‖p−2u′(t))′ + ‖u(t)‖p−2u(t) = h(t) a.e. on T,
u(0) = α, u(b) = β.

Hence u = s(α, β) = x, i.e. s is continuous from RN × RN into C1(T,RN ).
From the continuity of s we deduce at once the continuity of ̺.

Claim 3. ̺ is coercive.

We have, with x = s(α, β),
(
̺(α, β),

(
α
β

))
R2N∥∥(

α
β

)∥∥ =
‖x′(b)‖p−2(x′(b), β)RN − ‖x′(0)‖p−2(x′(0), α)RN∥∥(

α
β

)∥∥

=

Tb
0
((‖x′(t)‖p−2x′(t))′, x(t))RN dt+ ‖x′‖p

p∥∥(
α
β

)∥∥

≥
‖x‖p

p + ‖x′‖p
p − ‖h‖q‖x‖p∥∥(
α
β

)∥∥

where we have used Green’s identity and (3).
From the mean value theorem for integrals (see for example Hewitt–

Stromberg [9], Theorem 21.69, p. 420), we can find t0 ∈ T such that

‖x(t0)‖b =
Tb
0
‖x(t)‖ dt. So for every t ∈ T ,

‖x(t)‖ ≤ ‖x(t0)‖ +

t\
t0

‖x′(s)‖ ds ≤
1

b
‖x‖1 + b1/q‖x′‖p ≤ k6‖x‖1,p

for some k6 > 0 and hence
∥∥(

α
β

)∥∥ ≤ k7‖x‖1,p for some k7>0. Therefore we
have (

̺(α, β),
((

α
β

))
R2N∥∥(

α
β

)∥∥ ≥
‖x‖p

1,p − ‖h‖q‖x‖1,p

k7‖x‖1,p
,

i.e. ̺ is coercive.
From Claims 1, 2 and 3, it follows that ̺ is maximal monotone.

Now let σ = ̺+ ξ : RN ×RN → 2R
N×R

N

. Then σ is maximal monotone
(see Hu–Papageorgiou [10], Theorem III.3.3, p. 334) and coercive (recall
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that ̺ is coercive by Claim 3 and (0, 0) ∈ ξ(0, 0) by hypothesis H(ξ)). Thus
σ is surjective. So we can find (α, β) ∈ RN ×RN such that 0 ∈ σ(α, β). Let
x = s(α, β). Evidently this is the desired solution of (2).

Let

D = {x ∈ C1(T,RN ) : ‖x′(·)‖p−2x′(·) ∈W 1,q(T,RN ),

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b))}

and let V : D ⊆ Lp(T,RN ) → Lq(T,RN ) be defined by

V (x)(·) = −(‖x′(·)‖p−2x′(·))′, x ∈ D.

Proposition 3. If ξ : RN × RN → 2R
N×R

N

is a maximal monotone

map with (0, 0) ∈ ξ(0, 0), then V : D ⊆ Lp(T,RN ) → Lq(T,RN ) is maximal

monotone.

P r o o f. First note that for every x, y ∈ D, we have

(V (x)−V (y), x−y)pq ≥
b\
0

(‖x′(t)‖p−1−‖y′(t)‖p−1)(‖x′(t)‖−‖y′(t)‖) dt ≥ 0,

hence V is monotone.
To prove the maximality of V it suffices to show R(V + J) = Lq(T,RN )

with J : Lp(T,RN ) → Lq(T,RN ) defined by J(x)(·) = ‖x(·)‖p−2x(·). In-
deed, assume for the moment that V + J is surjective and suppose that
y ∈ Lp(T,RN ) and v ∈ Lq(T,RN ) satisfy

(V (x) − v, x− y)pq ≥ 0 for all x ∈ D.

Let x1 ∈ D be such that v + J(y) = V (x1) + J(x1). Thus we can write

0 ≤ (V (x1) − V (x1) − J(x1) + J(y), x1 − y)pq = (J(y) − J(x1), x1 − y)pq.

But it is easy to see that J is strictly monotone. So from this last inequality
it follows that y = x1 ∈ D and v = V (x1), which proves the maximality of
V . Therefore we need to show that R(V + J) = Lq(T,RN ). But this is an
immediate consequence of Proposition 2.

Next let λ > 0 and let Aλ : RN → RN be the Yosida approximation
of A. Note that as indicated in the remark following hypothesis H(A), we
may assume without loss of generality that 0 ∈ A(0), which in turn implies

that 0 = Aλ(0) for all λ > 0. Let Âλ : Lp(T,RN ) → Lq(T,RN ) be the

Nemytskĭı operator corresponding to Aλ, i.e. Âλ(x)(·) = Aλ(x(·)) for all x ∈

Lp(T,RN ). Clearly Âλ is monotone, continuous (Krasnosel’skĭı’s theorem),
thus maximal monotone.We consider the following auxiliary boundary value
problem:

(7)

{
(‖x′(t)‖p−2x′(t))′ = Aλ(x(t)) + f(t, x(t), x′(t)) a.e. on T,

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)).
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Proposition 4. If hypotheses H(A)2, H(f)1 (or H(f)2) and H(ξ) hold ,
then problem (7) has a solution x ∈ C1(T,RN ).

P r o o f. We do the proof when H(f)1 holds, the other case being similar.

Let Kλ = V + Âλ + J : D ⊆ Lp(T,RN ) → Lq(T,RN ), λ > 0. Note that
Kλ is maximal monotone (see Proposition 3 and Theorem III.3.3, p. 334, of
Hu–Papageorgiou [10]). Also since 0 = Aλ(0), we have

(Kλ(x), x)pq ≥ (V (x), x)pq + (J(x), x)pq .

But

(V (x), x)pq = −
b\
0

((‖x′(t)‖p−2x′(t))′, x(t))RN dt

= (−‖x′(b)‖p−2x′(b), x(b))RN

+ (‖x′(0)‖p−2x′(0), x(0))RN + ‖x′‖p
p

≥ ‖x′‖p
p.

Here we have used Green’s identity and the fact that (ϕ(x′(0)),−ϕ(x′(b))) ∈
ξ(x(0), x(b)) and (0, 0) ∈ ξ(0, 0). Also (J(x), x)pq = ‖x‖p

p. Thus finally

(Kλ(x), x)pq ≥ ‖x′‖p
p + ‖x‖p

p = ‖x‖p
1,p,

thus Kλ is coercive, hence surjective.Moreover, from the strict monotonicity
of J , it follows that Kλ is injective. SoK−1

λ : Lq(T,RN )→D ⊆W 1,p(T,RN )
is well defined.

Claim 1. K−1
λ is compact from Lq(T,RN ) into W 1,p(T,RN ).

By the reflexivity of Lq(T,RN ), to establish the claim, it suffices to show

that if un
w
→ u in Lq(T,RN ), then K−1

λ (un) → K−1
λ (u) in W 1,p(T,RN ). Let

xn = K−1
λ (un), n ≥ 1. We have

(V (xn), xn)pq + (Âλ(xn), xn)pq + (J(xn), xn)pq = (un, xn)pq ,

hence ‖x′n‖
p
p + ‖xn‖

p
p ≤ ‖un‖q‖xn‖p, and thus {xn}n≥1 ⊆ W 1,p(T,RN ) is

bounded. Thus we may assume that xn
w
→ x in W 1,p(T,RN ) and xn → x

in Lp(T,RN ) (because W 1,p(T,RN ) is compactly embedded in Lp(T,RN )).
Since (xn, un) ∈ GrKλ, n ≥ 1, and Kλ is maximal monotone (it has a
demiclosed graph in Lp(T,RN )×Lq(T,RN ), see Section 2), we have (x, u) ∈

GrKλ. So u = V (x) + Âλ(x) + J(x). Moreover

lim(V (xn) + Âλ(xn) + J(xn), xn − x)pq = lim(un, xn − x)pq = 0

and hence lim(V (xn), xn − x)pq = 0 (since (Âλ(xn), xn − x)pq → 0 and
(J(xn), xn − x)pq → 0).

But, by Proposition 3, we know that V is maximal monotone, hence it
is also generalized pseudomonotone (see Hu–Papageorgiou [10], Definition
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III.6.2 and Remark III.6.3, p. 365). Therefore V (xn)
w
→ V (x) in Lq(T,RN ).

Note that {‖x′n‖
p−2x′n}n≥1 ⊆W 1,q(T,RN ) and

‖x′n‖
p−2x′n

w
→ ‖x′‖p−2x′ in W 1,q(T,RN ),

hence

‖x′n‖
p−2x′n → ‖x′‖p−2x′ in C(T,RN ).

So acting with ϕ−1 we obtain x′n → x′ in Lp(T,RN ) as n → ∞. Since
xn → x in Lp(T,RN ), we conclude that xn → x in W 1,p(T,RN ) and this
proves the claim.

Let N : W 1,p(T,RN ) → Lq(T,RN ) be the Nemytskĭı operator corre-
sponding to f , i.e. N(x)(·) = f(·, x(·), x′(·)). Clearly N is continuous (see
hypothesis H(f)). Let N1 = −N + J and consider the following abstract
fixed point problem:

(8) x = K−1
λ N1(x).

Observe that N1 : W 1,p(T,RN ) → Lq(T,RN ) is continuous, bounded and
K−1

λ : Lq(T,RN ) → W 1,p(T,RN ) is compact. Hence K−1
λ N1 : W 1,p(T,RN )

→ W 1,p(T,RN ) is compact. So according to Theorem 1, in order to solve
(8), it suffices to prove the following claim:

Claim 2. S = {x ∈ W 1,p(T,RN ) : x = βK−1
λ N1(x), 0 < β < 1} is

bounded.

Let x ∈ S. We have Kλ((1/β)x) = N1(x) and so

V

(
1

β
x

)
+ Âλ

(
1

β
x

)
+ J

(
1

β
x

)
= −N(x) + J(x).

Hence(
V

(
1

β
x

)
, x

)

pq

+

(
Âλ

(
1

β
x

)
, x

)

pq

+

(
J

(
1

β
x

)
, x

)

pq

= −(N(x), x)pq + (J(x), x)pq .

Note that (Âλ((1/β)x), x)pq ≥ 0 (recall that 0 = Âλ(0) and Âλ is mono-
tone). Moreover,

(
V

(
1

β
x

)
, x

)

pq

= −
b\
0

1

βp−1
((‖x′(t)‖p−2x′(t))′, x(t))RN dt

= −

(
1

βp−1
‖x′(b)‖p−2x′(b), x(b)

)

RN

+

(
1

βp−1
‖x′(0)‖p−2x′(0), x(0)

)

RN

+
1

βp−1
‖x′‖p

p

≥
1

βp−1
‖x′‖p

p (from the boundary conditions).
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So we have

1

βp−1
‖x′‖p

p +
1

βp−1
‖x‖p

p ≤ −(N(x), x)pq + ‖x‖p
p

and hence

(9) ‖x′‖p
p ≤ −βp−1(N(x), x)pq + (βp−1 − 1)‖x‖p

p ≤ −βp−1(N(x), x)pq

(since 0 < β < 1). Using hypothesis H(f)(iii), we have

−βp−1(N(x), x)pq = βp−1
b\
0

−(f(t, x(t), x′(t)), x(t))RN dt

≤ βp−1a‖x‖p
p + βp−1γ

b\
0

‖x(t)‖r‖x′(t)‖p−r dt

+ βp−1‖c‖1‖x‖
s
∞.

Let τ = p−r and set µ = p/r, µ′ = p/τ (1/µ+1/µ′ = 1). Apply Hölder’s
inequality to obtain

b\
0

‖x(t)‖r‖x′(t)‖p−r dt ≤
( b\

0

‖x(t)‖rµ dt
)1/µ( b\

0

‖x′(t)‖τµ′

dt
)1/µ′

≤ ‖x‖r
p‖x

′‖τ
p .

It follows that

(10) −βp−1(N(x), x)pq ≤ βp−1a‖x‖p
p +βp−1γ‖x‖r

p‖x
′‖τ

p +βp−1‖c‖1‖x‖
s
∞.

Next we will show that for all x ∈ S we have ‖x‖∞ ≤M (with M > 0 as
in hypothesis H(f)(iv)). To this end let r(t) = ‖x(t)‖p and let t0 ∈ T be the
point where r(·) attains its maximum. Suppose that r(t0) > Mp and assume
first that 0 < t0 < b. Then 0 = r′(t0) = p‖x(t0)‖

p−2(x′(t0), x(t0))RN , hence
(x′(t0), x(t0))RN = 0. By hypothesis H(f)(iv), we can find δ, ξ > 0 such that

inf[(f(t, x, y), x)RN + ‖y‖p : ‖x− x(t0)‖ + ‖y − x′(t0)‖ < δ] ≥ ξ > 0.

Note that since x ∈ S we see that ‖x′(·)‖p−2x′(·) ∈ W 1,q(T,RN ) ⊆
C(T,RN ), hence ϕ−1(‖x′(·)‖p−2x′(·)) = x′(·)∈C(T,RN ). Thus we can find
δ1 > 0 such that if t0 < t ≤ t0 + δ1, then

‖x(t) − x(t0)‖ + ‖x′(t) − x′(t0)‖ < δ.

Therefore for almost all t ∈ (t0, t0 + δ1] we have

(11) βp−1(f(t, x(t), x′(t)), x(t))RN + βp−1‖x′(t)‖p ≥ βp−1ξ.

Now from the equation V (β−1x)+ Âλ(β−1x)+ J(β−1x) = −N(x)+ J(x) it
follows that
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−(‖x′(t)‖p−2x′(t))′ + βp−1Aλβ
−1x(t)

= −βp−1f(t, x(t), x′(t))(βp−1 − 1)‖x(t)‖p−2x(t) a.e. on T .

Using this last equality in (11), we have

((‖x′(t)‖p−2x′(t))′, x(t))RN − βp−1(Aλ(β−1x(t)), x(t))RN

+ (βp−1 − 1)‖x(t)‖p + βp−1‖x′(t)‖p ≥ βp−1ξ

and hence
t\
t0

((‖x′(s)‖p−2x′(s))′, x(s))RN ds+ βp−1
t\
t0

‖x′(s)‖p ds ≥ βp−1ξ(t− t0).

Using Green’s identity for the first integral and the fact that (x′(t0), x(t0))RN

= 0, we have

‖x′(t)‖p−2(x′(t), x(t))RN −
t\
t0

‖x′(s)‖p ds+ βp−1
t\
t0

‖x′(s)‖p ds

≥ βp−1ξ(t− t0).

Therefore ‖x′(t)‖p−2(x′(t), x(t))RN ≥ βp−1ξ(t − t0) (since 0 < β < 1) and
so r′(t) > 0 for all t ∈ (t0, t0 + δ1]. Thus r(t) > r(t0) for t0 < t ≤ t0 + δ1, a
contradiction to the choice of t0. So ‖x(t)‖ ≤M for all t ∈ T and all x ∈ S,
provided t0 ∈ (0, b).

Next let t0 = 0. Then r′(0) ≤ 0 and so ‖x(0)‖p−2(x′(0), x(0))RN ≤ 0,
hence (x′(0), x(0))RN ≤ 0. First suppose that hypothesis H(ξ)(i) is in effect.
We have ‖x′(0)‖p−2(x′(0), x(0))RN ≥ 0, hence (x′(0), x(0))RN ≥ 0 and finally
(x′(0), x(0))RN = 0 and so we can proceed as before. Now suppose that
hypothesis H(ξ)(ii) is in effect. We may assume that x 6=0. Then x(0) = x(b)
and r′(0) ≤ 0 ≤ r′(b), which implies that

‖x(0)‖p−2(x′(0), x(0))RN ≤ 0 ≤ ‖x(b)‖p−2(x′(b), x(b))RN

and so

(x′(0), x(0))RN ≤ 0 ≤ (x′(b), x(b))RN .

Also from the boundary conditions, we see that ‖x′(b)‖p−2(x′(b), x(b))RN ≤
‖x′(0)‖p−2(x′(0), x(0))RN . Thus we obtain either x′(0) = x′(b) = 0, from
which it follows that r′(0) = r′(b) = 0, or (x′(0), x(0))RN = (x′(b), x(b))RN ,
from which again it follows that r′(0) = r′(b) = 0. So we always have
r′(0) = 0 and proceed as before. Similarly we treat the case t0 = b. Hence
we have established that ‖x‖∞ ≤M for all x ∈ S. Then from (10) we have

βp−1(−N(x), x)pq ≤ k8 + k9‖x
′‖τ

p for some k8, k9 > 0.

Using this estimate in (9), we obtain

‖x′‖p
p ≤ k8 + k9‖x

′‖τ
p (τ < p),
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which yields that {x′}s∈S ⊆ Lp(T,RN ) is bounded, and therefore {x}s∈S ⊆
W 1,p(T,RN ) is bounded. This proves Claim 2.

Now we can apply Theorem 1 to obtain x ∈ D such that x = K−1
λ N1(x),

that is, Kλ(x) = N1(x) and thus x is a solution of (7).

4. Main results, special cases. In this section we state and prove the
main existence theorems concerning problem (1) and present some special
cases of interest, which illustrate the generality of our results.

Theorem 5. If hypotheses H(A)1, H(f)1 and H(ξ) hold , then problem

(1) has a solution x ∈ C1(T,RN ).

P r o o f. Let λn → 0, λn > 0 and let xn ∈ C1(T,RN ) be solutions of the
auxiliary problem (7). As in the proof of Proposition 4, we can show that

‖xn(t)‖ ≤M for all t ∈ T and all n ≥ 1. Also we have V (xn) + Âλn
(xn) =

−N(xn), which yields

(V (xn), xn)pq + (Âλn
(xn), xn)pq = −(N(xn), xn)pq

and therefore

‖x′n‖
p
p ≤ ‖N(xn)‖q‖xn‖p ≤ k10‖N(xn)‖q for some k10 > 0.

Here we have used Green’s identity and the boundary conditions in the first
term (V (xn), xn)pq and the fact that Âλn

(·) is monotone with 0 = Âλn
(0)

in the second term (Âλn
(xn), xn)pq . Then invoking hypothesis H(f)1(v), we

obtain

‖x′n‖
p
p ≤ k10(‖η1,M‖q + ‖η2,M‖∞‖x′n‖

p−1
p ),

showing that {x′n} ⊆ Lp(T,RN ) is bounded, and so {xn} ⊆ W 1,p(T,RN )

is bounded; hence we may assume xn
w
→ x in W 1,p(T,RN ) and xn → x in

Lp(T,RN ). Also note that ‖Aλn
(xn(t))‖ ≤ ‖A0(xn(t))‖ (since domA = RN ,

see Hu–Papageorgiou [10], Proposition III.2.29, p. 325). Moreover, because
domA = RN , A0 is bounded on compact sets. Note that since {xn}n≥1

is bounded in W 1,p(T,RN ), it is relatively compact in C(T,RN ). Hence,
sup[‖A0(xn(t))‖ : t ∈ T, n ≥ 1] ≤ k11 for some k11 > 0. Thus we may

assume that Aλn
(xn(·))

w
→ u in Lq(T,RN ) as n → ∞. Now arguing as in

the proof of Proposition 4 (Claim 1), we see that x′n → x′ in Lp(T,RN ) and
so xn → x in W 1,p(T,RN ). Moreover, {‖x′n(·)‖p−2x′n(·)}n≥1 ⊆W 1,q(T,RN )
is bounded (since (‖x′n(t)‖p−2x′n(t))′ = Aλn

(xn(t)) + f(t, xn(t), x′n(t)) a.e.

on T ). Thus we may assume that ‖x′n(·)‖p−2x′n(·)
w
→ v in W 1,q(T,RN )

and ‖x′n(·)‖p−2x′n(·) → v in C(T,RN ). Then ϕ−1(‖x′n(·)‖p−2x′n(·)) = x′n →
ϕ−1(v) in Lp(T,RN ) and so ϕ−1(v) = x′ and v = ‖x′(·)‖p−2x′(·). Therefore

(‖x′(t)‖p−2x′(t))′ = u(t) + f(t, x(t), x′(t)) a.e. on T
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and (ϕ(x′(0)),−ϕ(x′(b)) ∈ ξ(x(0), x(b)) (since Gr ξ is closed because of the
maximal monotonicity of ξ).

Now let Â : D̂ ⊆ Lp(T,RN ) → Lq(T,RN ) be defined by

Â(x) = {g ∈ Lq(T,RN ) : g(t) ∈ A(x(t)) a.e. on T}

for all x in

D̂ = {x ∈ Lp(T,RN ) : there is g ∈ Lq(T,RN ) satisfying

g(t) ∈ A(x(t)) a.e. on T}.

We claim that Â is maximal monotone. Since monotonicity is clear, we
start to show that R(Â+J) = Lq(T,RN ), where as before J : Lp(T,RN ) →
Lq(T,RN ) is defined by J(x)(·) = ‖x′(·)‖p−2x′(·). To this end let h ∈
Lq(T,RN ) be given and let

S(t) = {(x, a) ∈ RN ×RN : a+ ϕ(x) = h(t), a ∈ A(x), ‖x‖ ≤ R(t)}

(we consider a finite-valued representative of h). The map A+ϕ is maximal
monotone (see Hu–Papageorgiou [10], Theorem III.3.3, p. 334) and coercive.
Thus if we choose R(t) = ‖h(t)‖1/(p−1) + 1 large enough, then by Theorem
III.6.28, p. 371, of Hu–Papageorgiou [10], we see that S(t) 6= ∅ for all t ∈ T .
Moreover, R ∈ Lp(T )+,

GrS={(t, x, a) ∈ T ×RN ×RN : a+ϕ(x)=h(t), d(a,A(x))=0, ‖x‖≤R(t)}

(because A(x) is closed (in fact compact), due to the maximality of A). So
GrS ∈ L × B(RN) × B(RN) (L = Lebesgue σ-field of T ). Invoking the
Yankov–von Neumann–Aumann selection theorem (see Hu–Papageorgiou
[10], Theorem II.2.14, p. 158) we obtain measurable functions x, a : T → RN

such that (x(t), a(t)) ∈ S(t) a.e. on T , hence a(t)+ϕ(x(t)) = h(t) a.e. on T .

Evidently a ∈ Lq(T,RN ). This proves the surjectivity of Â+ J .
Then we argue as in the proof of Proposition 3. Namely suppose that

for y ∈ Lp(T,RN ) and v ∈ Lq(T,RN ) we have

(a− v, x− y)pq ≥ 0 for all x ∈ D̂ and all a ∈ Â(x).

Let x = x1 where x1 ∈ D̂ is such that v + J(y) = a1 + J(x1), a1 ∈ Â(x1)

(here we use the surjectivity of Â+ J). Then we can write

(a1 − a1 − J(x1) + J(y), x1 − y)pq ≥ 0,

hence (J(y) − J(x1), x1 − y)pq ≥ 0 and so y = x1 ∈ D̂ and v = a1 ∈ Â(x1),

which proves the maximality of Â.
Recall that Aλn

(xn(t)) ∈ A(Jλn
(xn(t))) a.e. with Jλn

: RN → RN being
the resolvent operator corresponding to A. Note that

‖Jλn
(xn(t)) − x(t)‖ ≤ ‖Jλn

(xn(t)) − Jλn
(x(t))‖ + ‖Jλn

(x(t)) − x(t)‖

≤ ‖xn(t) − x(t)‖ + ‖Jλn
(x(t)) − x(t)‖ → 0
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as n → ∞. Hence Jλn
(xn(·)) → x(·) in Lp(T,RN ) (dominated convergence

theorem). Since (Jλn
(xn(·)), Aλn

(xn(·))) ∈ Gr Â and the latter is demiclosed

(since Â is maximal monotone), we have (x, u) ∈ Gr Â, hence u(t) ∈ A(x(t))
a.e. on T, u ∈ Lq(T,RN ). This proves that x ∈ C1(T,RN ) is a solution of
(1).

Remark. An interesting byproduct of the above proof is that Â : D ⊆

Lp(T,RN ) → 2Lq(T,RN ) is maximal monotone when domA = RN , a fact
well known for p = q = 2, but for which we have been unable to find a proof
in the literature when p 6= 2.

Now we state and prove an existence theorem for problem (1) for the
case when domA is not all of RN .

Theorem 6. If hypotheses H(A)2, H(f)2, H(ξ) and H0 hold , then prob-

lem (1) has a solution x ∈ C1(T,RN ).

P r o o f. As in the proof of Theorem 5, let λn → 0, λn > 0 and let
xn ∈ C1(T,RN ) be the solutions of the auxiliary problem (7). Again {xn} ⊆

W 1,p(T,RN ) is bounded and so we may assume that xn
w
→ x inW 1,p(T,RN ).

Also for all n ≥ 1 we have V (xn) + Âλn
(xn) = −N(xn) and hence (V (xn),

Âλn
(xn))pq + ‖Âλn

(xn)‖2
2 = −(N(xn), Âλn

(xn))pq .

Note that Âλn
(xn) ∈ C(T,RN) for all n ≥ 1. We have

(V (xn), Âλn
(xn))pq = −

b\
0

((‖x′n(t)‖p−2x′n(t))′, Aλn
(xn(t)))RN dt

= − ‖x′n(b)‖p−2(x′n(b), Aλn
(xn(b)))RN

+ ‖x′n(0)‖p−2(x′n(0), Aλn
(xn(0)))RN

+

b\
0

‖x′n(t)‖p−2

(
x′n(t),

d

dt
Aλn

(xn(t))

)

RN

dt

(Green’s identity). Since Aλn
(·) is Lipschitz continuous, it is differentiable

almost everywhere (Rademacher’s theorem). Also from the monotonicity of
Aλn

(·) we have
(
y,
Aλn

(x+ ty) −Aλn
(x)

t

)

RN

≥ 0,

i.e. (y,A′
λn

(x)y)RN ≥ 0 for every x which is a point of differentiability of

Aλn
(·) and every y ∈ RN . Moreover, from Marcus–Mizel [13] we know that

d

dt
Aλn

(xn(t)) = A′
λn

(xn(t))x′n(t).
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Then using hypothesis H0 and the property of A′
λn

(·) just proved, we obtain

(V (xn), Âλn
(xn))pq ≥ 0.

Since N(xn) ∈ L2(T,RN ) (see hypothesis H(f)2), we can write

‖Âλn
(xn)‖2

2 ≤ ‖N(xn)‖2‖Âλn
(xn)‖2

and thus {Âλn
(xn)}n≥1 ⊆ L2(T,RN ) ⊆ Lq(T,RN ) (since q ≤ 2 ≤ p) is

bounded.
Thus we may assume that Âλn

(xn)
w
→ u in Lq(T,RN ). Also as in the

proof of Theorem 5, we obtain xn → x in W 1,p(T,RN ). Moreover, by

the same argument as in that proof, ‖x′n(·)‖p−2x′n(·)
w
→ ‖x′(·)‖p−2x′(·) in

W 1,q(T,RN ) and in the limit we have
{

(‖x′(t)‖p−2x′(t))′ = u(t) + f(t, x(t), x′(t)) a.e. on T,

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)).

To finish the proof we need to show that u(t) ∈ A(x(t)) a.e. on T . To

this end let Jλ : RN → RN be the resolvent of A and Ĵλ : Lp(T,RN ) →
Lp(T,RN ) the corresponding Nemytskĭı operator, i.e. Jλ(x)(·) = Jλ(x(·))
(recall that Jλ(·) is nonexpansive). By Marcus–Mizel [13] we know that for
every n ≥ 1, Jλn

(xn(·)) ∈W 1,p(T,RN ) and

d

dt
Jλn

(xn(t)) = J ′
λn

(xn(t))x′n(t), ‖J ′
λn

(xn(t))‖ ≤ 1.

Thus ‖J ′
λn

(xn(t))x′n(t)‖ ≤ ‖x′n(t)‖ a.e. on T , from which it follows that

{Jλn
(xn(·)) = Ĵλn

(xn)}n≥1 ⊆ W 1,p(T,RN ) is bounded (note Jλn
(0) = 0).

Thus we may assume that Ĵλn
(xn)

w
→ z in W 1,p(T,RN ) and Ĵλn

(xn) → z
in C(T,RN ). We know that

Jλn
(xn(t)) + λnAλn

(xn(t)) = xn(t) (since Aλn
= λ−1

n (I − Jλn
)),

and so Ĵλn
(xn)+λnÂλn

(xn) = xn. Passing to the limit in the above equality

and since λn → 0 and {Âλn
(xn)}n≥1 ⊆ Lq(T,RN ) is bounded, we obtain

z = x. So Ĵλn
(xn) → x in C(T,RN).

Now let

Γ = {t ∈ T : there exist y ∈ RN and v ∈ A(y) such that

(u(t) − v, x(t) − y)RN < 0}.

If we show that Γ ⊆ T is a Lebesgue-null set, then from the maximal
monotonicity of A(·) we will have u(t) ∈ A(x(t)) a.e. on T . In what follows,

we denote by | · | the Lebesgue measure on T . Let E : T → 2R
N×R

N

be
defined by E(t) = {(y, v) ∈ RN ×RN : v ∈ A(y), (u(t)−v, x(t)−y)RN < 0}.
Evidently Γ = domE = {t ∈ T : E(t) 6= ∅}. Note that GrE = {(t, y, v) ∈
T × RN × RN : d(v,A(y)) = 0, ϑ(t, y, v) < 0}, where ϑ(t, y, v) = (u(t) −
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v, x(t) − y)RN (recall that A(·) is closed valued). Since ϑ is measurable in t
and continuous in (y, v), it is jointly measurable (see Hu–Papageorgiou [10],
Proposition II.1.6, p. 142) and so GrE∈L×B(RN)×B(RN ). Then from the
Yankov–von Neumann–Aumann projection theorem (see Hu–Papageorgiou
[10], Theorem II.1.33, p. 149), we have projT GrE = domE ∈ L.

Suppose |Γ | > 0. Apply the Yankov–von Neumann–Aumann selection
theorem (see Hu–Papageorgiou [10], Theorem II.2.14, p. 158) to obtain mea-
surable maps y : Γ → RN , v : Γ → RN such that (y(t), v(t)) ∈ E(t) for all
t ∈ Γ . By Lusin’s theorem we can find closed Γ1 ⊆ Γ with |Γ1| > 0 such
that y|Γ1

, v|Γ1
are continuous, hence bounded. Recall that Aλn

(xn(t)) ∈
A(Jλn

(xn(t))) and so

(Aλn
(xn(t)) − v(t), Jλn

(xn(t)) − y(t))RN ≥ 0 on Γ1,

hence \
Γ1

(Aλn
(xn(t)) − v(t), Jλn

(xn(t)) − y(t))RN dt ≥ 0

and therefore \
Γ1

(u(t) − v(t), x(t) − y(t))RN dt ≥ 0.

But since |Γ1| > 0 and (y(t), v(t)) ∈ E(t) for all t ∈ Γ , we have\
Γ1

(u(t) − v(t), x(t) − y(t))RN dt < 0,

a contradiction. Thus |Γ | = 0 and so u(t) ∈ A(x(t)) a.e. on T . This then
proves that x ∈ C1(T,RN ) solves the problem.

We conclude this section with some important special cases of prob-
lem (1).

(a) Let K1,K2 ⊆ RN be nonempty, closed and convex with 0 ∈ K1∩K2.
Let δK1×K2

be the indicator function of the convex set K1 ×K2, i.e.

δK1×K2
(x, y) =

{
0 if (x, y) ∈ K1 ×K2,
+∞ otherwise,

and ξ = ∂δK1×K2
= NK1×K2

= NK1
× NK2

(for C ⊆ RN nonempty, NC

denotes the normal cone to C, see Hu–Papageorgiou [10], Definition VI.5.1,
p. 624 and Proposition VI.5.39, pp. 636–637). Then problem (1) becomes

(12)






(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + f(t, x(t), x′(t)),
x(0) ∈ K1, x(b) ∈ K2,
(x′(0), x(0))RN = σ(x′(0),K1),
(−x′(b), x(b))RN = σ(−x′(b),K2).

Note that ξ = ∂δK1×K2
is maximal monotone, (0, 0) ∈ ξ(0, 0) and from the

definition of the normal cone we see that (a′, d′) ∈ ξ(a, d) = NK1
(a)×NK2

(d)
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implies (a′, a)RN ≥ 0, (d′, d)RN ≥ 0 since 0 ∈ K1 ∩K2. So hypothesis H(ξ)
(with (i) in effect) holds. Thus we can state the following corollary.

Corollary 7. If H(A)1, H(f)1 (or H(A)2, H(f)2 and H0) hold , then

problem (12) has a solution x ∈ C1(T,RN ).

In particular suppose that K1,K2 ⊆ RN
+ and let A = ∂ψ where ψ = δ

R
N
+

.

Then

A(x) = NRN
+

(x)

=

{
{0} if xi > 0 for all {i ∈ 1, . . . , N},

−RN
+ ∩ {x}⊥ if there is i ∈ {1, . . . , N} such that xi = 0,

for x ∈ RN
+ . Also it is easy to see that Aλ(x) = λ−1(x − p(x;RN

+ )), λ > 0,
where p(·;RN

+ ) denotes the metric projection on RN
+ . Then for x ∈ K1 or

x ∈ K2, p(x;R
N
+ ) = x since Aλ(x) = 0 and so hypothesis H0 holds. Thus by

Corollary 7 we are guaranteed a solution x ∈ C1(T,RN ) for the following
problem, provided f satisfies H(f)2:






(‖x′(t)‖p−2x′(t))′ = f(t, x(t), x′(t)) a.e.
on {t ∈ T : xi(t) > 0 for all i ∈ {1, . . . , N}},

(‖x′(t)‖p−2x′(t))′ ≤ f(t, x(t), x′(t)) − u(t) a.e.
on {t ∈ T : xi(t) = 0 for some i ∈ {1, . . . , N}},

u(t) ≥ 0, (x(t), u(t))RN = 0,
x(t) ≥ 0 for all t ∈ T , x(0) ∈ K1, x(b) ∈ K2,
(x′(0), x(0))RN = σ(x′(0),K1), (−x′(b), x(b))RN = σ(−x′(b),K2).

Above, the ordering on RN is the usual componentwise partial ordering.
Also observe that the solution x remains in domA = RN

+  RN (in other
words the special choice of the maximal monotone part A translates into a
viability result for the convex set RN

+ ).
(b) In case (a) above, let K1 = K2 = {0}. Then problem (1) becomes

the usual Dirichlet problem:

(13)

{
(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + f(t, x(t), x′(t)) a.e. on T,

x(0) = x(b) = 0.

Since Aλ(0) = 0, we see that hypothesis H0 holds. Thus we can state the
following existence result for problem (13).

Corollary 8. If hypotheses H(A)1, H(f)1 (or H(A)2, H(f)2) hold , then

problem (13) has a solution x ∈ C1(T,RN ).

(c) In example (a), let K1 = K2 = RN . Then problem (1) becomes the
usual Neumann problem:

(14)

{
(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + f(t, x(t), x′(t)) a.e. on T,
x′(0) = x′(b) = 0.
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Since ∂δK1×K2
= NK1

× NK2
= {(0, 0)}, we see that hypothesis H0 is

trivially fulfilled. So the following existence result is true for problem (14).

Corollary 9. If hypotheses H(A)1, H(f)1 (or H(A)2, H(f)2) hold , then

problem (14) has a solution x ∈ C1(T,RN ).

(d) Let K = {(x, y) ∈ RN × RN : x = y} and let ξ = ∂δK be the
indicator function for K. Note that K ⊆ RN × RN is a subspace and so
∂δK = K⊥ = {(v,w) ∈ RN × RN : v = −w}. Problem (1) becomes the
usual periodic problem:

(15)

{
(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + f(t, x(t), x′(t)) a.e. on T,
x(0) = x(b), x′(0) = x′(b).

In this case hypothesis H(ξ)(ii) is satisfied. Also if (a′, d′) ∈ ξ(a, d), we
have a = d and a′ = −d′ and so (Aλ(a), a′)RN + (Aλ(d), d′)RN = 0, hence
hypothesis H0 holds. Thus we can state the following existence result for
problem (15).

Corollary 10. If hypotheses H(A)1, H(f)1 (or H(A)2, H(f)2) hold ,
then problem (15) has a solution x ∈ C1(T,RN ).

(e) Let ξ : RN × RN → RN × RN be defined by

ξ(x, y) =

(
1

ϑp−1
ϕ(x),

1

ηp−1
ϕ(y)

)
,

for some ϑ, η > 0. Then ξ is monotone, continuous (thus maximal monotone)
and ξ(0, 0)=(0, 0). Problem (1) becomes the following Sturm–Liouville-type
problem:

(16)

{
(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + f(t, x(t), x′(t)) a.e. on T,
x(0) − ϑx′(0) = 0, x(b) + ηx′(b) = 0.

Note that if (a′, d′) = ξ(a, d), then (a′, a)RN = ϑ1−p‖a‖p ≥ 0 and
(d′, d)RN = η1−p‖d‖p ≥ 0, which means that hypothesis H(ξ)(i) is satisfied.
Also (Aλ(a), a′)RN = (Aλ(a), ϑ1−p‖a‖p−2a)RN = ϑ1−p‖a‖p−2(Aλ(a), a)RN

≥ 0 because Aλ(·) is monotone and Aλ(0) = 0. Similarly (Aλ(d), d′)RN ≥ 0.
Therefore hypothesis H0 holds and we can state the following existence re-
sult.

Corollary 11. If hypotheses H(A)1, H(f)1 (or H(A)2, H(f)2) hold ,
then problem (16) has a solution.

(f) Let ξ : RN ×RN → RN ×RN be defined by ξ(x, y) = (x− g1(x), y −
g2(y)), with g1, g2 : RN → RN nonexpansive maps with g1(0) = g2(0) = 0.
Then ξ is monotone continuous (thus maximal monotone) and ξ(0, 0) =
(0, 0). Also assume that (gi(x), x)RN ≤ c‖x‖2 for all x ∈ RN and i = 1, 2,
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with 0 < c < 1. Suppose that for all x ∈ RN and all λ > 0, (Aλ(x), gi(x))RN

≤ (Aλ(x), x)RN for i = 1, 2. Then hypothesis H0 holds. The problem now is
the following:

(17)






(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + f(t, x(t), x′(t)) a.e. on T,
‖x′(0)‖p−2x′(0) = x(0) − g1(x(0)),
−‖x′(b)‖p−2x′(b) = x(b) − g2(x(b)).

We can state the following result concerning problem (17):

Corollary 12. If hypotheses H(A)1, H(f)1 (or H(A)2, H(f)2) hold and

ξ(x, y) is as above, then problem (17) has a solution x ∈ C1(T,RN ).
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