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Oscillatory and nonoscillatory solutions of
neutral differential equations

by SATOSHI TANAKA (Matsuyama)

Abstract. Neutral differential equations are studied. Sufficient conditions are ob-
tained to have oscillatory solutions or nonoscillatory solutions. For the existence of solu-
tions, the Schauder—Tikhonov fixed point theorem is used.

1. Introduction. In this paper we consider the neutral differential
equation

& o) + e — 7))+ £ (9(0)) = 0.

Throughout, the following conditions (H1)—(H3) are assumed:

(HI) neN,A>0andT>0;

(H2) g€ Cltg,00) and limy_, o g(t) = 003

(H3) f € C([to,0) x R) and there exists F' € C([tp,00) x [0,00)) such

that F'(t,u) is nondecreasing in u € [0, 00) for each fixed ¢ > t; and
satisfies

(1.1)

|f(t,u)| < F(t,|ul), (t,u) € [to,00) x R.

By a solution of (1.1) we mean a function z(¢) which is continuous and
satisfies (1.1) on [t;,0) for some t, > to. Therefore, if z(t) is a solution of
(1.1), then x(t) + Az (t — 7) is n times continuously differentiable on [t,, c0).
Note that, in general, z(t) itself is not continuously differentiable.

A solution of (1.1) is called oscillatory if it has arbitrarily large zeros;
otherwise it is called nonoscillatory. This means that a solution z(t) is oscil-
latory if and only if there is a sequence {t;}$2, such that t; — oo as i — o
and z(t;) =0 (1 =1,2,...), and a solution z(¢) is nonoscillatory if and only
if z(t) is either eventually positive or eventually negative.
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There has been much current interest in the existence of oscillatory so-
lutions and nonoscillatory solutions of neutral differential equations, and
many results have been obtained. For typical results, we refer to the papers
[1, 5-15] and the monographs [2, 3.

Neutral differential equations find numerous applications in natural sci-
ence and technology. For instance, they are frequently used for the study of
distributed networks containing lossless transmission lines. See, for example,
Hale [4].

Now consider the equation

o lelt) — Aalt — )] + £ (¢, 2(9(0) = 0.

Let w,w_ € C(R) satisfy w(t + 7) = —w(t) and w_(t + 7) = w_(t), re-
spectively, for ¢ € R. For example, w(t) = sin(nt/7) and w_(t) = cos(2nt/T)
are such functions. We easily see that A/ 7w(t) and A\*/7w_(t) are solutions
of the unperturbed equations

n n

d
dt—n[x(t) +Az(t—7)]=0 and %[x(t) —Xz(t—71)] =0,

respectively. Thus it is natural to expect that, if f is small enough in some
sense, equation (1.1) [resp. (1.2)] has a solution x(¢) which behaves like the
function A\/7w(t) [resp. A/7w_(t)] as t — oco. In fact, the following results
have been established by Jaros and Kusano [7].

(1.2)

THEOREM A. Suppose that 0 < A < 1 and that there exist constants
w€ (0,A) and a > 0 such that

S " TR a XD/ T dE < oo
to
Then
(i) for each w € C(R) such that w(t +71) = —w(t) for t € R and
maxer |w(t)| < a, equation (1.1) has a solution x(t) satisfying
(1.3) z(t) = A/Tw(t) +o(1)]  (t — o),
(i) for each w_ € C(R) such that w_(t +7) = w_(t) for t € R and
maxser |w—(t)| < a, equation (1.2) has a solution x(t) satisfying
(1.4) z(t) = A\ w_(t) +o(1)] (t — o).
THEOREM B. Suppose that A > 1 and that there exist constants p € (1, \)
and a > 0 such that

S p" TR e DY dt < oo,
to

where g*(t) = max{g(t), t}. Then (i) and (ii) of Theorem A follow.
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We note that a solution z(t) satisfying (1.3) is oscillatory if w(t) # 0, and
that a solution z(t) satisfying (1.4) is oscillatory or nonoscillatory according
to whether the function w_(t) is oscillatory or nonoscillatory. In particular,
Theorems A and B are first results concerning the existence of oscillatory
solutions of nonlinear neutral differential equations.

For equation (1.2), Theorems A and B have been extended to the fol-
lowing results by Kitamura and Kusano [9]. (See also [5, 8, 10, 14].)

THEOREM C. Let A = 1. Suppose that

oo

S t"F(t,a)dt < oo  for some a > 0.
to

Then, for each w_ € C(R) such that w_(t +7) = w_(t) for t € R and
maxer |w—(t)| < a, equation (1.2) has a solution x(t) satisfying

z(t) =w_(t) +0o(1) (t — o0).

THEOREM D. Let \ # 1. Suppose that
(1.5) S AR aX DTy dE < 00 for some a > 0.

to

Then (ii) of Theorem A follows.

However, very little is known about extensions of Theorems A and B
for equation (1.1) such as Theorems C and D. In this paper we obtain the
following results which improve Theorems A and B for equation (1.1).

THEOREM 1.1. Let A = 1. Suppose that
(1.6) S t"1F(t,a)dt < oo  for some a > 0.
to
Then, for each ¢ € R and w € C(R) such that w(t+7) = —w(t) fort € R
and maxeg |w(t)| + |c| < a, equation (1.1) has a solution x(t) satisfying

(1.7) z(t) =w(t)+c+o(l) ast— oc.

THEOREM 1.2. Let A # 1. Suppose that (1.5) holds. Then (i) of Theo-
rem A follows.

REMARK 1.1. The solution obtained in Theorem 1.1 is oscillatory or
nonoscillatory according to whether the function w(t) + ¢ is oscillatory or
nonoscillatory. Since condition (1.6) is independent of the choice of the func-
tion w(t)+c¢, equation (1.1) has both oscillatory solutions and nonoscillatory
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solutions if (1.6) holds. For the case w(t) # 0, the solution of (1.1) obtained
in Theorem 1.2 is oscillatory.

The proof of Theorem 1.1 is given in Section 2. The proof of Theorem
1.2 is divided into the cases 0 < A < 1 and A > 1. These are considered in
Sections 3 and 4, respectively. To prove the existence of solutions, we use
the Schauder—Tikhonov fixed point theorem.

2. Proof of Theorem 1.1. Equation can be replaced by (1.1) with
A=1

Let T and T, be constants with T'—7 > T, > ty. We depote by U[T, o)
the set of all functions u € C[T},00) such that Y o, (1) u(t + ir) con-
verges for each fixed t € [T — 7,00). To each u € U[T,c0) we assign the
function ®u on [T, 00) by

(Pu)(t) = { S ()t ar), t>T -,
(@U)(T—T)y tc [T*,T—T]
Then we see that
2 (Pu)(t) + (Pu)(t — 1) = u(t), t=>T, uecU[lk 00).

In fact,

i

(Du)(t) + (Pu)(t — 1) =Y (—=1)T u(t +ir) + Z(—l)”lu(t + (i —1)7)

=N (D)t +ir) = Y (~D)Hu(t +ir)
i=1 =0

Il
<
>

), t>T, ueU[Ty, 00).

Hereafter, C[T,,00) is regarded as the Fréchet space of all continuous
functions on [Ty, 00) with the topology of uniform convergence on every
compact subinterval of [T}, c0) (the C[T, c0)-topology).

We prepare the next proposition for the proof of Theorem 1.1.

LEMMA 2.1. Let T and T, be constants with T — 17 > T, > ty. Suppose
that n € C[T—7,00) is such that n(t) > 0 fort > T—7 and lim;_,o, n(t) =0
and define

V={veU[T,0): |(Pv)t)| <n(t), t >T —T1}.

Then @ maps V into C[Ty,00) and is continuous on V in the C[T,,00)-
topology.
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Proof. If v € V, then

(2.2) sup | Y (—1)i+1v(t—|—z’7)‘
te[T—,00) i—pt1

1
= sup ‘ DTt + pr + i)
er- TOO)Z

< sup n(t+pr)
te[T—7,00)

= Sup n(t)7 p:07 1727""
te[T+(p—1)7,00)
which means that the series > >~ (—1)""!o(t + iT) converges uniformly on
[T — 7,00). Consequently, @v is continuous on [T}, 00) for each v€V and @
maps V into C[T, 00).

Now we prove that @ is continuous on V. It suffices to show that if
{vj}52, is a sequence in C[T},00) converging to v € C[T,00) in the
C [T*, 0o)-topology, then also $v; converges to $v in this topology.

For any € > 0, there is an integer p > 1 such that

€
(2.3) sup n(t) < =.
te[T+(p—1)1,00) 3
Take an arbitrary compact subintervall of [T'—7, 00). There exists an integer
jo = 1 such that

p

. . 9 . .
Z|vj(t—|—z7') —u(t+i7)| < 5 tel i
i=1

It follows from (2.2) and (2.3) that

(D)) (1) = (BV)(E)] < D loj(t +im) — vt +i7)|

i=1

[ee]
+(Z(— )ity t+zr(+(z 1) o(t + ir)
t=p+1 t=p+1
<g, tel, 7> Jo,
which implies that $v; converges to $v uniformly on I. In view of the fact
that (Pv)(t) = (Pv)(T — 1) for t € [T, T — 7] and v € V, we conclude that
@ is continuous on V. The proof is complete.

Proof of Theorem 1.1. Put 6 = a—|c|—max;cg |w(t)|>0. Take a number
T >ty so large that

T, = min{T — 7,inf{g(t) : t > T}} > t9
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and
(2.4) S s"'F(s,a)ds < 0.

T
Let

o —t n—2

S (87)}7(37@) ds, n>2,

G(t)=« ; (n—2)!

F(t,a), n=1,
for t > T. Notice that
2. d t>"1T.
(2:5) ) GO S n_l F(s,a)ds, t>

Denote by Y the set of all functions y € C[T%, o0) such that

y(t) =y(T) forte [T, T], |yt)| < S G(s)ds fort>T
and
t+7
y(t) —yt+ 7)< | G(s)ds fort>T.

Obviously, Y is a closed convex subset of C[T}, c0).
Now we claim that if y € Y, then

(2.6) ‘Z 1)t t+z'7')‘ < OSO G(s)ds, t>T -7
t+7

form=1,2,... If m is odd, then

‘Z 1)+t t+1‘7)‘

(m—-1)/2

= | 3 It + 25— 1)) — ylt + 27)] + y(t + mr)
j=1

(m—-1)/2 t+2j57 %)

< > | G)ds+ | Gs)ds
Jj=1  t+(2j—1)7 t+mT

< SG(S)dS, t>T—71,yecY.
t+7
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For the case where m is even, using the equality

m m/2

S (=)t +ir) =Y [yt + (25 — )r) —y(t+2j7)], t>T -7,
i=1 j=1
we get (2.6).
According to (2.6),if m>p>1andt € [T —7,00), then

m—p+1

‘Em:(_l)my(t +in)| =] Y 0Tyt i+ p- )7
i=p i=1

m—p+1 '
= > D)yt - D+ i)
i=1
< S G(s)ds -0 asp— o0
t+pT

for each y € Y. Hence, Y C U[Ty,00). Letting m — oo in (2.6), we obtain
[(Py)(t)] < S G(s)ds, t>T -1, yeY.
t+7

Lemma 2.1 implies that @ maps Y into C[T,o0) and is continuous on Y.
From (2.4), (2.5) and the last inequality, it follows that

thj&(@y)(t):o and [(Py)(t)| <o, t>T., yeY.
Set
27)  (QYt) =wt) +ct+ ()" (DY), t=T., yeY.
Then we find that

(2.8) (2y)(t) =w(t)+c+o(1) (t— o0)
and
(2.9) [(2y)(O)] < lw@)]+ e[ +d<a, t=T

for each y € Y.
We define the mapping F : Y — C[T}, 00) as follows:

OSO (s—t)"*
(Fy)t)={ ; (-1
(Fy)(T), t e [T, T).
By (H3) and (2.9), the mapping F is well defined. We have F(Y) C Y. In

f(s,(£2y)(g(s)))ds, t>T,
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fact, if t > T and y € Y, then

7 (s —t)n 1t 7

(Fy) )| < | o) Flma)ds = | G(s)ds,
by (2.5), and
t+71
FDE) — Fn+ ) =] | s (2)(a() ds|
tJri’ t+1
< S F(s,a)ds = S G(s)ds

forn =1, and

(o)) = F)ernl=| | § g f e (2)(6) dr ds
t471 oo (r — s)n,g t+r
< S SWF(r,a)drds: S G(s)ds

for n # 1.

Since {2 is continuous on Y, the Lebesgue dominated convergence theo-
rem shows that F is continuous on Y.

Now we claim that F(Y) is relatively compact. We note that F(Y")
is uniformly bounded on every compact subinterval of [T, o), because of
F(Y') C Y. By the Ascoli-Arzela theorem, it suffices to verify that the fam-
ily F(Y") is equicontinuous on every compact subinterval of [T}, c0). Observe
that
F(t,a), n=1,

{7 s"2F(s,a)ds, n#1,

ol = { {>T, yev.
Let I be an arbitrary compact subinterval of [T,00). Then we see that
{(Fy)'(t) : y € Y} is uniformly bounded on I. The mean value theorem
implies that F(Y") is equicontinuous on I. Since |(Fy)(t1)—(Fy)(t2)| = 0 for
t1, to € [Ty, T], we conclude that F(Y') is equicontinuous on every compact
subinterval of [T, 00). Thus F(Y) is relatively compact as claimed.

Consequently, we are able to apply the Schauder—Tikhonov fixed point
theorem to the operator F and find that there exists a y € Y such that
y = Fy. Set xz(t) = (2y)(t). From (2.8) it follows that x(t) satisfies (1.7).
By (2.7) and (2.1), we obtain

z(t)+z(t—7)=w(t)+w(t—71)+2c+ (—1)”’1[@@(15) + (Py)(t — 7))
= 2c+ (—1)"g(1),
=2+ (=) YFP), t>T.



Neutral differential equations 177

Therefore we see that
jt—n[x(t) +a(t—7)) = (D" (FP() = —ft2(9(t), t>T,

so that x(t) is a solution of (1.1). The proof is complete.

3. Proof of Theorem 1.2 (0 < A < 1). We need a few lemmas.
Let T and T, be constants such that T'— 7 > T, > to. We denote by
S[T.,00) the set of all functions u € C[T, 00) such that the series

(3.1) Z|u(t—|—z'7’)|

converges uniformly on [T'—7, 00). It is easy to see that S[T}, 00) C U[T%, o)
and @ maps S[T%, c0) into C[T, 00).

LEMMA 3.1. Let T and T, be constants with T — 17 > T, > ty. Suppose
that @ € S[Ty,00) satisfies (t) >0 fort > T and define

W ={w € O[T, 00) : [w(t)] < o(t), t =T}
Then W C S[Ty,00) and D is continuous on W in the C[T, 00)-topology.

Proof. It is clear that W C S[Ty,00). Let € > 0. There is an integer
p > 1 such that

[ee]
Z p(t+ir) <
1=p+1
Take an arbitrary compact subinterval I of [T — 7,00). Let {w;}32; be a
sequence in W converging to w € W in the C[T}, co)-topology. There exists
an integer jo > 1 such that

, t>T—r.

Wl ™

P
. . 3 . .
Z|wj(t—|-z7') —w(t+1i7)| < 3 tel, j>jo.
i=1
We see that

[(Pw;)(t) = (Bw)(D)] < Y |w;(t +iT) — w(t +iT)|
i=1

+ > fwit+in) |+ Y w(t+ir)

i=p+1 i=p+1
6 °° . . .
<§+2i_zp;r1(p(t—|—z7')<€, tel, j=jo,

implying that ®w; converges to ¢w uniformly on I. For t € [T.,,T — 7], we
have |(Qw;)(t) — (Pw)(t)| = [(Pw;)(T — 7) — (Pw)(T — 7)|. Therefore, & is
continuous on W.
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LEMMA 3.2. Let u € C[Ty,00). Then u € S[Ty,00) if and only if the
series (3.1) converges for each fized t € [T — 1,00) and

(3.2) tllglo Z; lu(t 4+ i7)| = 0.
Proof. We note that if the series (3.1) converges for each fixed ¢t €

[T — 7,00), then

o oo

(3.3) sup |u(t +i7)] =  sup lu(t + (m + 1)1 + i7)]
te[T+mt,00) ZZ:; te[T—7,00) ZZ:;
oo
= sup Z lu(t +i7)]
te[T—7,00) PR—

form=1,2,...

First we prove the “only if” part. Assume that u € S[T,00). Clearly,
the series (3.1) converges for each fixed ¢t € [T'— 7,00). Letting m — oo in
(3.3), we have

lim sup Z lu(t +i1)| =0,
M= 4e[T+mT,00) i—1
which implies (3.2).
Conversely, suppose that the series (3.1) converges for each fixed ¢t €
[T — 7,00) and (3.2) holds. By (3.3) again, we obtain

lim  sup Z lu(t +iT)| = 0.

M= 4e[T—7,00) PR—

This shows that the series (3.1) converges uniformly on [T"— 7,00). Hence,
the “if” part follows.

LEMMA 3.3. Let 0 < A <1 and k € NU{0}. Suppose that G € Cltg, o)
satisfies
(3.4) G(t)>0 fort>ty and | XT7G(t)dt < o0,

to
and define the function ¢ on [tg,00) by
p(t) =27 {(s —1)fG(s)ds, t >t
t

Then Y o2 p(t +iT) converges for each fized t € [to — T,00) and tends to 0
ast — oo.
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Proof. Let t > tg — 7 be fixed. Observe that

0o 00 co t+(j+1)T
(3.5) Z o(t+it) = Z A~ (Hin/T Z S (s —t—iT)"G(s) ds
i=1 i=1 j=t  t+jT

oo t+(+1)T 4

=> | DA (s —t —in)P AT G(s) ds.

j=1  t4jr =1
Ifseft+jr,t+ (j+1)7], then (j —i)7 <s—t—ir < (j+1—1i)7. Hence

J J

(3.6) DN (s —t —ir)h <Y NI 41— )k
i=1 1=1
J
=7y NI <K
=1

for s € t+jm,t+(j+1)7], K =Y oo, Ai71i*. By (3.5) and (3.6), we obtain

Z o(t+i1) < TFK S A73/TG(s) ds.
i=1 t+r

This completes the proof.
Proof of Theorem 1.2 (0 < A < 1). Let 0 < A < 1. Put § = a—
maxseg [w(t)] > 0, G(t) = F(t,a\®/T), and
o) =2\ (s —1)"'G(s)ds 20, t>to.
t

From Lemma 3.3 it follows that

n(t) = Z o(t + i7)

i=1
converges for each fixed t € [ty — 7,00) and lim;_, o, n(t) = 0. Thus we can
choose a number T' > ¢, so large that n(t) < § for t > T — 7 and
T, = min{T — 7,inf{g(t) : t > T'}} > to.

Lemma 3.2 implies ¢[[7, o0) € S[T%, 00). Define
(3.7) Y ={y e C[T,,0): |y(t)| < ¢(t) for t > T,}.

Then Y is closed and convex. By Lemma 3.1, the mapping @ is continuous
on Y. Put

(Qy)(#) = w() + (1) (By)(t), t=To, yeY.
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Since
(@yO] <D elt+ir) =nt) s, t=T-71 yey,
we have
(3.8) [(2y))| < lw@®)]+6<a, t=T,, yey,
and
(3.9) (2y)(t) =w(t)+o(l) (t—o0), yevY.

To each y € Y we assign the function Fy on [Ty, 00) by

7 (s —t)n1

i = | XN G L N ds, 2T,
) t € [T.,T].

In view of (3.8), we easily see that F is well defined and maps Y into itself.
Using the same arguments as in the proof of Theorem 1.1, we conclude
that F is continuous and F(Y') is relatively compact. Application of the
Schauder—Tikhonov fixed point theorem shows that there exists y € Y such
that y = Fy. Put x(t) = (27)(t)\/7. Then we obtain

QYN+ XNQy)(t — )N/

YTI(Rg)(E =) + (29)(t — 7))

YTw(t) + w(t = 7) + (=1)"{(@Y)(t) + (@) (t —7)}]
ST = (-1 (F()

7 (s —t)n—1

(=) S (n—1)!

t

z(t) + Ax(t — 1)

= (
=A
=A
= (

f(s,z(g(s)))ds, t>T.

By differentiation of the above equality, we conclude that x(¢) is a solution
of (1.1). From (3.9) it follows that x(t) satisfies (1.3). This completes the
proof of Theorem 1.2 for the case 0 < A < 1.

4. Proof of Theorem 1.2 (A > 1). First we prove two lemmas.

LEMMA 4.1. Let A > 1 and k € NU{0}. Suppose that G € C|ty,0)
satisfies (3.4). Then

t+7
(4.1) lim A~Y/7 S (t+7—5)*G(s)ds = 0.

t—o0
to
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Proof. It suffices to give the proof for the case k = 0. In fact, if

t+1

Jlim AT\ G(s)ds =0,
to
then for k # 0 we have
t+7 EotET dk
tlililo AT tS (t+7—5)*G(s)ds = tlililo o tS (t+7 — 5)*G(s) ds ﬁ)\tﬁ
0 0

. k t+1
= lim k‘![ )\} AT S G(s)ds = 0.

t—o0 lOg h
0

Put (t) = \7Y/7 Sio G(s)ds. An easy computation shows that

¢ ¢
T
e _'S/T _ >
(4.2) | w(s)ds o) [ | A/mas) ds ¢(t)], t> to.
to to
Then we have
t ')
T
< < —s/T >
0< tSO P(s)ds < Tog X tSO ATYTG(s)ds,  t>to,

which implies that v is integrable on [tg,00). It follows from (4.2) that
[ = lim;_,, ¥(t) exists and is a nonnegative finite value. Since 1) is integrable
on [tg,00), it is impossible that [ > 0. Consequently, (4.1) holds for the case
k = 0. This completes the proof.

LEMMA 4.2. Let A > 1 and k € NU{0}. Suppose that G € C|ty,0)
satisfies (3.4), and define the function ¢ on [tg,00) by

p(t) = A7 \(t—9)"G(s)ds, t=>t.

to

Then Y .2, p(t+iT) converges for each fized t € [tg — 7,00) and tends to 0
ast — o0.

Proof. Let t > tg — 7 be fixed. We observe that

et 00 t+71
ng(t—l—zﬁ’) = Z)\*(H”)/T S (t+ir —s)*G(s) ds
i=1 i=1 to

i—1t+(G+1)T

+ i A~/ Z S (t 4+ it — 5)FG(s) ds
i=2

j=1 t+jT
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o] t+7
= )\*t/TZ)\*i S (t + i1 — 5)*G(s) ds
i=1 to

oo t+(G+1)T oo
+ Z S Z AT/ T (L — AT TG(s) ds
J=1 t+jT  i=j+1
We have
t+ir—s)f =[t+7—s)+ (G —DrF <2F[(t+7— )%+ (i — 1)F7H]

for s € [to,t + 7], because (u + v)¥ < 2F(u* + v*) for u > 0 and v > 0.
Therefore

[e’e] t+71
L(t) < )ft/T2kZ)\*i S (t+7 — 5)*G(s) ds
i=1 to
o) t+7
H AN AT~ 1)F | G(s)ds
=1 to
2k t+1 t+7
= ﬁxt/f | (t+7—9)"G(s)ds+ LA™ | G(s)ds,
to to

where L = 28773 X7i(i — 1)k. By Lemma 4.1 we obtain lim;_,o I1(t)
= 0.
Ifseft+jrt+(j+1)7], then (i—j—1)7 <t+ir—s < (i—j)7. Thus

oo oo
Z )\f(t+i7—fs)/7-(t+i7_ _ S)k < Tk Z )\f(ifjfl)(i —j)k
i=j+1 i=j+1

= 7" Z AR =
=1

for s € [t + jr,t + (j + 1)7], and so
L)< M | X/7G(s)ds,
t+7
which implies that lim;_, ., I5(¢t) = 0. This completes the proof.
Proof of Theorem 1.2 (A > 1). Define § = a — maxcg |w(t)| > 0, G(t)=
F(t,aA9®/7) and let
t
p(t) =X {(t—5)"'G(s)ds > 0, >ty

to
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In view of Lemma 4.2, we find that
n(t)=> ot +ir)
i=1

converges for each fixed ¢t € [ty — 7,00) and lim; o, n(t) = 0. Take T > ¢,
such that n(t) < ¢ for t > T — 7 and

T, = min{T — 7,inf{g(t) : t > T}} > to.

By virtue of Lemma 3.2, we have ¢|i1, ) € S[T%,00). We define the set Y’
by (3.7). To each y € Y we assign the functions 2y and Fy on [T}, 00) by

(2y)t) =w(t) — (Py)(t), t=>Ti,

and
t

)\ft/ﬂ'x (t — S)n_l
T

(n—1)!

07 te [T*7 T]7
respectively. By the same argument as in the proof of Theorem 1.2 for the
case 0 < A < 1, we conclude that Fy = y for some y € Y, and that
z(t) = (27)(H) A7 is a solution of (1.1) satisfying (1.3). This completes the
proof of Theorem 1.2.

FE 7o (@) (g()NO 7 ds, 42T,
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