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Oscillatory and nonoscillatory solutions of

neutral differential equations

by Satoshi Tanaka (Matsuyama)

Abstract. Neutral differential equations are studied. Sufficient conditions are ob-
tained to have oscillatory solutions or nonoscillatory solutions. For the existence of solu-
tions, the Schauder–Tikhonov fixed point theorem is used.

1. Introduction. In this paper we consider the neutral differential
equation

(1.1)
dn

dtn
[x(t) + λx(t− τ)] + f(t, x(g(t))) = 0.

Throughout, the following conditions (H1)–(H3) are assumed:

(H1) n ∈ N, λ > 0 and τ > 0;

(H2) g ∈ C[t0,∞) and limt→∞ g(t) = ∞;

(H3) f ∈ C([t0,∞) × R) and there exists F ∈ C([t0,∞) × [0,∞)) such
that F (t, u) is nondecreasing in u ∈ [0,∞) for each fixed t ≥ t0 and
satisfies

|f(t, u)| ≤ F (t, |u|), (t, u) ∈ [t0,∞) × R.

By a solution of (1.1) we mean a function x(t) which is continuous and
satisfies (1.1) on [tx,∞) for some tx ≥ t0. Therefore, if x(t) is a solution of
(1.1), then x(t)+λx(t− τ) is n times continuously differentiable on [tx,∞).
Note that, in general, x(t) itself is not continuously differentiable.

A solution of (1.1) is called oscillatory if it has arbitrarily large zeros;
otherwise it is called nonoscillatory . This means that a solution x(t) is oscil-
latory if and only if there is a sequence {ti}

∞

i=1 such that ti → ∞ as i→ ∞
and x(ti) = 0 (i = 1, 2, . . .), and a solution x(t) is nonoscillatory if and only
if x(t) is either eventually positive or eventually negative.
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There has been much current interest in the existence of oscillatory so-
lutions and nonoscillatory solutions of neutral differential equations, and
many results have been obtained. For typical results, we refer to the papers
[1, 5–15] and the monographs [2, 3].

Neutral differential equations find numerous applications in natural sci-
ence and technology. For instance, they are frequently used for the study of
distributed networks containing lossless transmission lines. See, for example,
Hale [4].

Now consider the equation

(1.2)
dn

dtn
[x(t) − λx(t− τ)] + f(t, x(g(t))) = 0.

Let ω, ω− ∈ C(R) satisfy ω(t + τ) = −ω(t) and ω−(t + τ) = ω−(t), re-
spectively, for t ∈ R. For example, ω(t) = sin(πt/τ) and ω−(t) = cos(2πt/τ)
are such functions. We easily see that λt/τω(t) and λt/τω−(t) are solutions
of the unperturbed equations

dn

dtn
[x(t) + λx(t− τ)] = 0 and

dn

dtn
[x(t) − λx(t− τ)] = 0,

respectively. Thus it is natural to expect that, if f is small enough in some
sense, equation (1.1) [resp. (1.2)] has a solution x(t) which behaves like the
function λt/τω(t) [resp. λt/τω−(t)] as t → ∞. In fact, the following results
have been established by Jaroš and Kusano [7].

Theorem A. Suppose that 0 < λ ≤ 1 and that there exist constants

µ ∈ (0, λ) and a > 0 such that

∞\
t0

tn−1µ−t/τF (t, aλg(t)/τ ) dt <∞.

Then

(i) for each ω ∈ C(R) such that ω(t + τ) = −ω(t) for t ∈ R and

maxt∈R |ω(t)| < a, equation (1.1) has a solution x(t) satisfying

(1.3) x(t) = λt/τ [ω(t) + o(1)] (t → ∞),

(ii) for each ω− ∈ C(R) such that ω−(t + τ) = ω−(t) for t ∈ R and

maxt∈R |ω−(t)| < a, equation (1.2) has a solution x(t) satisfying

(1.4) x(t) = λt/τ [ω−(t) + o(1)] (t→ ∞).

Theorem B. Suppose that λ > 1 and that there exist constants µ ∈ (1, λ)
and a > 0 such that

∞\
t0

µ−t/τF (t, aλg∗(t)/τ ) dt <∞,

where g∗(t) = max{g(t), t}. Then (i) and (ii) of Theorem A follow.
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We note that a solution x(t) satisfying (1.3) is oscillatory if ω(t) 6≡ 0, and
that a solution x(t) satisfying (1.4) is oscillatory or nonoscillatory according
to whether the function ω−(t) is oscillatory or nonoscillatory. In particular,
Theorems A and B are first results concerning the existence of oscillatory
solutions of nonlinear neutral differential equations.

For equation (1.2), Theorems A and B have been extended to the fol-
lowing results by Kitamura and Kusano [9]. (See also [5, 8, 10, 14].)

Theorem C. Let λ = 1. Suppose that

∞\
t0

tnF (t, a) dt <∞ for some a > 0.

Then, for each ω− ∈ C(R) such that ω−(t + τ) = ω−(t) for t ∈ R and

maxt∈R |ω−(t)| < a, equation (1.2) has a solution x(t) satisfying

x(t) = ω−(t) + o(1) (t → ∞).

Theorem D. Let λ 6= 1. Suppose that

(1.5)

∞\
t0

λ−t/τF (t, aλg(t)/τ ) dt <∞ for some a > 0.

Then (ii) of Theorem A follows.

However, very little is known about extensions of Theorems A and B
for equation (1.1) such as Theorems C and D. In this paper we obtain the
following results which improve Theorems A and B for equation (1.1).

Theorem 1.1. Let λ = 1. Suppose that

(1.6)

∞\
t0

tn−1F (t, a) dt <∞ for some a > 0.

Then, for each c ∈ R and ω ∈ C(R) such that ω(t+ τ) = −ω(t) for t ∈ R

and maxt∈R |ω(t)| + |c| < a, equation (1.1) has a solution x(t) satisfying

(1.7) x(t) = ω(t) + c+ o(1) as t→ ∞.

Theorem 1.2. Let λ 6= 1. Suppose that (1.5) holds. Then (i) of Theo-

rem A follows.

Remark 1.1. The solution obtained in Theorem 1.1 is oscillatory or
nonoscillatory according to whether the function ω(t) + c is oscillatory or
nonoscillatory. Since condition (1.6) is independent of the choice of the func-
tion ω(t)+c, equation (1.1) has both oscillatory solutions and nonoscillatory
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solutions if (1.6) holds. For the case ω(t) 6≡ 0, the solution of (1.1) obtained
in Theorem 1.2 is oscillatory.

The proof of Theorem 1.1 is given in Section 2. The proof of Theorem
1.2 is divided into the cases 0 < λ < 1 and λ > 1. These are considered in
Sections 3 and 4, respectively. To prove the existence of solutions, we use
the Schauder–Tikhonov fixed point theorem.

2. Proof of Theorem 1.1. Equation can be replaced by (1.1) with
λ = 1.

Let T and T∗ be constants with T−τ ≥ T∗ ≥ t0. We denote by U [T∗,∞)
the set of all functions u ∈ C[T∗,∞) such that

∑
∞

i=1(−1)i+1u(t + iτ) con-
verges for each fixed t ∈ [T − τ,∞). To each u ∈ U [T∗,∞) we assign the
function Φu on [T∗,∞) by

(Φu)(t) =

{∑
∞

i=1(−1)i+1u(t+ iτ), t ≥ T − τ ,

(Φu)(T − τ), t ∈ [T∗, T − τ ].

Then we see that

(2.1) (Φu)(t) + (Φu)(t− τ) = u(t), t ≥ T, u ∈ U [T∗,∞).

In fact,

(Φu)(t) + (Φu)(t− τ) =

∞∑

i=1

(−1)i+1u(t+ iτ) +

∞∑

i=1

(−1)i+1u(t+ (i− 1)τ)

=

∞∑

i=1

(−1)i+1u(t+ iτ) −

∞∑

i=0

(−1)i+1u(t+ iτ)

= u(t), t ≥ T, u ∈ U [T∗,∞).

Hereafter, C[T∗,∞) is regarded as the Fréchet space of all continuous
functions on [T∗,∞) with the topology of uniform convergence on every
compact subinterval of [T∗,∞) (the C[T∗,∞)-topology).

We prepare the next proposition for the proof of Theorem 1.1.

Lemma 2.1. Let T and T∗ be constants with T − τ ≥ T∗ ≥ t0. Suppose

that η ∈ C[T−τ,∞) is such that η(t) ≥ 0 for t ≥ T−τ and limt→∞ η(t) = 0
and define

V = {v ∈ U [T∗,∞) : |(Φv)(t)| ≤ η(t), t ≥ T − τ}.

Then Φ maps V into C[T∗,∞) and is continuous on V in the C[T∗,∞)-
topology.
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P r o o f. If v ∈ V , then

(2.2) sup
t∈[T−τ,∞)

∣∣∣
∞∑

i=p+1

(−1)i+1v(t+ iτ)
∣∣∣

= sup
t∈[T−τ,∞)

∣∣∣
∞∑

i=1

(−1)i+1v(t+ pτ + iτ)
∣∣∣

≤ sup
t∈[T−τ,∞)

η(t+ pτ)

= sup
t∈[T+(p−1)τ,∞)

η(t), p = 0, 1, 2, . . . ,

which means that the series
∑

∞

i=1(−1)i+1v(t + iτ) converges uniformly on
[T − τ,∞). Consequently, Φv is continuous on [T∗,∞) for each v∈V and Φ
maps V into C[T∗,∞).

Now we prove that Φ is continuous on V . It suffices to show that if
{vj}

∞

j=1 is a sequence in C[T∗,∞) converging to v ∈ C[T∗,∞) in the
C[T∗,∞)-topology, then also Φvj converges to Φv in this topology.

For any ε > 0, there is an integer p ≥ 1 such that

(2.3) sup
t∈[T+(p−1)τ,∞)

η(t) <
ε

3
.

Take an arbitrary compact subintervalI of [T−τ,∞). There exists an integer
j0 ≥ 1 such that

p∑

i=1

|vj(t+ iτ) − v(t+ iτ)| <
ε

3
, t ∈ I, j ≥ j0.

It follows from (2.2) and (2.3) that

|(Φvj)(t) − (Φv)(t)| ≤

p∑

i=1

|vj(t+ iτ) − v(t+ iτ)|

+
∣∣∣

∞∑

i=p+1

(−1)i+1vj(t+ iτ)
∣∣∣ +

∣∣∣
∞∑

i=p+1

(−1)i+1v(t+ iτ)
∣∣∣

< ε, t ∈ I, j ≥ j0,

which implies that Φvj converges to Φv uniformly on I. In view of the fact
that (Φv)(t) = (Φv)(T − τ) for t ∈ [T∗, T − τ ] and v ∈ V , we conclude that
Φ is continuous on V . The proof is complete.

Proof of Theorem 1.1. Put δ = a−|c|−maxt∈R |ω(t)|>0. Take a number
T ≥ t0 so large that

T∗ = min{T − τ, inf{g(t) : t ≥ T}} ≥ t0
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and

(2.4)

∞\
T

sn−1F (s, a) ds < δ.

Let

G(t) =





∞\
t

(s− t)n−2

(n− 2)!
F (s, a) ds, n ≥ 2,

F (t, a), n = 1,

for t ≥ T . Notice that

(2.5)

∞\
t

G(s) ds =

∞\
t

(s− t)n−1

(n− 1)!
F (s, a) ds, t ≥ T.

Denote by Y the set of all functions y ∈ C[T∗,∞) such that

y(t) = y(T ) for t ∈ [T∗, T ], |y(t)| ≤

∞\
t

G(s) ds for t ≥ T

and

|y(t) − y(t+ τ)| ≤

t+τ\
t

G(s) ds for t ≥ T.

Obviously, Y is a closed convex subset of C[T∗,∞).

Now we claim that if y ∈ Y , then

(2.6)
∣∣∣

m∑

i=1

(−1)i+1y(t+ iτ)
∣∣∣ ≤

∞\
t+τ

G(s) ds, t ≥ T − τ

for m = 1, 2, . . . If m is odd, then

∣∣∣
m∑

i=1

(−1)i+1y(t+ iτ)
∣∣∣

=
∣∣∣
(m−1)/2∑

j=1

[y(t+ (2j − 1)τ) − y(t+ 2jτ)] + y(t+mτ)
∣∣∣

≤

(m−1)/2∑

j=1

t+2jτ\
t+(2j−1)τ

G(s) ds +

∞\
t+mτ

G(s) ds

≤

∞\
t+τ

G(s) ds, t ≥ T − τ, y ∈ Y.
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For the case where m is even, using the equality

m∑

i=1

(−1)i+1y(t+ iτ) =

m/2∑

j=1

[y(t+ (2j − 1)τ) − y(t+ 2jτ)], t ≥ T − τ,

we get (2.6).

According to (2.6), if m ≥ p ≥ 1 and t ∈ [T − τ,∞), then

∣∣∣
m∑

i=p

(−1)i+1y(t+ iτ)
∣∣∣ =

∣∣∣
m−p+1∑

i=1

(−1)i+py(t+ (i+ p− 1)τ)
∣∣∣

=
∣∣∣
m−p+1∑

i=1

(−1)i+1y(t+ (p− 1)τ + iτ)
∣∣∣

≤

∞\
t+pτ

G(s) ds → 0 as p→ ∞

for each y ∈ Y . Hence, Y ⊂ U [T∗,∞). Letting m→ ∞ in (2.6), we obtain

|(Φy)(t)| ≤

∞\
t+τ

G(s) ds, t ≥ T − τ, y ∈ Y.

Lemma 2.1 implies that Φ maps Y into C[T∗,∞) and is continuous on Y .
From (2.4), (2.5) and the last inequality, it follows that

lim
t→∞

(Φy)(t) = 0 and |(Φy)(t)| ≤ δ, t ≥ T∗, y ∈ Y.

Set

(2.7) (Ωy)(t) = ω(t) + c+ (−1)n−1(Φy)(t), t ≥ T∗, y ∈ Y.

Then we find that

(2.8) (Ωy)(t) = ω(t) + c+ o(1) (t→ ∞)

and

(2.9) |(Ωy)(t)| ≤ |ω(t)| + |c| + δ ≤ a, t ≥ T∗

for each y ∈ Y .

We define the mapping F : Y → C[T∗,∞) as follows:

(Fy)(t) =





∞\
t

(s− t)n−1

(n− 1)!
f(s, (Ωy)(g(s))) ds, t ≥ T ,

(Fy)(T ), t ∈ [T∗, T ].

By (H3) and (2.9), the mapping F is well defined. We have F(Y ) ⊂ Y . In
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fact, if t ≥ T and y ∈ Y , then

|(Fy)(t)| ≤

∞\
t

(s − t)n−1

(n − 1)
F (s, a) ds =

∞\
t

G(s) ds,

by (2.5), and

|(Fy)(t) − (Fy)(t+ τ)| =
∣∣∣
t+τ\

t

f(s, (Ωy)(g(s))) ds
∣∣∣

≤

t+τ\
t

F (s, a) ds =

t+τ\
t

G(s) ds

for n = 1, and

|(Fy)(t) − (Fy)(t+ τ)| =
∣∣∣

t+τ\
t

∞\
s

(r − s)n−2

(n− 2)!
f(r, (Ωy)(g(r))) dr ds

∣∣∣

≤

t+τ\
t

∞\
s

(r − s)n−2

(n− 2)!
F (r, a) dr ds =

t+τ\
t

G(s) ds

for n 6= 1.
Since Ω is continuous on Y , the Lebesgue dominated convergence theo-

rem shows that F is continuous on Y .
Now we claim that F(Y ) is relatively compact. We note that F(Y )

is uniformly bounded on every compact subinterval of [T∗,∞), because of
F(Y ) ⊂ Y . By the Ascoli–Arzelà theorem, it suffices to verify that the fam-
ily F(Y ) is equicontinuous on every compact subinterval of [T∗,∞). Observe
that

|(Fy)′(t)| ≤

{
F (t, a), n = 1,T
∞

T
sn−2F (s, a) ds, n 6= 1,

t ≥ T, y ∈ Y.

Let I be an arbitrary compact subinterval of [T,∞). Then we see that
{(Fy)′(t) : y ∈ Y } is uniformly bounded on I. The mean value theorem
implies that F(Y ) is equicontinuous on I. Since |(Fy)(t1)−(Fy)(t2)| = 0 for
t1, t2 ∈ [T∗, T ], we conclude that F(Y ) is equicontinuous on every compact
subinterval of [T∗,∞). Thus F(Y ) is relatively compact as claimed.

Consequently, we are able to apply the Schauder–Tikhonov fixed point
theorem to the operator F and find that there exists a ỹ ∈ Y such that
ỹ = F ỹ. Set x(t) = (Ωỹ)(t). From (2.8) it follows that x(t) satisfies (1.7).
By (2.7) and (2.1), we obtain

x(t) + x(t− τ) = ω(t) + ω(t− τ) + 2c+ (−1)n−1[(Φỹ)(t) + (Φỹ)(t− τ)]

= 2c+ (−1)n−1ỹ(t),

= 2c+ (−1)n−1(F ỹ)(t), t ≥ T.
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Therefore we see that
dn

dtn
[x(t) + x(t− τ)] = (−1)n−1(F ỹ)(n)(t) = −f(t, x(g(t))), t ≥ T,

so that x(t) is a solution of (1.1). The proof is complete.

3. Proof of Theorem 1.2 (0 < λ < 1). We need a few lemmas.
Let T and T∗ be constants such that T − τ ≥ T∗ ≥ t0. We denote by

S[T∗,∞) the set of all functions u ∈ C[T∗,∞) such that the series

(3.1)
∞∑

i=1

|u(t+ iτ)|

converges uniformly on [T−τ,∞). It is easy to see that S[T∗,∞) ⊂ U [T∗,∞)
and Φ maps S[T∗,∞) into C[T∗,∞).

Lemma 3.1. Let T and T∗ be constants with T − τ ≥ T∗ ≥ t0. Suppose

that ϕ ∈ S[T∗,∞) satisfies ϕ(t) ≥ 0 for t ≥ T and define

W = {w ∈ C[T∗,∞) : |w(t)| ≤ ϕ(t), t ≥ T}.

Then W ⊂ S[T∗,∞) and Φ is continuous on W in the C[T∗,∞)-topology.

P r o o f. It is clear that W ⊂ S[T∗,∞). Let ε > 0. There is an integer
p ≥ 1 such that

∞∑

i=p+1

ϕ(t+ iτ) <
ε

3
, t ≥ T − τ.

Take an arbitrary compact subinterval I of [T − τ,∞). Let {wj}
∞

j=1 be a
sequence in W converging to w ∈W in the C[T∗,∞)-topology. There exists
an integer j0 ≥ 1 such that

p∑

i=1

|wj(t+ iτ) − w(t+ iτ)| <
ε

3
, t ∈ I, j ≥ j0.

We see that

|(Φwj)(t) − (Φw)(t)| ≤

p∑

i=1

|wj(t+ iτ) − w(t+ iτ)|

+

∞∑

i=p+1

|wj(t+ iτ)| +

∞∑

i=p+1

|w(t+ iτ)|

<
ε

3
+ 2

∞∑

i=p+1

ϕ(t+ iτ) < ε, t ∈ I, j ≥ j0,

implying that Φwj converges to Φw uniformly on I. For t ∈ [T∗, T − τ ], we
have |(Φwj)(t) − (Φw)(t)| = |(Φwj)(T − τ) − (Φw)(T − τ)|. Therefore, Φ is
continuous on W .
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Lemma 3.2. Let u ∈ C[T∗,∞). Then u ∈ S[T∗,∞) if and only if the

series (3.1) converges for each fixed t ∈ [T − τ,∞) and

(3.2) lim
t→∞

∞∑

i=1

|u(t+ iτ)| = 0.

P r o o f. We note that if the series (3.1) converges for each fixed t ∈
[T − τ,∞), then

sup
t∈[T+mτ,∞)

∞∑

i=1

|u(t+ iτ)| = sup
t∈[T−τ,∞)

∞∑

i=1

|u(t+ (m+ 1)τ + iτ)|(3.3)

= sup
t∈[T−τ,∞)

∞∑

i=m+2

|u(t+ iτ)|

for m = 1, 2, . . .

First we prove the “only if” part. Assume that u ∈ S[T∗,∞). Clearly,
the series (3.1) converges for each fixed t ∈ [T − τ,∞). Letting m → ∞ in
(3.3), we have

lim
m→∞

sup
t∈[T+mτ,∞)

∞∑

i=1

|u(t+ iτ)| = 0,

which implies (3.2).

Conversely, suppose that the series (3.1) converges for each fixed t ∈
[T − τ,∞) and (3.2) holds. By (3.3) again, we obtain

lim
m→∞

sup
t∈[T−τ,∞)

∞∑

i=m+2

|u(t+ iτ)| = 0.

This shows that the series (3.1) converges uniformly on [T − τ,∞). Hence,
the “if” part follows.

Lemma 3.3. Let 0 < λ < 1 and k ∈ N∪{0}. Suppose that G ∈ C[t0,∞)
satisfies

(3.4) G(t) ≥ 0 for t ≥ t0 and

∞\
t0

λ−t/τG(t) dt <∞,

and define the function ϕ on [t0,∞) by

ϕ(t) = λ−t/τ
∞\
t

(s− t)kG(s) ds, t ≥ t0.

Then
∑

∞

i=1 ϕ(t+ iτ) converges for each fixed t ∈ [t0 − τ,∞) and tends to 0
as t→ ∞.
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P r o o f. Let t ≥ t0 − τ be fixed. Observe that

∞∑

i=1

ϕ(t+ iτ) =

∞∑

i=1

λ−(t+iτ)/τ
∞∑

j=i

t+(j+1)τ\
t+jτ

(s− t− iτ)kG(s) ds(3.5)

=

∞∑

j=1

t+(j+1)τ\
t+jτ

j∑

i=1

λ(s−t−iτ)/τ (s− t− iτ)kλ−s/τG(s) ds.

If s ∈ [t+ jτ, t+ (j + 1)τ ], then (j − i)τ ≤ s− t− iτ ≤ (j + 1 − i)τ . Hence

j∑

i=1

λ(s−t−iτ)/τ (s − t− iτ)k ≤ τk

j∑

i=1

λj−i(j + 1 − i)k(3.6)

= τk

j∑

l=1

λl−1lk ≤ τkK

for s ∈ [t+ jτ, t+(j+1)τ ], K =
∑

∞

i=1 λ
i−1ik. By (3.5) and (3.6), we obtain

∞∑

i=1

ϕ(t+ iτ) ≤ τkK

∞\
t+τ

λ−s/τG(s) ds.

This completes the proof.

Proof of Theorem 1.2 (0 < λ < 1). Let 0 < λ < 1. Put δ = a −
maxt∈R |ω(t)| > 0, G(t) = F (t, aλg(t)/τ ), and

ϕ(t) = λ−t/τ
∞\
t

(s− t)n−1G(s) ds ≥ 0, t ≥ t0.

From Lemma 3.3 it follows that

η(t) ≡
∞∑

i=1

ϕ(t+ iτ)

converges for each fixed t ∈ [t0 − τ,∞) and limt→∞ η(t) = 0. Thus we can
choose a number T ≥ t0 so large that η(t) ≤ δ for t ≥ T − τ and

T∗ = min{T − τ, inf{g(t) : t ≥ T}} ≥ t0.

Lemma 3.2 implies ϕ|[T∗,∞) ∈ S[T∗,∞). Define

(3.7) Y = {y ∈ C[T∗,∞) : |y(t)| ≤ ϕ(t) for t ≥ T∗}.

Then Y is closed and convex. By Lemma 3.1, the mapping Φ is continuous
on Y . Put

(Ωy)(t) = ω(t) + (−1)n−1(Φy)(t), t ≥ T∗, y ∈ Y.
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Since

|(Φy)(t)| ≤

∞∑

i=1

ϕ(t+ iτ) = η(t) ≤ δ, t ≥ T − τ, y ∈ Y,

we have

(3.8) |(Ωy)(t)| ≤ |ω(t)| + δ ≤ a, t ≥ T∗, y ∈ Y,

and

(3.9) (Ωy)(t) = ω(t) + o(1) (t→ ∞), y ∈ Y.

To each y ∈ Y we assign the function Fy on [T∗,∞) by

(Fy)(t) =




λ−t/τ

∞\
t

(s− t)n−1

(n− 1)!
f(s, (Ωy)(g(s))λg(s)/τ ) ds, t ≥ T ,

(Fy)(T ), t ∈ [T∗, T ].

In view of (3.8), we easily see that F is well defined and maps Y into itself.
Using the same arguments as in the proof of Theorem 1.1, we conclude
that F is continuous and F(Y ) is relatively compact. Application of the
Schauder–Tikhonov fixed point theorem shows that there exists ỹ ∈ Y such
that ỹ = F ỹ. Put x(t) = (Ωỹ)(t)λt/τ . Then we obtain

x(t) + λx(t− τ) = (Ωỹ)(t)λt/τ + λ(Ωỹ)(t− τ)λ(t−τ)/τ

= λt/τ [(Ωỹ)(t− τ) + (Ωỹ)(t− τ)]

= λt/τ [ω(t) + ω(t− τ) + (−1)n−1{(Φỹ)(t) + (Φỹ)(t− τ)}]

= (−1)n−1λt/τ ỹ(t) = (−1)n−1λt/τ (F ỹ)(t)

= (−1)n−1
∞\
t

(s − t)n−1

(n− 1)!
f(s, x(g(s))) ds, t ≥ T.

By differentiation of the above equality, we conclude that x(t) is a solution
of (1.1). From (3.9) it follows that x(t) satisfies (1.3). This completes the
proof of Theorem 1.2 for the case 0 < λ < 1.

4. Proof of Theorem 1.2 (λ > 1). First we prove two lemmas.

Lemma 4.1. Let λ > 1 and k ∈ N ∪ {0}. Suppose that G ∈ C[t0,∞)
satisfies (3.4). Then

(4.1) lim
t→∞

λ−t/τ
t+τ\
t0

(t+ τ − s)kG(s) ds = 0.
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P r o o f. It suffices to give the proof for the case k = 0. In fact, if

lim
t→∞

λ−t/τ
t+τ\
t0

G(s) ds = 0,

then for k 6= 0 we have

lim
t→∞

λ−t/τ
t+τ\
t0

(t+ τ − s)kG(s) ds = lim
t→∞

dk

dtk

t+τ\
t0

(t+ τ − s)kG(s) ds

/
dk

dtk
λt/τ

= lim
t→∞

k!

[
τ

log λ

]k

λ−t/τ
t+τ\
t0

G(s) ds = 0.

Put ψ(t) = λ−t/τ
Tt
t0
G(s)ds. An easy computation shows that

(4.2)

t\
t0

ψ(s) ds =
τ

log λ

[ t\
t0

λ−s/τG(s) ds − ψ(t)
]
, t ≥ t0.

Then we have

0 ≤

t\
t0

ψ(s) ds ≤
τ

log λ

∞\
t0

λ−s/τG(s) ds, t ≥ t0,

which implies that ψ is integrable on [t0,∞). It follows from (4.2) that
l = limt→∞ ψ(t) exists and is a nonnegative finite value. Since ψ is integrable
on [t0,∞), it is impossible that l > 0. Consequently, (4.1) holds for the case
k = 0. This completes the proof.

Lemma 4.2. Let λ > 1 and k ∈ N ∪ {0}. Suppose that G ∈ C[t0,∞)
satisfies (3.4), and define the function ϕ on [t0,∞) by

ϕ(t) = λ−t/τ
t\
t0

(t− s)kG(s) ds, t ≥ t0.

Then
∑

∞

i=1 ϕ(t+ iτ) converges for each fixed t ∈ [t0 − τ,∞) and tends to 0
as t→ ∞.

P r o o f. Let t ≥ t0 − τ be fixed. We observe that

∞∑

i=1

ϕ(t+ iτ) =
∞∑

i=1

λ−(t+iτ)/τ
t+τ\
t0

(t+ iτ − s)kG(s) ds

+

∞∑

i=2

λ−(t+iτ)/τ
i−1∑

j=1

t+(j+1)τ\
t+jτ

(t+ iτ − s)kG(s) ds
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= λ−t/τ
∞∑

i=1

λ−i
t+τ\
t0

(t+ iτ − s)kG(s) ds

+
∞∑

j=1

t+(j+1)τ\
t+jτ

∞∑

i=j+1

λ−(t+iτ−s)/τ (t+ iτ − s)kλ−s/τG(s) ds

≡ I1(t) + I2(t).

We have

(t+ iτ − s)k = [(t+ τ − s) + (i− 1)τ ]k ≤ 2k[(t+ τ − s)k + (i− 1)kτk]

for s ∈ [t0, t + τ ], because (u + v)k ≤ 2k(uk + vk) for u ≥ 0 and v ≥ 0.
Therefore

I1(t) ≤ λ−t/τ2k
∞∑

i=1

λ−i
t+τ\
t0

(t+ τ − s)kG(s) ds

+ λ−t/τ2kτk
∞∑

i=1

λ−i(i− 1)k
t+τ\
t0

G(s) ds

=
2k

λ− 1
λ−t/τ

t+τ\
t0

(t+ τ − s)kG(s) ds + Lλ−t/τ
t+τ\
t0

G(s) ds,

where L = 2kτk
∑

∞

i=1 λ
−i(i − 1)k. By Lemma 4.1 we obtain limt→∞ I1(t)

= 0.

If s ∈ [t+ jτ, t+(j +1)τ ], then (i− j− 1)τ ≤ t+ iτ − s ≤ (i− j)τ . Thus

∞∑

i=j+1

λ−(t+iτ−s)/τ (t+ iτ − s)k ≤ τk
∞∑

i=j+1

λ−(i−j−1)(i− j)k

= τk
∞∑

l=1

λ−l+1lk ≡M

for s ∈ [t+ jτ, t+ (j + 1)τ ], and so

I2(t) ≤M

∞\
t+τ

λ−s/τG(s) ds,

which implies that limt→∞ I2(t) = 0. This completes the proof.

Proof of Theorem 1.2 (λ > 1). Define δ= a− maxt∈R |ω(t)| > 0, G(t)=
F (t, aλg(t)/τ ), and let

ϕ(t) = λ−t/τ
t\
t0

(t− s)n−1G(s)ds ≥ 0, t ≥ t0.
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In view of Lemma 4.2, we find that

η(t) ≡

∞∑

i=1

ϕ(t+ iτ)

converges for each fixed t ∈ [t0 − τ,∞) and limt→∞ η(t) = 0. Take T ≥ t0
such that η(t) ≤ δ for t ≥ T − τ and

T∗ ≡ min{T − τ, inf{g(t) : t ≥ T}} ≥ t0.

By virtue of Lemma 3.2, we have ϕ|[T∗,∞) ∈ S[T∗,∞). We define the set Y
by (3.7). To each y ∈ Y we assign the functions Ωy and Fy on [T∗,∞) by

(Ωy)(t) = ω(t) − (Φy)(t), t ≥ T∗,

and

(Fy)(t) =




λ−t/τ

t\
T

(t− s)n−1

(n− 1)!
f(s, (Ωy)(g(s))λg(s)/τ ) ds, t ≥ T ,

0, t ∈ [T∗, T ],

respectively. By the same argument as in the proof of Theorem 1.2 for the
case 0 < λ < 1, we conclude that F ỹ = ỹ for some ỹ ∈ Y , and that
x(t) ≡ (Ωỹ)(t)λt/τ is a solution of (1.1) satisfying (1.3). This completes the
proof of Theorem 1.2.
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[6] J. Jaro š and T. Kusano, Oscillation theory of higher order linear functional dif-
ferential equations of neutral type, Hiroshima Math. J. 18 (1988), 509–531.

[7] —, —, Existence of oscillatory solutions for functional differential equations of neu-
tral type, Acta Math. Univ. Comenian. 60 (1991), 185–194.

[8] Y. Kitamura and T. Kusano, Oscillation and asymptotic behavior of solutions
of first-order functional differential equations of neutral type, Funkcial. Ekvac. 33
(1990), 325–343.

[9] —, —, Existence theorems for a neutral functional differential equation whose lead-
ing part contains a difference operator of higher degree, Hiroshima Math. J. 25
(1995), 53–82.



184 S. Tanaka

[10] Y. Kitamura, T. Kusano and B. S. Lal l i, Existence of oscillatory and nonoscilla-
tory solutions for a class of neutral functional differential equations, Math. Bohem.
120 (1995), 57–69.

[11] W. T. Li, Classifications and existence of nonoscillatory solutions of second order
nonlinear neutral differential equations, Ann. Polon. Math. 65 (1997), 283–302.

[12] M. Naito, An asymptotic theorem for a class of nonlinear neutral differential equa-
tions, Czechoslovak Math. J. 48 (1998), 419–432.

[13] Y. Naito, Nonoscillatory solutions of neutral differential equations, Hiroshima
Math. J. 20 (1990), 231–258.

[14] —, Asymptotic behavior of decaying nonoscillatory solutions of neutral differential
equations, Funkcial. Ekvac. 35 (1992), 95–110.

[15] S. Tanaka, Existence of positive solutions for a class of first-order neutral func-
tional differential equations, J. Math. Anal. Appl. 229 (1999), 501–518.

Department of Mathematical Sciences
Faculty of Science
Ehime University
Matsuyama 790-8577, Japan

Present address:
Department of Liberal Arts and

Engineering Science
Hachinohe National College of Technology

Hachinohe 039-1192, Japan
E-mail: tanaka-g@hachinohe-ct.ac.jp
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