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Pointwise approximation by
Meyer—Konig and Zeller operators

by X1A0-MING ZENG and JUN-NING ZHAO (Xiamen)

Abstract. We study the rate of pointwise convergence of Meyer—-Koénig and Zeller
operators for bounded functions, and get an asymptotically optimal estimate.

1. Introduction. For a function f defined on [0, 1], the Meyer-Ké&nig
and Zeller operators M,, are given by

- k

M, (f,1)=f(1), mp(x)= <n ;: k)a;k(l — )"t

The approximation-theoretical behaviour of the operators (1), such as di-
rect approximation, best asymptotic constants, global approximation, L,-
approximation, moment estimates, etc., has been the subject of extensive
investigation (cf. [1-3, 5, 9, 11, 12]).

The rates of convergence on functions of bounded variation were obtained
for various operators (see [4, 6, 8, 13, 14]). In this paper we consider the rate
of convergence of the operators (1) for a more general class of functions:

Ip ={f| f is bounded on [0,1]}.
In order that our work includes the case of functions of bounded variation
and gives a real improvement, we introduce the following three quantities:

2. (f,01) = sup  [f(t) = f(2)l, (%4(f,02)= sup [f(t)— [f(a)],

te[xz—0d1,x] te€[x,x+02]
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\Q(.Z',f,)\) = sup ‘f(t)_f(‘r)la
telz—z/ N x+(1—z)/A]
where f € Ig, x € [0,1] is fixed, 0 < 6; < 2,0<ds <1—xand A > 1. It is
clear that

(i) £2.—(f,01) and 2,4 (f,02) are non-decreasing in d; and in dy respec-
tively; £2(z, f,\) is non-increasing in A.
(ii) If f is continuous at z, then we have lims, o4+ 2, (f,01) = 0,
lims, o4 2,4 (f,02) = 0 and limy_,~ 2(x, f,\) = 0.
(iil) 2,—(f,01) < (=, f,x/01) and 2,4 (f,02) < 2(z, f, (1 — x)/d2).

If f is of bounded variation on [a,b], and \/Z( f) denotes the total variation
of f on [a,b], then

z z+02
(V) 2o (£,00) <\ () 2t (£:02) < \/ (),
r—081 T
z+(1—x)/A
2w i<\ ().
z—x/A

Now let us state our main result:

THEOREM. If f is bounded on [0,1], and f(z+) and f(z—) exist at a
fized point x € (0,1), then for all n > 1 we have

n

® o) - 50 + )| < 0 Y g V)
k=1

(If (z+4) = fla=)| +en(@)|f () = flz—)]),

4
* vnz +1
where
)= {2 =Ko k0 for some e
" 0 if e #k/(n+k) for any k € N,
and g, (t) is defined as
@) = flz+), =z<t<1,
(3) g:(t) = ¢ 0, t=uzx,
f() = flz—), 0<t<uaz.
Inequality (2) holds at x = 0 (resp. x = 1) if we set %f(x—i—)—l—%f(x—) = f(0)
(resp. f(1)).
In the last part of the paper, we shall show that our estimate is asymp-
totically optimal.

2. Preliminary results. We first give several preliminary results, which
mainly are estimates concerning the basis functions and moments of Meyer—
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Konig and Zeller operators. Some results and techniques of probability the-
ory play an important role in this section.
LEMMA 1. For n > 2 and x € [0,1], we have

z(1 — x)? 9 22(1 — x)?
<M _ < 2\ )
and for x € (0,1] and n sufficiently large,

@ M((t - 2)t,a) < 22O

Proof. By [3, Lemma 2.1],
2z \ z(1—x)? 9 2z \z(1—x)?
1 <Mn - 9 é 1 9
< +n—|—2> n+1 = ((t-2)",2) +n—1 n+1

which yields (4) by a simple calculation.
In addition, for z € (0, 1] and n sufficiently large, by [1, p. 359, Corollary]
we get by direct calculation

Mﬂ((t_‘r)élax)
= M, (t*, ) — 4x M, (t*, ) + 62> M, (t*, x) — 42> M, (t, x) + z*

n

3x2(1 —x)*  x(1 —2)2(25z* — 11222 + 8222 — 22 + 1
_ 3?1 -a)t (1 - a) ) o,

n2 n3

which yields the inequality (5).
LEMMA 2. For all k € N and x € [0, 1], we have

(0 () < 7
Tk S T e
Proof. From Theorem 2 of [12] it is known that
1

1
mnk(x)<\/%-\/m.

Since my,k(x) < 1, it follows that

1
Mpk(T)vVne + mpp(z) < — + 1.
e

V2e

The inequality (6) is proved.

LEMMA 3. Let {&x}72, be a sequence of independent random variables
with the same geometric distribution

P =k =2"1—-2z), keN, 2c(01).
Then
E¢ =xz/(1—x), E(& —E&)? =2/(1-1)?
B(& — E&) = (2 +2)/(1L—=2)’,  Bl& — B&P <3¢/(1-2)°.
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Proof. Direct calculation gives

];)a:k(l—a;)zl, E§1:kak(1—x): 13;

9
— X

2 k 22 4+
E¢ = Zk (1-z) = a0

0 3 4 2
EE =3 kb1 — ) = Tl e

(I—=2)3 7
o 4 3 2
= 4+ 11x° + 11z° +
B¢l =D kKat(1l-x) = o :
k=0

Hence it is easy to show that

E(& — E&)? =x/(1—2)?,  E(& —E&) = (@ +2)/(1 - 1),
and
B(&) — Béy)' = B} — AB& B + 6(E€,)° BE; — 4(B&)PE6 + (B
ot 4+ 1123 4+ 1122 + 2 dr 23 +42’ + 2
B (1—x)* T 1-z (1—=x)3
622 x(1+x) 3zt

TaCaE0ez (-ap
_x3+7x2+:17
TR

By the Holder inequality we get
El& — B& P < VE(&G — E6)E(& — B&)?
_\/(:173+7x2—|—x):17 - 3

(1-z)*(1-2)> = (1-2)3
The proof of Lemma 3 is complete.

Lemmas 4 and 5 below are the well-known Berry—Esseen bound and the
asymptotic expression for the central limit theorem of probability theory.
They can be used to get upper and lower bounds for partial sums of Meyer—
Konig and Zeller basis functions. Their proofs can be found in Feller [7,
pp. 540-543] and Shiryayev [10, p. 432].

LEMMA 4. Let {£c}32, be a sequence of independent and identically
distributed random variables with E(&) = a1, E(¢& — a1)? = 02 > 0,
El¢& —a1) = 0 < oo, and let F, stand for the distribution function of
S v_1(&x —a1)/(o\/n). Then there exists an absolute constant C, 1/v/2mw <



Pointwise approximation 189

C < 0.8, such that for all t and n,

1 ‘ —u?/2 CQ
Fn(t)_\/—Q_ﬂ- S (& du Jg\/ﬁ.

LEMMA 5. Under the conditions of Lemma 4 (E|&; — a1]3 < 0o can be
reduced to E(& — a1)® < o), assume F,, to be a lattice distribution. Then

at all points t of the lattice we have
t

<

(7)

—0Q

_ , a3 12
(8) Fﬂ(t) +Fn(t ) o 1 S e U /2 du — E(glg al) . 1-t et /2
> ) Goovn v

= o(n~/?).

LEMMA 6. For x € [0,1), we have

9)

SRICER P
k>nxz/(1—x) nT +

Proof. Let {£}5°, be a sequence of independent random variables with
the same geometric distribution P(§; = k) = 2*(1 — ), k € N, z € (0,1),
and let n,4+1 = E?:ll ;- Then the probability distribution of the random
variable 7,41 is

n+k "
Pl =) = ("1 F)a =0 = (o)
So
Z Mg (2) :P<77n+1 > >: 1—P<77n+1 < o >
1—=x 11—z
k>nx/(1—x)

_\/5 >

—1-F, .

+1<\/n+1

By Lemmas 3 and 4 we get

-3 (5)|

k>nxz/(1—x)
0
— 1 2
= Fn+1< ﬁ)— S e "2 du
vn+1 V2
0
Co 1
< + S e " /2 du
= 53
o’vn+1 27 =
_.\3
<O.83x-(1$)+1-\/§§3,
(1—2)3 232yn+1 V21 Vn+1~ Vnz

and since |32 -, 1—0) Mnk(2) — 1/2[ <1, we obtain (9).
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3. Proof of Theorem. For any f € Ip, if f(z+) and f(x—) exist at
x, we decompose f into

flat) + fa—) flat) — flz—)

a0y sy = LEHIED gy L TED)
#0.00) ) - LIS

where g,(t) is defined in (3) and

1, t>0, Lo
sgn(t) = { 0, t=0, 0.(t) = {0’ - $’
-1, t<0, ’ '

Hence

(11)

My(f,2) = 3F4) = 3 F)| < Mg,

I PiCay ; f(x_)Mn(sgn(t— ), x) + [f(x) St J2r f($_)] My (8, )|
Direct calculation gives
and
(13) (st = 0).0) = Y- sen( = = o Jmaala)
k=0
=— Z Mmpk(x) + Z My ()
k<nz/(l—z) k>nxz/(1—x)
=2 Z Mak () — 1+ ep(2)mpp (),
k>nxz/(1—x)

where

en(z) = 1 ifx=4k/(n+k) for some k' € N,
A N if z #k/(n+ k) for any k € N.

By (12), (13) and Lemmas 2, 6, we have

gy LSy,

(sgn(t — z),z)

[~ et

(6, )
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_ ‘f(:v+) — flz—) [2 S mala) - 1}

2
k>nxz/(1—x)

+ [f(x) - f(x_)]gn(x)mnk’(x)

<

4
T 1) = S+ en(@)lf (@) — ).

Now it is clear from (11) and (14) that the Theorem will be proved if we
establish that

nx

(15) Ma(g0,0)] < —2— 3" 2,92, V)
k=1

Recalling the Lebesgue—Stieltjes integral representations we have

1

(16) Mn(gxax) = Sg:c(t) dtKn(l',t),
0

where

1, t=1,

Ekgnt/(lft) mpk(z), 0<t <1,
Kn(x, t) =
0, t=0.
We decompose the integral of (16) into three parts:

ng(t) dtKn(xa t) = Al,n(gm) + A2,n(gx) + A?),n(gm)a

0
where

z—x/\/n

Al,n(gm) = S gm(t) dtKn(xat)a

0

z+(1-z)/v/n

AZH(QQC) = S gr(t) dtKn(xa t),

z—a/\/n
1

AB,H(QQC) = S gr(t) dtKn(xa t)-

z+(1—z)/v/n

We shall estimate Aq,(95), Don(9:) and As,(gz) by the quantities
20 (9z,01), 244(92,02) and 2(z,g,,\) (for convenience, below we write
them as (2,_(01), 2,4 (d2) and £2(x, \) respectively). Firstly, for Ag ,,(9s)
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noting that g, (x) = 0 we have
zt+(1-z)/v/n
(A7) [A2n(ge)l < Voo 190 — gu(@)| deKn (2, t) < 2(z, V).
N
Next we estimate |A; ,,(g,)|. Since £2,_(01) is non-decreasing in ¢y, it follows
that

vz /Vn z—a /v
Dinlg)l =] | 00 dtKn(a;,t)‘ < | 2 (@-t)dK. (1)
0 0

Using partial integration with y = x — z/y/n, we have

z—z/\/n
(18) S Qp (z—t)di Ky (z,t) < 2, (x — y)Kp(z,y+)
0

+ Sl?n(a:,t) d(—= 82, (v — 1)),
0
) < Ky (z,t)

where I?n(:n, t) is the normalized form of K, (x,t). Since I?n(:n, t
(4), we deduce

and K, (z,y+) = K,(z,y) on (0, 1), using the inequality
that

Ko(z,t) S Kp(z, ) < Y mun(x)

k/(n+k)<t
|k/(n + k) — zf? 2z(1 —2)°
: k/u;c)gt t—ap S S
From (18) it follows that
(19 Binlan)] < 2ena = 2O
20(1 — )2 ¥ d — 2, (x—t
e (e 1)
Since
ijd(_Qx—($ — 1))
R
— 1 r— vt ( "
(x_t)29m*( t) +§9m( t)( 7 dt
B 1 o (z) { 2
(m—t)QQx_(:E y) + = +§Qx_($—t)( e dt,
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from (19) we have
z—x/\/n
2x(1 — x)? 2z(1 — x)?
sl=af ) 2= T
nx n

dt.

‘Al,n(gx)’ < 2, (z—

) RiFEnE
Putting t = x — x//u in the last integral we get
—
S Qp (x—
0
Consequently,

1
H—" _dt = —
)(a:—t)?’ x?

Q2o (z/\/u) du.

=y I

2(1

@) 10ale) < A (0 (@) 4 | 2 (/) ).
1

Using a similar method for estimating |As ,,(g.)| we get

n

33‘2
(@) Banle) < (e (1 = 2) + | 2o (1~ 2)/VE) du).

1
From (17), (20) and (21) it follows that

(22) [My(ge,2)| < £2(x,v/n)
— 22 9g2 n
+ (M + i—x> (Q(az, 1)+ S 2(x,/u) du).
1

nx

By the monotonicity of £2(x, A) and noting that (1—z)? +22 < 1, from (22)
we get

(23)  [My(ga, )

IN

%f: QaVE) + %(f: Qa,VE) + En: (VD))
k=1 k=1 k=1

IN

k=1

On the other hand
1

(24) Mg, 2)| = | § (02(6) = g0 (2)) di (e, )
0

< ﬁKm,1)§§j§:S7(m,x/E)
k=1

The inequality (15) now follows from (23) and (24). The proof of the Theo-
rem is complete.

4. Asymptotic optimality of our estimate. We now show that our
estimate (2) is asympototically optimal. For f € Ip, if x is a continuity
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point of f, then (2) becomes

6 n
(25) M (f,2) = f@)] < —— 1;1:(2(95,]“, Vk)
Taking the function f,(t) = |t — 2|, from (25) we have

(06 IMuar) — falo)] = Mt — ], 2)
6 1 12
S TEa DIy N ER Y

On the other hand, for any small positive number ¢, it is easy to show that
k
— —x
k

00 1 o] k 4
2|y m”’f@)*ﬁkzz()(m‘f”) ini(2)

> > (nLJrk - x>2mnk(ac) + > (% — x)ank(x)

|k / (n-+e)—] <6 I/ (nte)—al 5 N

()

k=0

That is,

k=0

Hence, from Lemma 1 for n sufficiently large, it follows that

=k r(1—-2)% 4 2%2(1—2)?
— > - — .
Z ntk " k() 2 2nd 93 n?
k=0
Choose 0 = 4y/x(1 — z)?/n to get
= k 1 a(l —x)?
2 M, (|t — z|,x) = — " > __ V7
@0 M= k) = 3|~ ) 2 35

Therefore from (26) and (27) we see that (25) cannot be asymptotically
improved.

To prove that the second term on the right hand side of (2) is asymptot-
ically optimal, one needs an accurate estimate. If g, = 0, then (2) becomes
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flz+) +f(w—)‘
2

< AfGt) = fleo)[ +en(@)|f(z) = flz-)])

- vnr+1 '

We consider the function

f(t):{l, 0<t<1/2,

(28)  |Mn(f,x) —

0, 1/2<t<1,
at the point ¢t = 1/2. Then

g (3) ()]

From Lemma 5 and a simple calculation for geometric distributions it follows
that

> mar(1/2) - %‘

k<n

1 1 1+ 1
21 (0) + Fua (0-)] = 5 = gomge \/ﬂzo(l/\/n—l—l).
That is,
1 1 14z 1
(29) 5{ S @)+ Y mnk(w)}_i_&/niﬂﬁ'\/ﬁ

k<t k<ot
=o(1/vn+1).
Taking = 1/2 in (29) we get
> ma(1/2) = 1/2

k<n

_ M; — S (1/2) +o(1 VT ).

Using Stirling’s formula n! = (27n)'/2(n/e)?e/(127) (0 < 6,, < 1), we find
that

— mpp(1/2) —

W\}m — %mn,n+1(1/2) = o(l/vn+1),
and
) ) bl 1
5 <mm(l/2) = En!))Q(l/z) W o Ry W

Consequently, for n sufficiently large,

a3 ()

—‘Zmnk 1/2) —1/2(<_

k<n

v <

Therefore (28) cannot be asymptotically improved as n — +o00.
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