
ANNALES

POLONICI MATHEMATICI

LXXIII.3 (2000)

Hodge numbers of a double octic with

non-isolated singularities

by S lawomir Cynk (Kraków)

Abstract. If B is a surface in P
3 of degree 8 which is the union of two smooth

surfaces intersecting transversally then the double covering of P3 branched along B has a
non-singular model which is a Calabi–Yau manifold. The aim of this note is to compute
the Hodge numbers of this manifold.

1. Introduction. Let B be a surface of degree 8 in P
3. Assume that B is

the union of two smooth surfaces B1 and B2 of degrees d and e respectively

intersecting transversally along a smooth curve C. Denote by σ : P̃
3 → P

3

the blow-up of P
3 with center C and consider the double covering π : X → P̃

3

of P̃
3 branched along the strict transform B̃ of B.
From [5] it follows that in this situation X is a Calabi–Yau manifold and

e(X) = 8−(d3−4d2+6d)−(e3−4e2+6e)−8de. However it is of great interest
to calculate not only the Euler characteristic but also the cohomology groups
or equivalently the Hodge numbers of X. For a Calabi–Yau variety only two
Hodge numbers are interesting: h1,1 and h1,2—the others are obvious. We
have moreover the following formula:

e(X) = 2(h1,1 − h1,2).

These Hodge numbers have deep topological characterizations:

• h1,1 is equal to the rank of the Picard group PicX,
• h1,2 is equal to the number of deformations of X.

In general it is very difficult to calculate the Hodge numbers of a double
solid. Some methods are known only in very special cases (see [2,6]). In [3] we
gave an elementary proof of the Clemens formula for the Hodge numbers of a
nodal double solid. We shall apply the method introduced there. This shows
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that it may be of use also in the case of a double octic with non-isolated
singularities in the branch locus.

2. Conormal bundle of π∗B̃ in X. Denote by E the exceptional
divisor of σ and by B̃i the strict transform of Bi. Clearly σ|B̃i → Bi is an

isomorphism. Since B̃ is an even element of Pic(P̃3) we can define the line

bundle L = O
P̃3

(
1

2
B̃

)
. The aim of this section is to study the line bundle

π∗(OB̃ ⊗ L−1) which is dual to the normal bundle of π∗B̃ in X.

From the definition of L we have L−1 = σ∗OP3(−4) ⊗ O
P̃3(E) and so

Hi(L−1 ⊗OB̃) ∼= Hi(OP3(e− 4)⊗OB1
)⊕Hi(OP3(d− 4)⊗OB2

). Using the
last formula we easily get

Lemma 2.1.

H0(L−1 ⊗OB̃) ∼=





C
10 if d = 1, e = 7,

C
9 if d = 2, e = 6,

C
4 if d = 3, e = 5,

C
2 if d = 4, e = 4,

H1(L−1 ⊗OB̃) = 0,

H2(L−1 ⊗OB̃) ∼=





C
84 if d = 1, e = 7,

C
35 if d = 2, e = 6,

C
10 if d = 3, e = 5,

C
2 if d = 4, e = 4.

3. Cohomology of π∗Ω1

P̃3

Lemma 3.1.

Hi(Ω1

P̃3
) ∼=

{
0 if i = 0, 3,
C

2 if i = 1,
C

g if i = 2,

where the genus g of C is 2de + 1.

P r o o f. Consider the following long exact sequence:

(1) 0 → σ∗Ω1

P3 → Ω1

P̃3
→ Ω1

P̃3/P3
→ 0.

Following [7, Thm. II.8.24] we can identify E with the projectivization
P(N ∨

C|P3) of the conormal bundle N ∨
C|P3 of C in P

3. Since in this situation

Ω1

P̃3/P3

∼= Ω1

E/C and (by [7, Ex. III.8.4]) Ω1

E/C
∼= σ∗(

∧
2 N ∨

C|P3) ⊗OE(−2),

using the projection formula and again [7, Ex. III.8.4] we get

σ∗Ω
1

P̃3/P3

∼= σ∗Ω
1

E/C
∼= (

∧2N ∨
C|P3) ⊗ σ∗OE(−2) = 0
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and
R1σ∗Ω

1

P̃3/P3

∼= (
∧2N ∨

C|P3) ⊗ R1σ∗OE(−2)

∼= (
∧2N ∨

C|P3) ⊗ (σ∗OE)∨ ⊗ (
∧2N ∨

C|P3)∨

∼= (σ∗OE)∨ ∼= OC .

The direct image functor applied to the short exact sequence (1) yields

σ∗Ω
1

P̃3

∼= Ω1

P3 and R1σ∗Ω
1

P̃3

∼= OC .

The Leray spectral sequence Hp(Rq(σ∗Ω
1

P̃3
)) has the following terms:

-

6

p

q

s s s s
s s s s
0 C 0 0
C C g 0 0

where g = 2de + 1 is the genus of C. The above sequence degenerates and
the lemma follows.

Lemma 3.2.

H0(Ω1

P̃3
⊗ L−1) = 0,

H1(Ω1

P̃3
⊗ L−1) ∼=





C
10 if d = 1, e = 7,

C
9 if d = 2, e = 6,

C
4 if d = 3, e = 5,

C
2 if d = 4, e = 4.

P r o o f. Tensoring the exact sequence (1) with L−1 we get

(2) 0 → σ∗Ω1

P3 ⊗ L−1 → Ω1

P̃3
⊗ L−1 → Ω1

P̃3/P3
⊗L−1 → 0.

In this situation

(σ∗Ω1

P3) ⊗ L−1 ∼= (σ∗Ω1

P3(−4)) ⊗O
P̃3(E)

and

Ω1

P̃3/P3
⊗ L−1 ∼= Ω1

E/C ⊗ σ∗OP3(−4) ⊗O
P̃3(E)

∼= σ∗(
∧2 N ∨

C|P3) ⊗OE(−2) ⊗ σ∗OP3(−4) ⊗O
P̃3(E) ⊗OE

∼= σ∗(
∧

2 N∨
C|P3 ⊗OP3(−4)) ⊗OE(−3)

because O
P̃3(E) ⊗OE

∼= NE|P̃3
∼= OE(−1) by [7, Thm. II.8.24].
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By the projection formula,

σ∗((σ
∗Ω1

P3) ⊗ L−1) ∼= Ω1

P3(−4) ⊗ σ∗O P̃3(E) ∼= Ω1

P3(−4),

R1σ∗((σ
∗Ω1

P3) ⊗ L−1) ∼= Ω1

P3(−4) ⊗ R1σ∗O P̃3(E) = 0.

Using again [7, Ex. III.8.4] and the projection formula we obtain

σ∗((Ω
1

P̃3/P3
) ⊗ L−1) ∼=

∧
2N ∨

C|P3 ⊗OP3(−4) ⊗ σ∗OE(−3) = 0,

R1σ∗((Ω
1

P̃3/P3
) ⊗ L−1)

∼=
∧

2N ∨
C|P3 ⊗OP3(−4) ⊗ R1σ∗OE(−3)

∼=
∧

2N ∨
C|P3 ⊗OP3(−4) ⊗ (σ∗OE(1))∨ ⊗ (

∧
2N ∨

C|P3)∨

∼= OP3(−4) ⊗ (OP3(d) ⊕OP3(e)) ⊗OC

∼= (OP3(d − 4) ⊕OP3(e − 4)) ⊗OC .

The exact sequence (2) yields therefore

σ∗(Ω
1

P̃3
⊗ L−1) ∼= Ω1

P3(−4),

R1σ∗(Ω
1

P̃3
⊗ L−1) ∼= (OP3(d − 4) ⊕OP3(e − 4)) ⊗OC .

Calculating cohomologies of the right-hand sides of the above equations
we can write the Leray spectral sequence:

-
6

p

q

s s s s
s s s s
0 0 0 C 15
C 10 C 38 0 0

(d = 1; e = 7) (d = 2; e = 6) -
6

p

q

s s s s
s s s s
0 0 0 C 15
C 9 C 57 0 0

-
6

p

q

s s s s
s s s s
0 0 0 C 15
C 4 C 64 0 0

(d = 3; e = 5) (d = 4; e = 4) -
6

p

q

s s s s
s s s s
0 0 0 C 15
C 2 C 66 0 0

We can calculate H0 and H1 even if the sequence does not degenerate.
This proves the lemma.
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We end this section with the following proposition:

Proposition 3.3.

H0(π∗Ω1

P̃3
) = 0,

H1(π∗Ω1

P̃3
) ∼=





C
12 if d = 1, e = 7,

C
11 if d = 2, e = 6,

C
6 if d = 3, e = 5,

C
4 if d = 4, e = 4.

P r o o f. Since π is a double covering,

π∗OX
∼= O

P̃3 ⊕ L−1 and Hi(π∗Ω1

P̃3
) ∼= Hi(π∗(π

∗Ω1

P̃3
)).

By the projection formula π∗π
∗Ω1

P̃3

∼= Ω1

P̃3
⊗π∗OX

∼= Ω1

P̃3
⊕Ω1

P̃3
⊗L−1 and

consequently

Hi(π∗Ω1

P̃3
) ∼= Hi(Ω1

P̃3
) ⊕ Hi(Ω1

P̃3
⊗ L−1).

The proposition now follows from Lemmas 3.1 and 3.2.

4. Main result. Now we can formulate and prove our main result.

Theorem 4.1.

h1,1(X) = 2,

h1,2(X) =





122 if d = 1, e = 7,
102 if d = 2, e = 6,
90 if d = 3, e = 5,
86 if d = 4, e = 4.

The proof of this theorem is based on the following proposition:

Proposition 4.2 ([3]). The following sequence of OX̃ -modules is exact :

(3) 0 → π∗Ω1

P̃3
→ Ω1

X → π∗(OB̃ ⊗ L−1) → 0.

Proof of Theorem 4.1. By Lemma 2.1 the group H1(OB̃⊗L−1) vanishes.
Since X is a Calabi–Yau manifold, H0(Ω1(X)) = 0. Consequently, the long
exact sequence derived from the short sequence (3) splits and its first part
together with Lemma 2.1 and Proposition 3.3 gives h1,1 = 2.

From the relation e(X) = 2(h1,1 − h1,2) and the formula for e(X) we
compute h1,2(X).
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