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On the Kuramoto–Sivashinsky equation in a disk

by Vladimir Varlamov (Bogotá)

Abstract. We consider the first initial-boundary value problem for the 2-D Kura-
moto–Sivashinsky equation in a unit disk with homogeneous boundary conditions, peri-
odicity conditions in the angle, and small initial data. Apart from proving the existence
and uniqueness of a global in time solution, we construct it in the form of a series in a small
parameter present in the initial conditions. In the stable case we also obtain the uniform in
space long-time asymptotic expansion of the constructed solution and its asymptotics with
respect to the nonlinearity constant. The method can work for other dissipative parabolic
equations with dispersion.

1. Introduction. In this paper we shall consider the Kuramoto–Siva-
shinsky equation in two space dimensions. It can be written as

(1.1.) ∂tu+ ν∆2u+∆u = β|∇u|2,
where u = u(x1, x2, t), ∆ is the Laplace operator in x1, x2,∇u = grad u,
ν = const > 0, and β = const ∈ R.

The equation (1.1) arises in the theory of long waves in thin films [4],
[33], of long waves at an interface between two viscous liquids [13], in sys-
tems of the reaction-diffusion type [15], [16], and in the description of the
nonlinear evolution of a linearly unstable flame front [29], [30]. The lin-
ear terms in (1) describe the interaction of long-wavelength pumping and
short-wavelength dissipation, and the nonlinear term characterizes energy
redistribution between various modes.

The Kuramoto–Sivashinsky equation and related model equations have
been studied extensively in the eighties (mostly in the spatially one-dimen-
sional case), both in the context of inertial manifolds and in numerical sim-
ulations of dynamical behavior (see [2], [7], [8], [23], [24], and the references
there). Michelson [18] investigated special solutions u(x, t) = −c2t+ v(x) of
the spatially one-dimensional equation (1.1). Setting y = v′(x) he reduced
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it to the ordinary differential equation

(1.2) y′′′ + y′ = c2 − y2

which he studied numerically. The equation (1.2) was examined analytically
in [26], [34], and in the latter paper from the point of view of singular
perturbations. In [19], [20] Michelson showed that a slight modification of
(1.1),

(1.3) ∂tu+ ν∆2u+∆u+ |∇u|2 = c2,

possesses stationary solutions. In the context of combustion theory these
solutions represent Bunsen flames on infinite linear or circular burners. In
[20] Michelson examined the linear stability of the radially symmetric solu-
tions of (1.3) in a disk with the boundary conditions u|∂Ω = ∆u|∂Ω = 0.
We shall also use these conditions below in our analysis of the long-time
behavior of solutions of the spatially two-dimensional equation (1.1) in a
circular domain.

As regards spatially periodic solutions of the Kuramoto–Sivashinsky
equation and their stability, we must point out that Nicolaenko, Scheurer,
and Temam [24] showed that the existence of a global absorbing ball implied
the existence of a global attractor and gave an upper estimate of its Haus-
dorff dimension. Under the assumption that the initial data is odd, they
proved the existence of a bounded global absorbing set in L2(0, l ) for the
derivative Kuramoto–Sivashinsky equation. Collet, Eckmann, Epstein, and
Stubbe [6] and independently Goodman [12] got rid of this antisymmetry
requirement. Berloff and Howard [3] considered the generalized derivative
Kuramoto–Sivashinsky equation

∂tu+ ∂4
xu+ σ∂3

xu+ ∂2
xu+ 2u∂xu = 0

and constructed a periodic wave train solution by means of the singular
manifold method and partial fraction decomposition.

In the two-dimensional case an important problem was to show the ex-
istence of a bounded absorbing set in L2(Ω). Sell and Taboada [28] gave
the first answer to this question by means of proving the existence of a
bounded local absorbing set in H1

per([0, 2π] × [0, 2πε]) for ε small enough.
They adapted the method used by Raugel and Sell [27] for the Navier–Stokes
equation in a three-dimensional thin domain. In his interesting study [21]
Molinet improved the results of [28] and examined the local stability of the
solutions of the reduced Kuramoto–Sivashinsky equation with spatially peri-
odic boundary conditions in a thin rectangular domain. He gave a sufficient
condition on the width l2 of the domain depending on the length l1, so that
there exists a bounded local absorbing set in L2,per, and estimated this set.
As well as Sell and Taboada, Molinet used the derivative form of (1.1), that
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is, he set ∇u = (v1, v2) and reduced (1.1) to the system

∂tv1 + ν∆2v1 +∆v1 + v1∂xv1 + v2∂xv2 = 0,

∂tv2 + ν∆2v2 +∆v2 + v1∂yv1 + v2∂yv2 = 0,

∂yv1 = ∂xv2,

which is convenient for obtaining some estimates.

In our present investigation of the Kuramoto–Sivashinsky equation we
shall not use this reduction and will study (1.1) in its original form. We
shall consider the first initial-boundary value problem for (1.1) in a unit
disk with “small” initial conditions, homogeneous boundary conditions, and
periodicity conditions in the angle. We shall prove the existence of a global
in time strong solution by means of constructing it in the form of a series
in a small parameter present in the initial conditions. The uniqueness will
be proved via showing that the difference of two solutions from the required
function space equals zero. We shall also obtain a uniform in space long-time
asymptotic representation of the solution in question. The method applied
includes the use of eigenfunction expansions and the theory of perturbations.
In order to explain its origins we have to give a bit of history.

One of the powerful methods of studying Cauchy problems for nonlinear
evolution equations is the inverse scattering transform (IST) (see [1]). Nev-
ertheless, solving initial-boundary value problems by this method remained
an open question until the breakthrough made by Fokas [9] and Fokas and
Its [10], [11]. However, IST does not work for a wide class of dissipative
equations which are not completely integrable. Another approach was used
by Naumkin and Shishmarëv [22] who considered nonlocal dissipative equa-
tions of the first order in time. Having applied the Fourier transform and
the theory of perturbations, they solved a number of Cauchy problems with
small initial data and calculated the major terms of the long-time asymptotic
expansions of their solutions. In [35]–[39] this method was further developed
and adapted for solving Cauchy problems, spatially periodic problems, and
spatially 1-D initial-boundary value problems for nonlinear dissipative equa-
tions of the second and third order in time. A radially symmetric mixed
problem in a circle was considered in [40].

In the present paper we shall show how this approach can be applied for
solving a spatially two-dimensional initial-boundary value problem in a disk
via the use of eigenfunction expansions. As a result of examining a general
spatially 2-D case, we shall not observe the effect of the “loss of smoothness”,
as in [40]. The increase of the regularity of the initial data via imposing more
periodicity conditions can still influence the smoothness of the solution in
question.After constructing the solution, we shall obtain its uniform in space
long-time asymptotic expansion in the stable case ν > 1/λ2

01, where λ01 is
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the first positive zero of the Bessel function J0(z), and examine its growth
in time for 0 < ν ≤ 1/λ2

01.

2. Statement of the problem, notations, and technical lemmas.
We consider the first initial-boundary value problem for the Kuramoto–
Sivashinsky equation in the unit disk with small initial data and homoge-
neous boundary conditions. Using polar coordinates (r, θ) we can write it as
follows:

(2.1)

∂tu+ ν∆2u+∆u = β|∇u|2, (r, θ) ∈ Ω, t > 0,

u(r, θ, 0) = ε2ϕ(r, θ), (r, θ) ∈ Ω,

u|∂Ω = ∆u|∂Ω = 0,

|u(0, θ, t)| < +∞,

periodicity conditions in θ with period 2π for u

and its derivatives included in the equation,

where ∆ = 1
r
∂r(r∂r) + 1

r2 ∂
2
θ , Ω = {(r, θ) : |r| < 1, θ ∈ [−π, π]}; ε, ν =

const > 0, β = const ∈ R, and ϕ(r, θ) is a given real-valued function.

Our main tool in examining (2.1) will be the expansions in the series
of the eigenfunctions of the Laplace operator in the disk. For a function
f(r, θ) ∈ L2,r(Ω) (L2(Ω) with a weight r) the corresponding expansion is
(see [31])

(2.2) f(r, θ) =
∞∑

n=1

∞∑

m=−∞

f̂mnχmn(r, θ) =
∑

m,n

f̂mnχmn(r, θ),

where χmn(r, θ) are the eigenfunctions of the Laplace operator in the disk,
i.e., nontrivial solutions of the problem

∆χ = −Λχ, (r, θ) ∈ Ω,
χ|∂Ω = 0, χ(r, θ) = χ(r, θ + 2π), |χ(0, θ)| <∞.

These eigenfunctions and the corresponding eigenvalues are given by the
formulas

χmn(r, θ) = Jm(λmnr)e
imθ, Λmn = λ2

mn, m ∈ Z, n ∈ N,

where Jm(z) are the Bessel functions of index m, λmn are its positive zeros
numbered in increasing order, and n = 1, 2, . . . is the number of the zero.

The system of functions {χmn(r, θ)}m∈Z, n∈N is orthogonal and complete
in the space L2,r(Ω) (see [31]). Denoting the scalar product in L2,r(Ω) by
(·, ·)r,0 and the corresponding norm by ‖ · ‖r,0 we can write

(χmn, χkl)r,0 = δmkδnl‖χmn‖2
r,0,

where δij is the Kronecker symbol.
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We also have the Parseval identity in L2,r(Ω),

‖f‖2
r,0 =

∑

m,n

|f̂mn|2‖χmn‖2
r,0.

The coefficients of the expansion (2.2) are expressed by the formulas

f̂mn =
(f, χmn)r,0

‖χmn‖2
r,0

=
1

‖χmn‖2
r,0

1\
0

rJm(λmnr) dr

π\
−π

f(r, θ)e−imθ dθ.

It will be convenient to use iterated integrals in what follows and to expand
first in θ and then in r (the absolute convergence of the integrals will permit
us to do that).

We shall need the weighted space L2,r(0, 1) (L2(0, 1) with a weight r)
and shall denote the corresponding scalar product by (·, ·)r and the norm
by ‖ · ‖r. Then

‖χmn‖2
r,0 = 2π‖Jm(λmnr)‖2

r.

For a fixed integer m the system of functions {Jm(λmnr)}∞n=1 is orthogonal
and complete in L2,r(0, 1) (see [31], [41]). Expansions of the type

f(r) =

∞∑

n=1

f̂m,nJm(λmnr), f̂m,n =
(f, Jm(λmnr))r

‖Jm(λmnr)‖2
r

,

called Fourier–Bessel series are often used for solving radially symmetric
problems in a disk (see [32]). However, if m is not fixed, the system
{Jm(λmnr)}m∈Z, n∈N is not orthogonal in L2,r(0, 1).

Note that [32, p. 219]

‖Jm(λmnr)‖2
r =

1\
0

rJ2
m(λmnr) dr = J2

m+1(λmn)/2

and for sufficiently large positive λ,

(2.3) C1/λ ≤ ‖Jm(λr)‖2
r ≤ C2/λ.

We shall also need some properties of the zeros of the Bessel functions
Jm(z), m ≥ 0. For bounded m large positive zeros of Jm(z) have the follow-
ing uniform asymptotics (called McMahon’s expansion; see [14, p. 153], [25,
p. 247]):

λmn = µ+O

(
1

µmn

)
, µmn =

(
m+ 2n − 1

2

)
π

2
, n→ ∞.

For large m and n the major term of this formula still holds [41, p. 514]:

(2.4) λmn ∼ (m+ 2n)
π

2
.

In what follows we shall need the weighted Sobolev spaces Hs
r (Ω), s ∈ R,

which differ from the usual Sobolev spaces Hs(Ω) in that instead of L2(Ω)
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we use the weighted space L2,r(Ω). We introduce the norm in Hs
r (Ω) by the

formula (see [17])

‖f‖2
r,s =

∑

m,n

λ2s
mn|f̂mn|2 ‖χmn‖2

r,0.

Here λmn > 0 for all m ∈ Z and n ∈ N. Evidently, H0
r (Ω) ≡ L2,r(Ω).

Our elementary space operator in (2.1) is ∆, and thanks to the orthog-
onality of the functions χmn(r, θ) in the space L2,r(Ω) we have

‖∆f‖2
r,0 = (∆f,∆f)r,0 =

(∑

m,n

(−λ2
mn)f̂mnχmn,

∑

k,l

(−λ2
kl)f̂klχkl

)

r,0

=
∑

m,n,k,l

λ2
mnλ

2
kl|f̂mn| · |f̂kl|(χmn, χkl)r,0 =

∑

m,n

λ4
mn|f̂mn|2‖χmn‖2

r,0.

We need to introduce the Banach space Ck([0,∞),Hs
r (Ω)) equipped with

the norm

‖u‖Ck =
k∑

j=0

sup
t∈[0,∞)

‖∂j
t u(t)‖s,r.

Now we prove two lemmas that will enable us to estimate the magnitude
of the coefficients f̂mn in the eigenfunction expansion (2.2). The first lemma
is the extension of the proposition given in [41, p. 595] to the case when
the integrand depends on a parameter, that is, f = f(x, α) = fα(x), x ∈
[0, 1], α ∈ [a, b], −∞ < a, b < ∞. We denote by V 1

0 (fα(x)) the total varia-
tion of the function fα(x) in x ∈ [0, 1].

Consider the integral

Im(λ, α) =

1\
0

xf(x, α)Jm(λx) dx, m ≥ 0, λ > 0, α ∈ [a, b].

Lemma 1. If for each fixed α ∈ [a, b] the function
√
xf(x, α) has a

bounded total variation in x on [0, 1], V 1
0 (

√
xfα(x)) = Vα; limx→0

√
xf(x, α)

= Fα, and Vα, Fα ∈ L1(a, b), then for m ≥ 0, λ > 0, α ∈ [a, b],

|Im(λ, α)| ≤ Cα/λ
3/2,

where Cα is independent of m and λ and Cα ∈ L1(a, b).

P r o o f. From the asymptotic formula as x→ ∞ for the Bessel functions
we see that for any z ∈ (0,∞),

∣∣∣
z\
0

√
xJm(x) dx

∣∣∣ ≤ c <∞,

where c is independent of m and z.
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Set
√
xfα(x) = ψα(x). We can represent ψα(x) as

ψα(x) = ψα,1(x) − ψα,2(x),

where ψα,1(x) = V x
0 (ψα(x)) is the variation of ψα(x) in [0, x], x ∈ [0, 1], and

ψα,2(x) = V x
0 (ψα(x)) − ψα(x). The functions ψα,1(x) and ψα,2(x) are non-

decreasing in x for each fixed α ∈ [a, b]. Then

ψα,1(0) = 0, ψα,1(1) = V 1
0 (ψα(x)) = Vα ∈ L1(a, b),

ψα,2(0) = − ψα(0) = −Fα ∈ L1(a, b),

ψα,2(1) = V 1
0 (ψα(x)) − ψα(1) = Vα − ψα(1).

We also have |ψα(1) − ψα(0)| ≤ V 1
0 (ψα(x)), which implies that

|ψα(1)| ≤ |ψα(0)| + V 1
0 (ψα(x)) = |Fα| + Vα.

Applying the second mean value theorem for integrals we obtain

∣∣∣
1\
0

ψα,1(x)
√
xJm(λx) dx

∣∣∣

≤
∣∣∣ψα,1(0)

ξ\
0

√
xJm(λx) dx + ψα,1(1)

1\
ξ

√
xJm(λx) dx

∣∣∣ ≤ cVαλ
−3/2,

∣∣∣
1\
0

ψα,2(x)
√
xJm(λx) dx

∣∣∣

≤
∣∣∣ψα,2(0)

η\
0

√
xJm(λx) dx+ ψα,2(1)

1\
η

√
xJm(λx) dx

∣∣∣

≤ c[2|Fα| + Vα]λ−3/2.

Hence follows the necessary estimate which completes the proof.

The next statement gives a tool for increasing the decay of Im(λ, α) in λ.

Lemma 2. If f(x, α) has partial derivatives in x in [0, 1] through the

third order and f(0, α) = ∂xf(0, α) = ∂2
xf(0, α) = 0 (in case m = 0 only

∂xf(0, α) = 0), f(1, α) = ∂xf(1, α) = ∂2
xf(1, α) = 0, limx→0+

√
x∂3

xf(x, α)

= F̃α ∈ L1(a, b), and for each fixed α the function
√
x∂3

xf(x, α) has a

bounded total variation in x in [0, 1] which is absolutely integrable in α ∈
(a, b), i.e. V 1

0 (
√
x∂3

xfα(x)) = Ṽα ∈ L1(a, b), then for m ≥ 0, λ > 0,

|Im(λ, α)| ≤ Cα(m+ 1)3/λ9/2,

where Cα is independent of m and λ and Cα ∈ L1(a, b).
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P r o o f. By the well known formula (see [32, p. 205]), we have

d

dx
(xm+1Jm+1(x)) = xm+1Jm(x), m ≥ 0.

Below we shall use the notation fα(x) = f(x, α), and a prime will denote the
derivative in x. Changing the variable of integration ξ = λx and integrating
by parts we deduce that

Im(λ, α) =
1

λ2

1\
0

ξfα(ξ/λ)Jm(ξ) dξ =
ξ

λ2
fα(ξ/λ)Jm+1(ξ)|λ0

− 1

λ2

λ\
0

[
1

λ
f ′

α(ξ/λ) − m

ξ
fα(ξ/λ)

]
ξJm+1(ξ) dξ.

Here the first term on the right is zero because of the condition fα(1) = 0.
Integrating two more times by parts and using the boundary conditions
f ′

α(1) = f ′′
α(1) = 0 we obtain

Im(λ, α) = − 1

λ2

λ\
0

{{
ξ

[
1

λ3
f ′′′

α (ξ/λ) − 2m

ξ3
fα(ξ/λ) +

2m

λξ2
f ′

α(ξ/λ)

− m

λ2ξ
f ′′

α(ξ/λ)

]
+

[
1

λ2
f ′′

α(ξ/λ) +
m

ξ2
f(ξ/λ) − m

λξ
f ′

α(ξ/λ)

]

− (m+ 1)

[
1

λ2
f ′′

α(ξ/λ) +
m

ξ2
fα(ξ/λ) − m

λξ
f ′

α(ξ/λ)

]}

− m+ 3

ξ

{
ξ

[
1

λ2
f ′′

α(ξ/λ) +
m

ξ2
fα(ξ/λ) − m

λξ
f ′

α(ξ/λ)

]

− (m+ 1)

[
1

λ
f ′

α(ξ/λ) − m

ξ
fα(ξ/λ)

]}}
Jm+3(ξ) dξ

= − 1

λ3

1\
0

{
xf ′′′

α (x) − 3(m+ 1)f ′′
α(x) −m

[
f ′

α(x) − fα(x)

x

]

+
(m+ 1)(m+ 3)

x

[
f ′

α(x) − m

x
fα(x)

]}
Jm+3(λx) dx.

Now we have to justify the formal calculations. Since V 1
0 (

√
xf ′′′

α (x)) =

Ṽα ∈ L1(a, b), limx→0+
√
xf ′′′

α (x) = F̃α ∈ L1(a, b), there exists a constant
Mα ∈ L1(a, b) such that |√xf ′′′

α (x)| ≤ Mα for x ∈ [0, 1]. Therefore f ′′′
α (x)

is absolutely integrable in x in (0, 1). Expanding fα(x), f ′
α(x), and f ′′

α(x)
around x0 = 0 in the integrand and using the boundary conditions fα(0) =
f ′

α(0) = f ′′
α(0) = 0 we can write that for x ∈ (0, 1],



Kuramoto–Sivashinsky equation 235

fα(x) =
f ′′′

α (ϑ1x)

3!
x3, 0 < ϑ1 < 1,

f ′
α(x) =

f ′′′
α (ϑ2x)

2!
x2, 0 < ϑ2 < 1,

f ′′
α(x) = f ′′′

α (ϑ3x)x, 0 < ϑ3 < 1.

Substituting these expansions into the integrand we get

Im(λ, α) = − 1

λ3

1\
0

x

{
f ′′′

α (x) − 3(m+ 1)f ′′′
α (ϑ3x)

−m

[
f ′′′

α (ϑ2x)

2!
− f ′′′

α (ϑ1x)

3!

]

+ (m+ 1)(m+ 3)

[
f ′′′

α (ϑ2x)

2!
−m

f ′′′
α (ϑ1x)

3!

]}
Jm+3(λx) dx.

All the transformations performed above are valid for m ≥ 0, but in
the special case m = 0 it is possible to reduce the number of the boundary
conditions at x0 = 0. Indeed, we have

I0(λ, α) = − 1

λ3

1\
0

{
xf ′′′

α (x) + 3

[
f ′

α(x)

x
− f ′′

α(x)

]}
J3(λx) dx.

By Taylor’s theorem and the condition f ′
α(0) = 0 we have for x ∈ (0, 1],

f ′
α(x)

x
− f ′′

α(x) =

[
f ′′′

α (ϑ2x)

2!
− f ′′′

α (ϑ3x)

3!

]
x, 0 < ϑ2,3 < 1.

Therefore, applying Lemma 1 we obtain the required estimate of I0(λ, α).

We shall need eigenfunction expansions of type (2.2) for the nonlinearity
of the equation in (2.1). The coefficients Fmn(|∇u|2) of these equations will
be represented by the quadruple series

∑

p,q,l,s

amnpqlsûpq(t)ûls(t) and
∑

p,q,l,s

bmnpqlsûpq(t)ûls(t).

The following lemma permits us to estimate the coefficients of these series.

Let m, n, p, q, l, s be nonnegative integers, n, q, s ≥ 1, and

amnpqls =
λpqλls

‖Jm(λmnr)‖2
r

1\
0

rJm(λmnr)J
′
p(λpqr)J

′
l (λlsr) dr, m, p, l≥0,

(2.5)

bmnpqls =
pl

‖Jm(λmnr)‖2
r

1\
0

1

r
Jm(λmnr)Jp(λpqr)Jl(λlsr) dr, m, p, l≥1,

where λkj , k = 0, 1, . . . and j = 1, 2, . . . , are positive zeros of the Bessel
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function Jk(z) arranged in increasing order, and the prime denotes differen-
tiation with respect to the argument.

Lemma 3. The following estimates are valid :

(2.6) |amnpqls| ≤ c(λmnλpqλls)
1/2, |bmnpqls| ≤ c(λmnλpqλls)

1/2.

P r o o f. Representing the derivatives of the Bessel functions in the first
integral by the formulas (see [32, p. 207])

J ′
k(z) = 1

2
[Jk−1(z) − Jk+1(z)], k ≥ 1, J ′

0(z) = −J1(z),

and using (2.3) and the inequality

(2.7) |Jk(z)| ≤ c/
√
z, z > 0,

we deduce the first estimate in (2.6).

Making use of the formula [32, p. 207]

Jk(z)

z
=

1

2k
[Jk−1(z) + Jk+1(z)], k ≥ 1,

we have for k ≥ 1, j ≥ 1,

Jk(λkjr)

r
=
λkj

2k
[Jk−1(λkjr) + Jk+1(λkjr)].

Then applying (2.7) we obtain the second estimate in (2.6).

3.The main results. In this section we present several theorems con-
cerning the existence, uniqueness, construction of the global in time solution
of the problem (2.1), and its uniform in space long-time asymptotic expan-
sion.

Let Ωδ = {(r, θ) : r ∈ [δ, 1], θ ∈ [−π, π]}, where δ > 0 is small.

Theorem 1. Suppose that ν > 1/λ2
01, where λ01 is the first positive zero

of J0(z),

ϕ(r,−π) = ϕ(r, π), ∂θϕ(r,−π) = ∂θϕ(r, π), ∂2
θϕ(r,−π) = ∂2

θϕ(r, π),

ϕ(r, θ) satisfies the hypotheses of Lemma 2 with m = 0, i.e.,

∂rϕ(0, θ) = ϕ(1, θ) = ∂rϕ(1, θ) = ∂2
rϕ(1, θ) = 0,

lim
r→0+

√
r∂3

rϕ(r, θ) = Φθ ∈ L1(−π, π),

V 1
0 (

√
r∂3

rϕ(r, θ)) = Vθ ∈ L1(−π, π),

and ∂3
θϕ(r, θ) satisfies the hypotheses of Lemma 2 in the general case, i.e.

∂3
θϕ(0, θ) = ∂r∂

3
θϕ(0, θ) = ∂2

r∂
3
θϕ(0, θ) = ∂3

θϕ(1, θ)

= ∂r∂
3
θϕ(1, θ) = ∂2

r∂
3
θϕ(1, θ) = 0,
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lim
r→0+

√
r∂3

r∂
3
θϕ(r, θ) = Φ̃θ ∈ L1(−π, π),

V 1
0 (

√
r∂3

r∂
3
θϕ(r, θ)) = Ṽθ ∈ L1(−π, π).

Then there is ε0 such that for 0 < ε ≤ ε0 there exists a unique solution of the

problem (2.1) from the class C1([0,∞),H−1−γ
r (Ω)) ∩ C0([0,∞),H3−γ

r (Ω))
with ∆u ∈ C0([0,∞),H1−γ

r (Ω)) and ∆2u ∈ C0([0,∞),H−1−γ
r (Ω)) for any

γ > 0.
Moreover , u and ∇u are continuous and bounded in Ω × [0,∞) and ∆u

is continuous and bounded in Ωδ × [0,∞).
This solution can be represented as

(3.1) u(r, θ, t) =

∞∑

N=0

εN+1u(N)(r, θ, t),

where the functions u(N) will be defined in the proof (see (4.8) and (4.12)).
The series (3.1) converges absolutely and uniformly with respect to (r, θ) ∈
Ω, t ∈ [0,∞), ε ∈ [0, ε0] together with ∇u which can be calculated termwise.

In the next statement (and only there) we denote the solution of the
nonlinear problem (2.1) by uβ(r, θ, t) and the solution of the corresponding
linear problem (with β = 0) by u0(r, θ, t). The existence and uniqueness of
the latter is evident.

Corollary. Under the assumptions of Theorem 1, the following esti-

mate holds:

sup
Ω×[0,∞)

|uβ(r, θ, t) − u0(r, θ, t)| ≤ C|β|, β ∈ R,

where the constant C is independent of r, θ, t, and ε.

Remark 1. The parameter ε ∈ (0, ε0] which controls the initial data
guarantees the absolute and uniform convergence of the series (3.1). The
latter is a series of regular perturbations and can be used as an asymptotic
series with respect to ε. The estimate of ε0 will be made clear in the proof.

Remark 2. The solution presented above is a strong solution. The equa-
tion in (2.1) is satisfied in the distributional sense, i.e., in H−1−γ

r (Ω), γ > 0,
for each fixed t > 0. In the same sense the periodicity conditions are satisfied
for ∂tu and ∆2u. The boundary conditions u|∂Ω = ∆u|∂Ω = 0, the initial
condition, and the periodicity conditions for u and ∇u are satisfied in the
classical sense. For ∆u the periodicity conditions are satisfied in H1−γ

r (Ω)
(and in Ωδ they are satisfied in the classical sense).

Remark 3. It is not difficult to construct a function ϕ(r, θ) satisfy-
ing the hypothesis of Theorem 1 by separation of variables, i.e., ϕ(r, θ) =
R(r)Θ(θ), where R(k)(0) = R(k)(1), k = 0, 1, 2; limr→0+

√
rR′′′(r) = c1 <
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∞, V 1
0 (

√
rR′′′(r)) = c2 < ∞, Θ(k)(−π) = Θ(k)(π), k = 0, 1, 2; Θ′′′ ∈

L1(−π, π). The fact that Θ ∈ L1(−π, π) follows from the absolute inte-
grability of Θ′′′ in (−π, π) and the existence of Θ(k)(−π), k = 0, 1, 2.

Theorem 2. Under the hypotheses of Theorem 1, the solution of (2.1)
has the following asymptotic representation as t→ ∞:

(3.2) u(r, θ, t) = exp(−κ01t)[AεJ0(λ01r) +O(exp(−κ01t))],

where κ01 = λ2
01(νλ

2
01 − 1) > 0, and the coefficient Aε will be defined in the

proof (see (7.1) and (7.3)). The estimate of the residual term is uniform

with respect to (r, θ) ∈ Ω and ε ∈ [0, ε0].

Consider the problem (2.1) on a bounded time interval [0, T ], T < ∞,
and denote it by (2.1∗).

Theorem 3. If 0 < ν ≤ 1/λ2
01 and the remaining assumptions of

Theorem 1 hold , then for any T > 0 there is ε0(T ) > 0 such that for

0 < ε ≤ ε0(T ) there exists a unique solution of the problem (2.1∗) from

the class stated in Theorem 1 with [0,∞) replaced by [0, T ]. This solution is

represented in the form (3.1), where ε0(T ) → 0 as T → ∞. For any fixed

ε there exists T < ∞ such that the solution of (2.1∗) cannot be extended

beyond this point.

The rest of the paper is organized as follows. In Section 4 we construct
a solution of the problem (2.1) and verify that it belongs to the required
function space. Section 5 is devoted to the proof of uniqueness. This com-
pletes the proof of Theorem 1. The Corollary is proved in Section 6. The
long-time asymptotic expansion of the solution for ν > 1/λ2

01 which forms
the content of Theorem 2 is obtained in Section 7. Theorem 3 deals with
the case 0 < ν ≤ 1/λ2

01 and is proved in Section 8. Some final remarks are
given in Section 9.

4. Existence and construction of solutions: proof of Theorem 1.
In order to satisfy the boundary and periodicity conditions in (2.1) we seek
a solution of this problem in the form (2.2), namely:

(4.1) u(r, θ, t) =

∞∑

n=1

∞∑

m=−∞

ûmn(t)χmn(r, θ),

where

ûmn(t) =
(u, χmn)r,0

‖χmn‖2
r,0

, m ∈ Z, n ∈ N.

Since J−m(z) = (−1)mJm(z) for integer m ≥ 0, the zeros of Jm(z) and
J−m(z) coincide (λ−m,n = λmn, m ≥ 0, n ≥ 1), and (4.1) can be rewritten
in the form of a double series with m ≥ 0. Using the fact that u(r, θ, t) is a
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real-valued function we can write

ûmn(t) =
1

‖χmn‖2
r,0

1\
0

rJm(λmnr) dr

π\
−π

e−imθu(r, θ, t) dθ,

û−m,n(t) =
1

‖χmn‖2
r,0

1\
0

rJ−m(λ−m,nr) dr

π\
−π

eimθu(r, θ, t) dθ

=
(−1)m

‖χmn‖2
r,0

1\
0

rJm(λmnr) dr

π\
−π

eimθu(r, θ, t) dθ, m ≥ 0, n ≥ 1.

Therefore,

ûmn(t) = (−1)mû−m,n(t), m ≥ 0, n ≥ 1,

where the bar denotes complex conjugation (this notation should not be
confused with Ω, where the bar denotes closure).

We can rewrite the expression (4.1) as

u(r, θ, t) =
∞∑

n=1

û0n(t)J0(λ0nr)(4.2)

+
∞∑

n=1

∞∑

m=1

Jm(λmnr)[ûmn(t)eimθ + ûmn(t)e−imθ]

=
∑∗

m,n

ûmn(t)Jmn(λmnr)e
imθ.

Here and below the double sum with an asterisk includes the “usual” double
sum

∑∞
m,n=1 and

∑∞
n=1 .

Expanding |∇u|2 in the series of type (2.2) and denoting its coefficients
by Fmn(|∇u|2)(t), m ∈ Z, n ∈ N, we substitute this expansion and (4.1)
into (2.1) and obtain the following Cauchy problem for ûmn(t):

(4.3)
û′mn(t) + κmnûmn(t) = βFmn(|∇u|2)(t), t > 0,

ûmn(0) = ε2ϕ̂mn, m ∈ Z, n ∈ N,

where

κmn = λ2
mn(νλ2

mn − 1) > 0, Fmn(|∇u|2)(t) =
(|∇u|2(t), χmn)r,0

‖χmn‖2
r,0

,

and ϕ̂mn are the coefficients of the type (2.2) expansion of ϕ(r, θ), that is,

ϕ(r, θ) =
∑

m,n

ϕ̂mn(t)χmn(r, θ), ϕ̂mn =
(ϕ,χmn)r,0

‖χmn‖2
r,0

.
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We now prove the following estimates:

(4.4) |ϕ̂mn| ≤ c/λ7/2
mn, m ≥ 0, n ≥ 1.

For m = 0 we can write

ϕ̂0n =
1

2π‖J0(λ0nr)‖2
r

1\
0

rJ0(λ0nr) dr

π\
−π

ϕ(r, θ) dθ

=
1

2π‖J0(λ0nr)‖2
r

π\
−π

dθ

1\
0

rJ0(λ0nr)ϕ(r, θ) dr.

Since ϕ(r, θ) satisfies the hypothesis of Lemma 2 with m = 0 we have

∣∣∣
1\
0

rϕ(r, θ)J0(λ0nr) dr
∣∣∣ ≤ Cθ/λ

9/2
0n ,

where Cθ ∈ L1(−π, π). Taking into account (2.3) we obtain the required
estimate.

It remains to justify the change of the order of integration performed
above. We observe that the conditions

V 1
0 (

√
r∂3

rϕ(r, θ)) = Vθ ∈ L1(−π, π), lim
r→0+

√
r∂3

rϕ(r, θ) = Φθ ∈ L1(−π, π)

imply that there exists Nθ ∈ L1(−π, π) such that

|∂3
rϕ(r, θ)| ≤ Nθ/

√
r, r ∈ (0, 1).

Therefore, using the boundary conditions ϕ(1, θ) = ∂rϕ(1, θ) = ∂2
rϕ(1, θ)

= 0 we deduce that

|ϕ(r, θ)| ≤
∣∣∣

r\
1

dr1

r1\
1

dr2

r3\
1

|∂3
rϕ(r3, θ)| dr3

∣∣∣ ≤ cNθ

uniformly with respect to r ∈ [0, 1]. The change of the order of integration
is justified.

Assume now that m ≥ 1. Defining

φm(r) =
1

2π

π\
−π

e−imθϕ(r, θ) dθ

we can write

ϕ̂mn =
1

‖Jm(λmnr)‖2
r

π\
−π

rJm(λmnr)φm(r) dr.

Integrating three times by parts in the integral defining φm(r) and using the
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periodicity conditions in θ for ϕ(r, θ), ∂θϕ(r, θ), and ∂2
θϕ(r, θ) we get

φm(r) =
i

2πm3

π\
−π

e−imθ∂3
θϕ(r, θ) dθ, m ≥ 1.

Changing the order of integration in the integral representation of ϕ̂mn we
obtain

ϕ̂mn =
i

2πm3‖Jm(λmnr)‖2
r

π\
−π

e−imθ dθ

1\
0

rJm(λmnr)∂
3
θϕ(r, θ) dr.

Since ∂3
θϕ(r, θ) satisfies the hypothesis of Lemma 2 in r, for m ≥ 1 we have

∣∣∣
1\
0

rJm(λmnr)∂
3
θϕ(r, θ) dr

∣∣∣ ≤ Cθ(m+ 1)3

λ
9/2
mn

,

where Cθ ∈ L1(−π, π). The last inequality and the estimate (2.3) imply
(4.4) with m ≥ 1.

In order to show that the change of the order of integration is valid we
observe that there exists Pθ ∈ L1(−π, π) such that

|∂3
r∂

3
θϕ(r, θ)| ≤ Pθ/

√
r, r ∈ (0, 1).

Therefore, using the boundary conditions ∂3
θϕ(0, θ) = ∂r∂

3
θϕ(0, θ) =

∂2
r∂

3
rϕ(0, θ) = 0 we deduce that

|∂3
θϕ(r, θ)| ≤

r\
0

dr1

r1\
0

dr2

r2\
0

dr3 |∂3
r∂

3
rϕ(r3, θ)| ≤ cPθ

uniformly with respect to r ∈ [0, 1]. The estimates (4.4) are established for
all integer m ≥ 0, n ≥ 1.

Integrating the Cauchy problem (4.3) in time we obtain

ûmn(t) = εΦ̂mn exp(−κmnt)(4.5)

+ β

t\
0

exp[−κmn(t− τ)]Fmn(|∇u|2)(τ) dτ,

where m ≥ 0, n ≥ 1, and Φ̂mn = εϕ̂mn. It is convenient to keep one small
parameter in the coefficients Φ̂mn in order to simplify some estimates.

In order to calculate Fmn(|∇u|2) we set

(4.6) Fmn(|∇u|2) = Fmn[(∂ru)
2] + Fmn[(∂θu)

2/r2],

where
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Fmn[(∂ru)
2] =

1

‖χmn‖2
r,0

1\
0

rJm(λmnr) dr

π\
−π

dθ e−imθ

× ∂r

[ ∞∑

q=1

{
û0q(t)J0(λ0qr) +

∞∑

p=1

Jp(λpqr)[ûpq(t)e
ipθ + ûpq(t)e

−ipθ]
}]

× ∂r

[ ∞∑

s=1

{
û0s(t)J0s(λ0sr) +

∞∑

l=1

Jl(λlsr)[ûls(t)e
ilθ + ûls(t)e

−ilθ]
}]

=
∑′

p,q,l,s

amnpqlsûpq(t)ûls(t),

where
∑′

p,q,l,s

amnpqlsûpq(t)ûls(t) =
∑

p,l≥0; q,s≥1
p+l=m

amnpqls ûpq(t)ûls(t)

+
∑

p,q,l,s≥1
l−p=m

amnpqlsûpq(t)ûls(t)

+
∑

p,q,l,s≥1
p−l=m

amnpqlsûpq(t)ûls(t),

and the coefficients amnpqls are defined by (2.5). Here we have used the
relations

π\
−π

ei(−m+p+l)θ dθ =

{
2π, p+ l = m,
0, p+ l 6= m,

π\
−π

ei(−m−p+l)θ dθ =

{
2π, l − p = m,
0, l − p 6= m,

π\
−π

ei(−m+p−l) dθ =

{
2π, p− l = m,
0, p− l 6= m,

π\
−π

e−i(m+p+l)θ dθ =

{
2π, m = p = l = 0,
0, m ≥ 0, p ≥ 1, l ≥ 1.

Next, we have

Fmn[(∂θu)
2/r2] =

1

‖χmn‖2

1\
0

1

r
Jm(λmnr)dr

π\
−π

e−imθ

×
∞∑

q,p=1

Jp(λpqr)ip[ûpq(t)e
ipθ − ûpq(t)e

−ipθ]
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×
∞∑

s,l=1

Jl(λlsr)il[ûls(t)e
ilθ − ûls(t)e

−ilθ] dθ

=
∑′′

p,q,l,s

bmnpqlsûpq(t)ûls(t),

where
∑′′

p,q,l,s

bmnpqlsûpq(t)ûls(t) = −
∑

p,l≥0; q,s≥1
p+l=m≥1

bmnpqlsûpq(t)ûls(t)

+
∑

p,q,l,s≥1
l−p=m

bmnpqlsûpq(t)ûls(t)

+
∑

p,q,l,s≥1
p−l=m

bmnpqlsûpq(t)ûls(t),

and the coefficients bmnpqls are defined by (2.5).

The three sums with the additional conditions p+ l = m, l− p = m, and
p− l = m are of the convolution type. Note that in the sum

∑′′
p,q,l,s the ana-

log of the term
∑∞

q,s=1 a0n0q0sû0q(t)û0s(t) corresponding to p + l = m = 0
and representing the “purely radial part” is absent as a result of differenti-
ating with respect to θ.

To solve the nonlinear integral equation (4.5) we use perturbation theory.
Representing ûm(t) as a formal series in ε,

(4.7) ûmn(t) =
∞∑

N=0

εN+1v̂(N)
mn (t),

we substitute it into (4.5) and compare the coefficients of equal powers of
ε. As a result, we obtain the following representations for N ≥ 0, m ≥ 0,
n ≥ 1, t > 0:

(4.8)

v̂(0)
mn(t) = Φ̂mn exp(−κmnt),

v̂(N)
mn (t) = β

t\
0

exp[−κmn(t− τ)]Q(N)
mn (v̂(τ)) dτ, N ≥ 1,

where

Q(N)
mn (v̂(t)) =

∑′

p,q,l,s

amnpqls

N∑

j=1

v̂(j−1)
pq (t)v̂

(N−j)
ls (t)

+
∑′′

p,q,l,s

bmnpqls

N∑

j=1

v̂(j−1)
pq (t)v̂

(N−j)
ls (t).
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Now we have to prove that the formally constructed function (4.2), (4.7),
(4.8) is really a solution of the problem (2.1) in the required function space.
To this end we study the convergence of the series

(4.9) u(r, θ, t) =
∑∗

m,n

[ ∞∑

N=0

εN+1v̂(N)
mn (t)

]
Jm(λmnr)e

imθ.

First, we establish the following estimates for N ≥ 0, m ≥ 0, n ≥ 1, t > 0:

(4.10) |v̂(N)
mn (t)| ≤ cNβ (N + 1)−2λ−7/2

mn exp(−κ01t),

where cβ = c|β|, β ∈ R. We use induction on N. For N = 0 and sufficiently
small ε we have, from (4.4) and (4.8),

|v̂(0)
mn(t)| = |εϕ̂mn| exp(−κmnt) ≤ λ−7/2

mn exp(−κ01t).

Assuming that (4.10) is valid for |v̂(s)
mn(t)| with 0 ≤ s ≤ N − 1 we prove it

for s = N. For 1 ≤ j ≤ N we have

j−2(N + 1 − j)−2 ≤ 22(N + 1)−2[j−2 + (N + 1 − j)−2].

By means of Lemma 3 we can estimate a typical term on the right-hand
side of (4.8). Indeed,

|ℑ|≤c|β|
t\
0

exp[−κmn(t−τ)]
∑

p,l≥0; q,s≥1
p+l=m

|amnpqls|
N∑

j=1

|v̂(j−1)
pq (τ)| · |v̂(N−j)

ls (τ)| dτ

≤ cβ
√
λmn

(N + 1)2
Smn(t)

∑∗

p,q

1

λ3
pq

∑∗

l,s

1

λ3
ls

N∑

j=1

cj−1
β cN−j

β [j−2 +(N+1− j)−2],

where

Smn(t) = exp(−κmnt)

t\
0

exp(Lmnτ) dτ,

Lmn = κmn − 2κ01 = λ2
mn(νλ2

mn − 1) − 2λ2
01(νλ

2
01 − 1).

The convergence of the double series in p, q and in l, s in the last inequality
follows from the asymptotics (2.4) and the fact that the series

∞∑

m,n=−∞
m,n 6=0

1

(m+ 2n)σ

converges for σ > 2 and diverges for σ ≤ 2 (see [5]). Now we have to consider
three cases.

(i) If m = 0, n = 1, then L01 = −κ01, and

S01(t) = exp(−κ01t)
1 − exp(−κ01t)

κ01
≤ exp(−κ01t)

λ4
01(ν − 1/λ4

01)
.
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(ii) If m = 0, n ≥ 2, then for the positive zeros of J0(z) we have (see
[14]) λ2

0n ≥ λ2
02 > 2λ2

01, and therefore,

L0n = λ2
0nν(λ

2
0n − λ2

01) + (νλ2
01 − 1)(λ2

0n − 2λ2
01) > 0.

Then

S0n(t) = exp(−κ0nt)
exp(L0nt) − 1

L0n

≤ exp(−2κ01t)

νλ2
0n(λ2

0n − λ2
01) + (νλ2

01 − 1)(λ2
0n − 2λ2

01)

≤ exp(−2κ01t)

νλ4
0n(1 − λ2

01/λ
2
0n)

≤ c(ν)
exp(−κ01t)

λ4
0n

.

(iii) If m ≥ 1, n ≥ 1, then λ2
mn − 2λ2

01 ≥ λ2
11 − 2λ2

01 > 0 (see [14]), and
consequently,

Lmn = νλ2
mn(λ2

mn − λ2
01) + (νλ2

01 − 1)(λ2
mn − 2λ2

01)

≥ νλ2
11(λ

2
11 − λ2

01) + (νλ2
01 − 1)(λ2

11 − 2λ2
01) > 0.

Therefore,

Smn(t) = exp(−κmnt)
exp(Lmnt) − 1

Lmn

≤ exp(−2κ01t)

νλ4
mn(1 − λ2

01/λ
2
mn)

≤ c(ν)
exp(−κ01t)

λ4
mn

.

The estimates (4.10) are proved. Moreover, in items (ii) and (iii) we have
established that for t > 0, N ≥ 0, m = 0, n ≥ 2 and m ≥ 1, n ≥ 1,

(4.11) |v̂(N)
0n (t)| ≤ cNβ (N + 1)−2λ

−7/2
0n exp(−2κ01t),

where cβ = c|β|, β ∈ R (in these two cases the estimate for v̂
(0)
mn(t) can also

be rewritten with exp(−2κ01t) since κmn ≥ 2κ01). The inequalities (4.11)
will be used later for calculating the long-time asymptotics of the solution.

In order to obtain the representation (3.1) we interchange the order of
summation in the series (4.9) to get

(4.12) u(r, θ, t) =

∞∑

N=0

εN+1u(N)(r, θ, t),

where

u(N)(r, θ, t) =
∑∗

l,s

v̂(N)
mn (t)Jm(λmnr)e

imθ

and v̂
(N)
mn (t) are defined by (4.8). This interchange is possible due to the

absolute and uniform (in (r, θ) ∈ Ω, t ≥ 0, ε ∈ [0, ε0]) convergence of the
series in question, which in turn follows from (4.8) with 0 < ε ≤ ε0 < c−1

β .
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Differentiating (4.8) with respect to t we find that

∂tv̂
(0)
mn(t) = − κmnΦ̂mn exp(−κmnt),

∂tv̂
(N)
mn (t) = β

[
κmn

t\
0

exp[−κmn(t−τ)]Q(N)
mn (v̂(τ)) dτ +Q(N)

mn (v̂(t))
]
, N≥1,

where Q
(N)
mn (v̂(t)) is defined by (4.8).

Taking into account the expression for κmn (see (4.3)) and (4.7) we
deduce that for m ≥ 0, n ≥ 1, t ≥ 0, k = 0, 1,

(4.13) |∂tûmn(t)| ≤ cλ4k−7/2
mn exp(−κ01t).

Recalling the asymptotics (2.4) and using (4.13) with k = 0 we conclude
that the series ∑

m,n

λ2s
mn|ûmn(t)|2‖Jm(λmnr)‖2

r

with s = 3 − γ, γ > 0, converges uniformly with respect to t ≥ 0. There-
fore, u ∈ C0([0,∞),H3−γ

r (Ω)). Moreover, thanks to (4.13) the series (4.2)
converges absolutely and uniformly with respect to (r, θ) ∈ Ω, t ≥ 0, and
ε ∈ [0, ε0]. Therefore, u(r, θ, t) is continuous and bounded in this domain.

Calculating ∇u by means of (4.2) we can see that for m ≥ 0, n ≥ 1,
t ≥ 0,

|Fmn(∇u)(t)| ≤ c

λ
5/2
mn

exp(−κ01t)

and, therefore, the series
∑∗

m,n

Fmn(∇u)Jm(λmnr)e
imθ

converges absolutely and uniformly in (r, θ) ∈ Ω, t ≥ 0.

As regards ∆u, for s = 1 − γ, γ > 0, the series

‖∆u‖2
r,s =

∑

m,n

λ2s
mn|Fmn(∆u)(t)|2‖Jm(λmnr)‖2

r

converges uniformly in t≥0, and this implies that∆u∈C0([0,∞),H1−γ
r (Ω)).

However, the convergence of the series of type (4.2) representing ∆u in
the pointed region Ωδ is better than in the domain Ω. Indeed, for (r, θ) ∈ Ωδ ,
t ≥ 0 we have

(4.14) ∆u =
∑∗

m,n

Fmn(∆u)(t)Jm(λmnr)e
imθ,

where

|Fmn(∆u)(t)| ≤ c

λ
3/2
mn

exp(−κ01t), |Jm(λmnr)| ≤
c√
λmn

.
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To analyze the convergence of (4.14) we take the series

∞∑

n=A

∞∑

m=B

Fmn(∆u)Jm(λmnr)e
imθ

with sufficiently large positive A and B and compare it with the integral

Ĩ =

∞\
A

dn

∞\
B

dm
eimθ

λ2
mn

.

Using the asymptotics (2.4) we integrate by parts in m to obtain

Ĩ =
1

i

∞\
A

[
ieiBθ

B(B + 2n)2
+

∞\
B

3m+ 2n

m2(m+ 2n)3
eimθ dm

]
dn,

which implies that

|Ĩ| ≤ c

B

∞\
A

dn

(B + 2n)2
≤ c

B(B + 2A)
.

Therefore, the series (4.14) converges uniformly in Ωδ and the boundary
condition ∆u|∂Ω = 0 is satisfied in the classical sense.

For ut and ∆2u the corresponding norms in Hs
r (Ω) are

‖ut(t)‖2
r,s =

∑

m,n

λ2s
mn|Fmn(ut)|2‖Jm(λmnr)‖2

r,

‖∆2u(t)‖2
r,s =

∑

m,n

λmn|Fmn(∆2u)(t)|2‖Jm(λmnr)‖2
r,

where

|Fmn(ut)(t)| ≤ cλ1/2
mn exp(−κ01t), |Fmn(∆2u)(t)| ≤ cλ1/2

mn exp(−κ01t).

Hence, these series converge uniformly with respect to t ≥ 0 for s = −1− γ,
γ > 0, and this implies that ut and ∆2u belong to C0([0,∞),H−1−γ

r (Ω)).
This completes the proof of the existence of a global in time solution of (2.1).

5. Uniqueness of solutions: proof of Theorem 1 (continuation).
Assume that there exist two solutions u(1) and u(2) in the class stated in
the theorem. Setting w = u(1) − u(2) and expanding w into the series (4.2)
we have

w(r, θ, t) =
∑∗

m,n

ŵmn(t)Jm(λmnr)e
imθ,

where the estimates (4.13) with k = 0 are valid for ŵmn(t). Since the linear
part in the expression (4.5) equals zero the coefficients ŵmn(t) satisfy the
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integral equation

ŵmn(t) = β

t\
0

exp[−κmn(t− τ)][Fmn(|∇u(1)|2)(τ) − Fmn(|∇u(2)|2)(τ)] dτ,

where Fmn(|∇u|2) are defined by (4.6). We can represent a typical term in
the integrand in the last formula as follows:
∑′

p,q,l,s

amnpqlsû
(1)
pq (t)û

(1)
ls (t) −

∑′

p,q,l,s

amnpqlsû
(2)
pq (t)û

(2)
ls (t)

=
∑′

p,q,l,s

amnpqls{û(1)
pq (t)[û

(1)
ls (t) − û

(2)
ls (t)] + û

(2)
ls (t)[û(1)

pq (t) − û(2)
pq (t)]}

=
∑′

p,q,l,s

amnpqls[û
(1)
pq (t)ŵls(t) + û

(2)
ls (t)ŵpq(t)].

Note that w(r, θ, t) ∈ H3−γ
r (Ω) for all t ≥ 0 and any γ > 0 since u(1) and

u(2) belong to the same space.

In order to estimate the integrand we shall use the Cauchy–Schwarz
inequality and the relations

‖w(t)‖2
r,1 =

∑

m,n

λ2
mn|ŵmn(t)|2‖Jm(λmnr)‖2

r <∞,

‖u(k)(t)‖2
r,1 <∞, k = 1, 2.

Since the inequalities (2.6) are valid for the coefficients amnpqls we can write
∣∣∣

∑′

p,q,l,s

amnpqlsû
(1)
pq (t)ŵls(t)

∣∣∣

≤ c
√
λmn

∞∑

p,q,l,s=1

√
λpq |û(1)

pq (t)|
√
λls|ŵls(t)|

≤ c
√
λmn

( ∞∑

p,q=1

λpq |û(1)
pq (t)|2

)1/2( ∞∑

l,s=1

λls|ŵls(t)|2
)1/2

≤ c
√
λmn

( ∞∑

p,q=1

λ2
pq |û(1)

pq (t)|2‖Jp(λpqr)‖2
r

)1/2

×
( ∞∑

l,s=1

λ2
ls|ŵls(t)|2‖Jl(λlsr)‖2

r

)1/2

≤ c
√
λmn‖u(t)‖r,1‖w(t)‖r,1.
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Analogous estimates hold for
∑′′

p,q,l,s bmnpqlsû
(k)
pq (t)ŵls(t), k = 1, 2. There-

fore,

|ŵmn(t)| ≤ c
√
λmn

t\
0

exp[−κmn(t− τ)]‖w(τ)‖r,1 dτ.

Squaring both sides, multiplying the result by λ2
mn‖Jm(λmnr)‖2

r, and sum-
ming in m and n we deduce that for some T1 > 0 and t ∈ [0, T1],

‖w(t)‖2
r,1 ≤ c

∑

m,n

λ3
mn‖Jm(λmnr)‖2

r

( t\
0

exp[−κmn(t− τ)]‖w(τ)‖r,1 dτ
)2

≤ c( sup
t∈[0,T1]

‖w(t)‖r,1)
2
∑

m,n

λ2
mn

(
1 − exp(−κmnt)

κmn

)2

.

This implies that
( sup
t∈[0,T1]

‖w(t)‖r,1)
2 ≤ c(T1)( sup

[0,T1]

‖w(t)‖r,1)
2,

where the constant c(T1) can be made less than one by the appropriate
choice of T1. This contradiction allows to us complete the proof of uniqueness
for t ∈ [0, T1]. Continuing this process for the integrals [T1, T2], [T2,T3], . . .
. . . , [Tn, Tn+1], . . . with Tn → ∞ we obtain the same result for all t > 0.
This completes the proof of Theorem 1.

6. Asymptotics with respect to β: proof of the Corollary. First,
we construct the solution of the linear problem corresponding to (2.1) with
β = 0. Putting β = 0 in (4.3) we obtain the following expression for the
eigenfunction expansion coefficients:

ũmn(t) = ε2ϕ̂mn exp(−κmnt),

where κmn = λ2
mn(νλ2

mn−1) and the estimates (4.4) are valid for ϕ̂mn. The
solution of the linear problem is

u0(r, θ, t) =
∑∗

m,n

ũmn(t)Jm(λmnr)e
imθ,

where
∑∗

m,n is defined by (4.2). The uniqueness of the solution in the cor-
responding function space is evident.

Note that, according to (4.7) and (4.8),

ûmn(β, t) = ũmn(t) +
∞∑

N=1

εN+1v̂(N)
mn (β, t).

Here we have shown the dependence on β in the notation of the coefficients.

The estimates (4.10) are valid for v̂
(N)
mn (β, t), N ≥ 1, that is,

|v̂(N)
mn (β, t)| ≤ cN |β|N (N + 1)−2λ−7/2

mn exp(−κ01t).
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Therefore, we have for ε0 < (c|β|)−1 (this condition guarantees the absolute
and uniform convergence of the series)

|ûmn(β, t) − ũmn(t)| ≤ c|β|λ−7/2
mn exp(−κ01t), β ∈ R, t > 0,

where the constant c is independent of β. This inequality yields the required
estimate.

7.Long-time asymptotics: proof of Theorem 2. Our idea of cal-
culating the long-time asymptotics of the constructed solution consists in
obtaining a subtle asymptotic estimate of û01(t) which will contribute to
the major term of the asymptotics, and then estimating the remaining se-
ries (see (4.2))

R0(r, t) =

∞∑

n=2

û0n(t)J0(λ0nr)

and

R1(r, θ, t) =

∞∑

m,n=1

Jm(λmnr)[ûmn(t)eimθ + ûmn(t)e−imθ].

In accordance with (4.7) and (4.8),

û01(t) =

∞∑

N=0

εN+1v̂
(N)
01 (t),

where v̂
(N)
01 (t) can be represented as

(7.1)

v̂
(0)
01 (t) = A(0)

ε exp(−κ01t),

v̂
(N)
01 (t) = exp(−κ01t)[A

(N)
ε +R(N)(t)], N ≥ 1,

A(0)
ε = Φ̂01 = εϕ̂01, A(N)

ε = β

∞\
0

exp(κ01τ)Ξ(τ) dτ,

R(N)(t) = −β
∞\
t

exp(κ01τ)Ξ(τ) dτ,

where

Ξ(t) =
∑′

p,q,l,s

a01pqls

N∑

j=1

v̂(j−1)
pq (t)v̂

(N−j)
ls (t)

+
∑′′

p,q,l,s

b01pqls

N∑

j=1

v̂(j−1)
pq (t)v̂

(N−j)
ls (t),

and the functions v̂
(s)
mn(t), s = 0, 1, . . . , N − 1, are defined by (4.8). Here

we have added and subtracted the integrals from t to ∞ in the integral

representations (4.8) for v̂
(N)
mn (t), N ≥ 1.
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Next, we have to prove that for N ≥ 1, t > 0,

(7.2) |R(N)(t)| ≤ cNβ exp(−κ01t).

Using the estimates (2.6), (4.10), and (4.11) we get for t ≥ 0,

|R(N)(t)| ≤ cβΓN

√
λ01

∞\
t

exp(κ01τ)

[
exp(−2κ01τ)

∞∑

q,s=1

1

(λ0qλ0s)3

+ exp(−4κ01τ)

∞∑

p,q,l,s=1

1

(λpqλls)3

]
dτ

≤ cNβ exp(−k01t),

where

ΓN =

∞∑

j=1

cj−1
β cN−j

β j−2(N + 1 − j)−2

≤ 4(N + 1)−2cN−1
β

N∑

j=1

[j−2 + (N + 1 − j)−2] <∞.

Therefore, we have the following asymptotic expansion as t→ ∞:

(7.3) û01(t) = exp(−κ01t)[Aε +O(exp(−κ01t)],

where

Aε =

∞∑

N=0

εN+1A(N)
ε

and A
(N)
ε are defined by (7.1). This series converges absolutely and uniformly

in ε ∈ [0, ε0]. The estimate of the remainder is uniform with respect to
(r, θ) ∈ Ω, ε ∈ [0, ε0], ε0 < c−1

β .
Now we can represent the solution as

(7.4)

u(r, θ, t) = û01(t)J0(λ01r) +R0(r, t) +R1(r, θ, t),

R0(r, t) =
∞∑

n=2

J0(λ0nr)
∞∑

N=0

εN+1v̂
(N)
0n (t),

R1(r, θ, t) =

∞∑

n,m=1

Jm(λmnr)

×
[
eimθ

∞∑

N=0

εN+1v̂(N)
mn (t) + e−imθ

∞∑

N=0

εN+1v̂
(N)
mn (t)

]
.

By means of the estimates (4.11) we deduce that for (r, θ) ∈ Ω, t ≥ 0,

(7.5) |R0(r, t)| ≤ c exp(−2κ01t), |R1(r, θ, t)| ≤ c exp(−2κ01t).

Combining (7.3)–(7.5) we obtain (3.2).
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8.Growth of solutions in time in the case 0 < ν ≤ 1/λ2
01: proof of

Theorem 3. (i) Let ν = 1/λ2
01. Then the problem (4.3) for the coefficient

û01(t) takes the form

(8.1) û′01(t) = βF01(|∇u|2)(t), t ∈ (0, T ], û01(0) = ε2ϕ̂01,

where F01(|∇u|2)(t) is defined by (4.6). For all ûmn(t), m ≥ 1, n ≥ 1, we
have (4.3) with κmn > 0. Therefore, integrating (8.1) in t and expanding
û01(t) into the series (4.7) we deduce that

v̂
(0)
01 (t) = Φ̂01 = const, v̂

(1)
01 (t) = β

t\
0

[a010101v̂
(0)
01 (τ)v̂

(0)
01 (τ) + . . .] dτ,

v̂
(2)
01 (t) = β

t\
0

[2a010101 v̂
(0)
01 (τ)v̂

(1)
01 (τ) + . . .] dτ, . . .

Here we have shown only the terms that give the main contribution for
large t. The dots in the integrand denote other terms that decrease expo-

nentially with time. We can see that v̂
(N)
mn (t) will exhibit polynomial growth

with respect to t. Consequently, instead of (4.10) we shall obtain for m ≥ 0,
n ≥ 1, N ≥ 0, t ≥ 0,

(8.2) |v̂(N)
mn (t)| ≤ [cβ(T )]N (N + 1)−2λ−7/2

mn

with c(T ) → ∞ as T → ∞. In order to guarantee the absolute and uniform
convergence of the series (3.1) we have to satisfy the condition εcβ(T ) < 1, or
0 < ε ≤ ε0(T ) with ε0(T ) < [cβ(T )]−1. Naturally, ε0(T ) → 0 as T → ∞. The
estimates (8.2) allow us to prove that the solution belongs to the required
function space.

If ε is fixed, then there exists T > 0 such that for t = T the necessary
condition for the convergence of the series (3.1) is violated, and u(x, t) → ∞
as t → T . The derivatives of (3.1) do not exist either, and this function
ceases to be a solution.

By analogous arguments we obtain the same result for all values ν =
1/λ2

mn, m ≥ 1, n ≥ 1. The only difference is that in this case we have

exponentially growing terms in the integral representations of v̂
(N)
mn (t) since

in some problems of type (4.3) we have κmn < 0.

(ii) Let 1/λ2
01 < ν < 1/λ2

11. Then for the coefficient û01(t) we have the
following problem with κmn = −|κmn| < 0:

(8.3)
û′01(t) − |κmn|û01(t) = βF01(|∇u|2)(t), t ∈ (0, T ],

û01(0) = ε2ϕ̂01.

All the coefficients ûmn(t), m ≥ 1, n ≥ 1, satisfy (4.3) with κmn > 0.
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Therefore, after integrating (8.3) with respect to t and using (4.7), we get

v̂
(0)
01 (t) = Φ̂01,

v̂
(1)
01 (t) = β

t\
0

exp(|κ01|(t− τ))[a010101 v̂
(0)
01 (τ)v̂

(0)
01 (τ) + . . .] dτ, . . . ,

v̂
(2)
01 (t) = β

t\
0

exp(|κ01|(t− τ))[2a010101 v̂
(0)
01 (τ)v̂

(1)
01 (τ) + . . .] dτ, . . .

These relations again lead to the estimates (8.2) with c(T ) → ∞ as T → ∞.
Other cases, like 1/λ2

11 < ν < 1/λ2
21, can be considered in an analogous way.

The uniqueness of the solution on the interval [0, T ] can be proved by
means of the same arguments as in Section 6.

9.Discussion. Having used the eigenfunction expansions and perturba-
tion theory, we succeeded in constructing the strong solution of the problem
(2.1) in the form of a series of regular perturbations with respect to the
initial conditions (series in ε ∈ (0, ε0]). The solution in question is “small”,
and, according to (4.9), it can be represented as

u(r, θ, t) = ε2U(r, θ, t), |U(r, θ, t)| ≤ c exp(−κ01t)
∑

m,n

1

λ
7/2
mn

≤ c exp(−κ01t)

for ε0c|β| < 1.Therefore, ε0 < c|β|−1, and the smaller is the nonlinearity
constant β, the bigger the interval (0, ε0] can be, for which (3.1) is valid.

In our studies of the radially symmetric problem for the damped Boussi-
nesq equation (see [40]) we have encountered the effect of “the loss of
smoothness”, i.e., the increase of smoothness of the initial data does not
lead to improving the regularity of the solution in question. In the general
spatially 2-D case examined above this is no longer true. The “purely radial
part”

ℜn(t) =

∞∑

q,s=1

a0n0q0sû0q(t)ûls(t)

which forms the Fourier–Bessel coefficient of |∇u|2 in the corresponding
radially symmetric case and is responsible for the “loss of smoothness” is
also present in the series expansion coefficient F0n(|∇u|2)(t) (see (4.6)),
namely:

F0n(|∇u|2)(t) = ℜn(t) +

∞∑′

p,q,l,s
p+l 6=0

a0nlqlsûlq(t)ûls(t) +
∑′′

p,q,l,s

b0nlqlsûlq(t)ûls(t).
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However, the convergence of the series expansion (4.2) is mainly determined
by the decay properties of Fmn(|∇u|2)(t) for large m and n. Since in the
representation of these coefficients we have convolutions with respect to the
“angular indices” p and l, the decay in m can be improved by imposing
more periodicity conditions on the initial data. The decay in n cannot
be improved in an analogous way because we do not have convolutions with
respect to the “radial indices” q and s. Therefore, we can say that a “partial
loss of smoothness” still takes place in the problem in question.

In conclusion, we emphasize that the method employed can work for
other parabolic dissipative equations with dispersion.
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