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Two-dimensional examples of rank-one convex functions

that are not quasiconvex

by M. K. Benaouda (Lille) and J. J. Telega (Warszawa)

Abstract. The aim of this note is to provide two-dimensional examples of rank-one
convex functions which are not quasiconvex.

1. Introduction. In the study of equilibrium problems of nonlinear
elasticity by the direct method of the calculus of variations the sequential
weak lower semicontinuity (s.w.l.s.c.) of the functional of the total potential
energy is required. The vector case involves integral functionals of the form

J(u) =
\
Ω

f
(

x, u(x),∇u(x)) dx,

where u : Ω ⊂ R
n → R

m and ∇u(x) is identified with an n × m matrix.
To ensure the existence of a minimizer, f has to satisfy some conditions [1,
3, 4]. The most important is the quasiconvexity of f introduced by Morrey
[6] (cf. also [4, 5]). Morrey [6] showed that the quasiconvexity of f is nec-
essary and sufficient for J to be sequentially weak-* lower semicontinuous
on W 1,∞(Ω)m = [W 1,∞(Ω)]m. Ball and Murat [2] weakened the notion of
quasiconvexity, introducing the so-called W 1,p-quasiconvexity. The quasi-
convexity in the sense of Morrey [6] is simply the W 1,∞-quasiconvexity and
is equivalent to the W 1,p-quasiconvexity provided that f is bounded from
below and satisfies a natural growth condition (cf. [4] and Def. 2.1 below).

When applied to specific cases the quasiconvexity reveals its essential
disadvantage: one has to verify an integral condition. Easier to check is
a particular case of quasiconvexity, namely polyconvexity (cf. [3, 4]). The
last notion is of algebraic nature and is very useful for a class of stored
energy functions in finite elasticity. Weaker than quasiconvexity is rank-one
convexity [4, 5, 8]. When m=1 or n=1 all these notions coincide and are
equivalent to convexity. It seems that the gap between quasiconvex and rank-
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one convex functions is relatively narrow. Šverák [8] showed that for m ≥ 3
and n ≥ 2 rank-one convexity does not necessarily imply quasiconvexity (cf.
also [7]).

The aim of this note is to study the two-dimensional case with m=n=2.
We provide counterexamples extending the results of Šverák to this case.

2. Preliminaries. Let Mn×m denote the set of real n × m matrices,
m,n ∈ N. Let Ω ⊂ R

n be a bounded domain. We denote by W 1,p(Ω)m =
W 1,p(Ω, Rm) the usual Sobolev space, 1 ≤ p < ∞. If a ∈ R

n, b ∈ R
m, then

a⊗ b denotes the tensor product: (a⊗ b)ij = aibj . The canonical basis is R
n

is denoted by {ei}1≤i≤n. The gradient of a vector u is denoted by ∇u and
|D| stands for the Lebesgue measure of a set D.

We now recall the definitions of useful notions.

Definition 2.1 (Dacorogna [4], Morrey [6]). A measurable and locally
integrable Borel function f : Mn×m → R is quasiconvex if

(2.1)
\
D

f(A + ∇u(x)) dx ≥ f(A)|D|

for every A ∈ Mn×m, u ∈ W 1,∞
0 (Ω)m and every open bounded subset

D ⊂ R
n.

Definition 2.2 (Dacorogna [4]). A function f : Mn×m→R = R∪{+∞}
is said to be rank-one convex if

(2.2) f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B)

for every λ ∈ [0, 1], A,B ∈ Mn×m with rank(A − B) ≤ 1.

Remark 2.3. (i) In Definition 2.1 the space W 1,∞
0 (Ω)m of test functions

can be replaced byC∞
0 (Ω)m. If relation (2.1) holds for one nonempty domain

D ⊂ R
n, then it holds for an arbitrary bounded subset of R

n (see [4]).
(ii) If f is a rank-one convex function then the function t 7→ f(A+ ta⊗b)

is convex in t for every A ∈ Mn×m and every a ∈ R
n, b ∈ R

m. It is known
that every rank-one convex function is continuous in its domain and for
f ∈ C2 inequality (2.2) is equivalent to the Legendre–Hadamard condition
(or ellipticity condition) (see [4, 8]).

Definition 2.1 can be reformulated in terms of periodic functions (see
[4, 8]).

Lemma 2.4. A continuous function f : Mn×m → R is quasiconvex if and

only if

(2.3)
\

[0,1]n

f(A + ∇u(x)) dx ≥ f(A)

for every A ∈ Mn×m and every smooth periodic function u : R
n → R

m.
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3. Examples of rank-one convex functions that are not quasi-
convex. Throughout this section we assume that n = m = 2 and we set
M2 = M2×2. Definitions 2.1 and 2.2 are certainly global, similarly to the
notion of convexity of a function. It thus suffices to provide an example of
a rank-one convex function which is not quasiconvex at a certain point.

Theorem 3.1. Let h : R
2 → R be a continuous function, homogeneous

of degree one with h(e2) > 0. Let g : M2 → R be defined by

(3.1) g(A) = h(a11, a21) + h(a12, a22)

where A = [aij ], 1 ≤ i, j ≤ 2. Then g is rank-one convex at zero but is not

quasiconvex at zero.

P r o o f. Take arbitrary vectors a, b ∈ R
2. We have to show that the

function k(t) = g(ta ⊗ b) is convex. Since h is homogeneous of degree one,
so is g. Thus k(t) = tg(a ⊗ b) is a convex function.

Set u(x1, x2) = (0, ϑ(x)), where ϑ(x) = sin 3π
2

x2.

A simple computation yields

∇u(x) =

[

0 0
0 3π

2 cos 3π
2 x2

]

=

(

3π

2
cos

3π

2

)

e2 ⊗ e2.

Thus

g(∇u(x)) = g

[(

3π

2
cos

3π

2
x2

)

e2 ⊗ e2

]

=

(

3π

2
cos

3π

2
x2

)

g(e2 ⊗ e2).

Integration yields\
[0,1]2

g(∇u(x)) dx = g(e2 ⊗ e2)

1\
0

1\
0

3π

2
cos

3π

2
x2 dx1 dx2 = −g(e2 ⊗ e2).

The assumption h(e2) > 0 implies that

1\
0

1\
0

g(∇u(x)) dx < 0 = g(0).

This means that g is not quasiconvex at zero.

Remark 3.2. (i) The above theorem remains valid under the assumption
that the function h is homogeneous of even degree.

(ii) An explicit example of the function h is provided by

h(x, y) =







x3y

x2 + y2
+ y if x 6= 0 and y 6= 0,

y if x = 0 or y = 0.

It can be easily verified that h is continuous, homogeneous of degree one
and h(e2) = h(0, 1) = 1 > 0.
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4.On a result of Šverák [8]. It is well known that for quadratic func-
tions, rank-one convexity is equivalent to quasiconvexity. Šverák [8] devised
a construction of some rank-one convex functions. However, the question
whether these functions are quasiconvex or not seems to be open.

Lemma 5.1 of Šverák [8] implies the following result.

Lemma 4.1. Let H : R
2 → R be the bilinear form defined by H(x, y) = xy

and let g : M2 → R be given by

(4.1) g(A) = a11a22 + a2
12 + a2

21, A = [aij ]1≤i,j≤2.

Then g is rank-one convex.

P r o o f. We have H(a11, a22) = a11a22. The bilinear form H is a smooth
separately convex function and sup |∂2H/∂x∂y| = 1. The assertion now
follows easily from Lemma 5.1 of Šverák [8].

Now the question is whether the function (4.1) is quasiconvex. The an-
swer is negative, as shown by the following lemma.

Lemma 4.2. The function g defined by (4.1) is not quasiconvex at the

point

B =

[

1 −1
1 0

]

.

P r o o f. We see that g(B) = 2. Consider the function

ϕ(x1, x2) =

(

sinπx1, sin
3π

2
x2

)

.

Then we have

∇ϕ(x) =

[

π cos πx1 0
0 3π

2
cos 3π

2
x2

]

.

Hence

B + ∇ϕ(x) =

[

1 + π cos πx1 −1
1 3π

2 cos 3π
2 x2

]

.

Thus

g(B + ∇ϕ(x)) = 2 +
3π

2
cos

3π

2
x2 + π cos(πx1)

3π

2
cos

3π

2
x2.

Consequently, we get\
[0,1]2

g(B + ∇ϕ(x)) dx = 2 +

1\
0

3π

2
cos

3π

2
x2 dx2

+
\

[0,1]2

π cos(πx1)
3π

2
cos

3π

2
x2 dx1 dx2

= 2 − 1 + 0 = 1,
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and \
[0,1]2

g(B + ∇ϕ(x)) dx = 1 < 2 = g(B).

By Lemma 2.4 we conclude that g is not quasiconvex at B.
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[8] V. Šver ák, Rank-one convexity does not imply quasiconvexity , Proc. Roy. Soc.
Edinburgh Sect. A 120 (1992), 185–189.
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