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Abstract. For an analytic functional S on C", we study the homogeneous convolution
equation S * f = 0 with the holomorphic function f defined on an open set in C". We
determine the directions in which every solution can be continued analytically, by using
the characteristic set.

1. Introduction. In [Ki], C. O. Kiselman studied the analytic con-
tinuation of solutions of homogeneous linear partial differential equations
with constant coefficients. He proved that all solutions can be continued
simultaneously in the directions determined by the characteristic set of the
equation. M. Zerner [Z] studied the domain of holomorphy of a solution
to a holomorphic linear partial differential equation. Under an additional
hypothesis, Sébbar [Sé] extended the results of [Ki] to the case of local dif-
ferential operators of infinite order with constant coefficients. Motivated by
[Sé], Aoki [A] proved a local continuation theorem for a general differential
operator of infinite order with variable coefficients, using his theory of ex-
ponential calculus for pseudo-differential operators. In the preceding article
[I-O1], by using the method developed in [Ki] and [Sé], we studied convo-
lution equations with hyperfunction kernel of compact support, defined in
tube domains invariant under any real translation, and we proved that the
directions in which not all solutions can be continued at once are contained
in the characteristic set of the operator (see also [I-O2]). For the same type
of problem, we also refer for example to [V].

In this paper, we consider homogeneous convolution equations S * f = 0
with S an analytic functional on C" and investigate the analytic continua-
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tion of the solution f. We first define the characteristic set Chary,(S*) of
the equation S * f = 0 as a natural generalization of the case of differential
equations and then by the method developed in [I-O1], we evaluate the di-
rections in which all holomorphic solutions can be simultaneously continued
analytically by using the characteristic set.

2. The condition (S) and the characteristic set. For any open
set D C C", we denote by O(D) the space of holomorphic functions defined
on D equipped with the usual compact convergence topology. Let S be an
analytic functional on C" and suppose that S is carried by a compact convex
set M. We denote by S (¢) the Fourier-Borel transform

S(C) = (Sa el=¢) >z;

which is an entire function of exponential type satisfying the following esti-
mate: for every € > 0, there is a constant C.; > 0 such that

(2.1) 1S(¢)] < Ceexp(Hu(¢) +€[¢])

where Hp(C) := sup,c s Re(z, () is the supporting function of M. Let w be
an open set in C". In this paper, defining the convolution by S * f(2) :=
(S, f(z — w))w, we consider the homogeneous convolution equation

(2.2) Sxf=0

with f € O(w + (—=M)). We define the sphere at infinity S27~! to be
(C™\ {0})/R; and we consider the compactification by directions D?" :=
Cn U §%2n=1 of C* ~ R?". For ¢ € C"\ {0}, we denote by (oo € S%7~1 the
class defined by (, that is,

(oo := (R - in D*")n S~ 1

Let 0(¢) be an entire function of exponential type. (In what follows, we will

take o := S, where for a function g(¢) we set §(¢) := g(—¢)). Following
Lelong and Gruman [L1-G|, we define the growth indicator h,(() and the
reqularized growth indicator h%(¢) of o(¢) by

(2.3) hy(€) := limsup w,
(2.4) h%(¢) := limsup hy ().
¢'—<¢

As in [I-O1], and generalizing to the present case, we define the characteristic
set of Sx:
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DEFINITION 2.1. We set
Chary, (S*) := C{goo € §2"~1 : for every £ > 0, there exist N > 0 and
0 > 0 such that for any » > N and ¢ € C"
satisfying |¢ — o/|o| | < 0, we have
|5(rQ)] = eths(©=ry,
and call it the characteristic set of the operator Sx.

Now we recall the condition (S), originally due to T. Kawai ([Ka]) and
generalized in [I-Oj].

DEFINITION 2.2. An entire function o € O(C") of exponential type is
said to satisfy the condition (S) in direction (o € C™ ({p # 0) if it satisfies
the following:

(2.5)  For every € > 0, there exists N > 0 such that for any » > N, we
have ¢ € C™ satisfying

€ —Col <&, |o(rQ)| > e(hs(Co)—e)r

REMARK 1. Ishimura and Okada [I-Oj] showed that (S) is nothing but
the condition of regular growth, a classical notion in the theory of entire
functions. In the case n = 1, Ishimura [I2] constructed an example of a
convolution operator which satisfies (S) in a direction ¢ but not in any
(small) conic neighborhood of ¢ and ¢ ¢ Chary(S*) (see also [I-O3]). We
also remark that outside the characteristic set, the entire function S(C)
satisfies (S). If we make the further assumption that 2%(¢) is continuous in
an open set, then the set of directions in which S(¢) satisfies (S) is closed
in this open set (see Theorem 4.5 of [LI-G]). For example, assume n = 1. In
this case, h%(() is always continuous (see [Lv]) and so the set of directions in
which (S) is satisfied is a closed set in C. But as the above example shows,
(S) is not always satisfied even if we assume the continuity of h%(¢).

REMARK 2. By (2.1) and (2.4), we have in general hg(¢) < Hup(¢). In
what follows, we assume h*g(C ) = Hps(¢). For open convex domains, this last
condition together with the condition (S) is, in a sense, necessary and suffi-
cient for the solvability of the inhomogeneous convolution equation S*f = g.
See Krivosheev [Kr] for a more precise statement (see also Theorem 9.35 of

[LI-G)).
3. Division lemma. In this section, we prepare some auxiliary results.
For any open set w C C", writing D := w + (—M), we set
N(D):={feOD):S*f=0}
and equip it with the topology induced from O(D).
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LEMMA 3.1. Let o, ¢ and ¢ be entire functions satisfying op = 1, and
M and K be two compact convex sets in C™. Suppose that for any € > 0,
there exist constants A, > 0 and B. > 0 such that

3.1) log |o(¢)] < A + Hu(C) +¢l¢],
(3.2) log [(Q)| < Be + Hx (¢) +€lC]-

Moreover, assume that o satisfies the condition (S) in every direction (o €
C™\ {0} and h%(¢) = Hyp(C) for any ¢ € C™. Then for any € > 0, there
exists a constant C. > 0 such that

(3-3) log |p(Q)] < Ce + Hi (€) — Hum(¢) + €]

REMARK 3. We will apply the lemma in the next proposition with o = S
and not with o = S.

Proof. We may prove the estimate (3.3) in each conic neighborhood of
every direction [(o| = 1. Set

I'. :={¢ € C" : there exists r > 0 such that [( — (| < er}.
We recall a lemma due to Harnack, Malgrange and Hormander:

LEMMA 3.2. Let F(¢), H(¢) and G(¢) = H(C)/F(C) be three holomorphic
functions in the open ball B(0;R). If |F(¢)] < A and |H(C)] < B on
B(0; R), then

(3.4) |G(¢)| < BAA/E=ICD| p(g)|~BHD/(R=IED for gl ¢ € B(0; R).
We apply this lemma to the ball B({’;3er). By (3.2), we have

sup  log[y(¢")| < B-+ sup  (Hg(¢") +el¢”"]).
¢reB(('s3er) ¢ ¢ <Ber

Because [ — (o] < |¢" = ([ + ¢ — r(o| < 4der, if we set k 1= sup,cx |2/,
then the right hand side is estimated by
< B. + (4k + 2)er + rHg (o).

In the same way, by setting m := sup, ., |2| and using (3.1) we have

sup  log|o(¢")] < Ac + (4m + Ver + rHy (Co)-
¢"eB(¢;3er)

Noting that ¢ € B((’;2er) C B((’;3er), by Lemma 3.2, we have

log [p(¢)] < Be + (4k + 1)er + rHg (o)

der
+ m(AE + (4m + 1)57‘ + THM(CO))

3er + 2er
3er — 2er

(e = hg(Co))r
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= B. +4A. +r(Hg (Co) + 4H (¢o))
+ ((16m + 4k + 10)e — 5% (Co))r

= B. +4A: +r(Hk (o) — Har(Co))
+ (16m + 4k + 10)er

for sufficiently large r. Therefore for any £ > 0, we can find constants C. > 0
and N > 0 such that

log|p(Q)| < CL + Hi (C) = Hur(C) + €[]
foreI.U{|¢(|>N}. =

PROPOSITION 3.3. Let w and §2 be two open sets in C™ with w C {2.
Assume that S satisfies the condition (S) in every direction in C" and
W5(¢) = Hu(Q). Then the restriction map N (£2+(=M)) — N(w+(—M))
has the dense image.

Proof. Let E be the set of exponential-polynomial solutions of the
equation S * f = 0. We denote by E° the polar set of E in the topological
dual space O(C™)" of O(C™). It is sufficient to prove that E is dense in
N(w+(—M)), and for this, we will prove the following: any 7' € E°NO(w+
(—M))’ is contained in the orthogonal set N (w+ (—M))°® in O(w+ (—M))'.
By a lemma of Malgrange (see e.g. [I-O1]), there is an entire function of

N

exponential type r(¢) such that 7'(¢) = r(¢)S(—¢). By the preceding lemma,
we may find an analytic functional R carried by w so that R(¢) = r(¢). Then
for any g € N(w+ (—M)), we have

(T,g) = (S % R,g) = (R, S xg) =0,

where S is defined as the inverse Fourier—Borel image of S. m

4. Continuation of solutions of homogeneous equations. For
Char (S*) and an open convex set w C C™, we now set

(4.1)  £2:= the interior of m {z € C" : Re(z,() < H,(()},
(oo€Char (S*)®

where ® means the antipodal: A® := —A. By definition of {2, we know that
for any compact convex set L C {2, there exists a compact convex set K C w
such that

(4.2) Hp(¢) < Hk(¢) (for any (oo € Chary,(S*)?),
and so
Hpy (- (Q) € Hiy(—an(¢)  (for any (oo € Chare(S%)%).

LEMMA 4.1. Assume h%3(() = Hm(¢). Let K and L be two compact
subsets of C™ satisfying (4.2) and p(¢) an entire function satisfying the
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estimate
log [p(Q)] < HL(¢)-

Then for any € > 0, there exist a constant C. > 0 and entire functions q(¢)
and r(C) which satisfy

() = S(O)q(C) +7(Q),
log |q(0)] < Hrux(¢) — H-ai(C) +el¢] + -,
log [r(C)| < Hi () +el¢| + C.

for any ¢ € C".

A

Proof. We may assume 0 < ¢ < 1/2. We set 0(¢) := S. For any § > 0,
we put

E1 = {Co0 € 8™ Hi(¢) < Hi (¢) +0[¢l},
Ey:={Coo € S* ' Hi(¢) > Hk(()}.
Then Z is a neighborhood of Chary, (S*)? in S27~! and 55 does not meet
Chary, (S*)®. For large N > 0, we set
Zy={CeC": {0 € =y, |(| >N},
Zy ={CeC": (0 € =y, |(| >N},
Zs={CeC":|(| <N}
For a > 0 small enough, take ¢, € C§°(C") such that {4, d(d¢ = 1,
suppt¥, = B(0;«a) and v, > 0. Recalling the assumption h}: = H_,/,
we set hy ,(C) = Yq * h3((), a C> function on C". Then since H_j; is

subadditive, we have |h} ,(¢) —h;(¢)] < ma with m := sup¢ [¢]. Now we
construct ¢(¢) and r(¢) as follows:

= iy (1= o@D 00(0))) + 0 (0),

r(¢) := p(Q)p(eMN 100D (()) — o(C)v((),

by choosing a suitable C*° function v({) on C™ (to be chosen later), with
fixed real-valued functions ¢(7) € C°°(C) and A(t) € C*°([0,00[) so that
0<¢(r) <1,0 < A(t) <6t,0 < N(t) <1 for small § > 0 and that

(| < 1/2), 0 (t<1/2)
ot ={o (rf21) 0=15 (131

We first note that ¢(¢) and r(¢) are well defined: in fact, if €®l<I="5 (O |5 ()|
1/2 — ¢, then ¢(¢) is well defined since o(¢) # 0, and if ®l<I=h= (| (()
1/2 — ¢, then ¢(¢) is well defined because ¢(e ACD=h3,a (C) o(()) is equal t

>
<
o 1.
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The condition for ¢ and r to be holomorphic is the equality

5, _ PO A(ch-r3.. ()
(43) Ov= O’(C)e :

< [{Gotor oo {25l do-ams (0 b+ 5200

We denote the right hand side by w; it satisfies dw = 0. We now estimate w.
In C{1/2 < MI<D="2.a(D|5(¢)] < 1}, we have w = 0 as (e <D =Paa Qg ()
is constant there. In particular, taking N > 0 large enough, in Z5, we have
[¢] > N, [o(¢)[e’1¢1772(O > 1 and so A(¢]) = 6[¢], (e 7 (Da(¢)) = 0.

In {1/2 < D120 |5(¢)| < 1}, recalling h* = H_y;, we first remark
that for any j,

0 * * / 0q, / v
—h < h — . —_ d¢’' d
5 a,a«)‘_'cs;'lga\ ralC=0) uga g (¢")yd¢’ d¢
< Ci(|h5(Q)] + 2ma)
where
o -
C ::max<max <' S —=(¢") d¢"d¢ >,1>.
7 Nejca 9

—J
For a (p, q)-form g = 3" g7 yd¢! Ad(”, we denote its norm by |g| := sup |gs .
Then we have

lw| < |pleMIEN=hs.a(C)

Oy Jp 1
9% 2N (= + o2 e
(s |52]+ s | 2]) (5 + crtema s o)
Op 55]
X max |—|—
|7|<l+e | OT || o
< HORD 130 max (122] |22
- Ir|<1+e \| OT || OT

X [1+2C) (2ma + [RE(C)]) 4 262D =1oa (D)9,

As |0o| exp(—H_p(¢) —9|¢|) is bounded, there exists a constant C' > 0 such
that for (| > 1,

log |[w| < HL(¢) + H-(C) + 36[¢] — 2R3 (¢) + log [¢| + C
< Hp(¢) —H_pm(C) + 40|+ C.

In Z, from the estimate Hy,(¢) < Hg () + d|C], we get
log |w| < Hk(¢) — H-m(¢) +50|¢| + C.
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In Zs, there exists some constant Cy > 0 such that
log |w| < Cs.
Therefore we can take another constant C’ > 0 such that the estimate
log |w| < Hre(¢) — H-a(¢) + 56|¢| + C

holds in the whole C™. By the same argument as in Sébbar [S¢], we obtain
the estimate

(4.4) log |v] < Hi (¢) = H-m(C) + 66|¢| + Cs,
for some constant C3 > 0 (see [I-O1]).
We have
1—
g — o] = ‘( w)p‘
o
{0 (if D=5 (D5 (¢)] < 1/2),
L 26t OFMD 50O (if AIED=15.0 (D |g(¢)| > 1/2),

and so with a constant C; > 0, we have

lq| < 2max(|g —v|, |v]) < exp(Hrur(C) — H-n(C) + 68[¢| + Ca).
For r, we remark that
< HL(Q) < Hr O+ iy 7,

el { =9 o

and with a constant C5 > 0,
lov| < O e (O+T0[¢]
and thus we have
r| < exp(Hk (¢) + 76[¢| + Cs).

Thus taking ¢ > 0 so small that 76 < e, we have the conclusion. m

Now we can state our main theorem:

THEOREM 4.2. Let M C C" be a compact convex set and S an analytic
functional carried by M. Assume that S satisfies the condition (S) in every
direction in C™ and hg(() = Hp(C). For an open conver set w C C", let {2
be the open set defined by (4.1). Then any holomorphic solution f(z) of the
homogeneous convolution equation S* f =0 defined in w+ (—M) continues
analytically to 2+ (—M).

Proof. We will prove that the restriction map

0: N2+ (=M)) = N(w+ (-=M))
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is an isomorphism. For the space N (w+(—M)), we denote by N (w+(—M))’
the dual space. By Proposition 3.3, ¢ has dense image, so the transposed map
Lo N(w+(—M)) =N (24 (—M))’ is injective. It is sufficient to prove that
!0 is also surjective: By the Hahn-Banach theorem, every T e N (2+(—M))’
has an extension 177 € O(f2 + (—M))’. Then there exist a compact convex
set L C £ and a constant C' > 0 such that |1} (¢)| < Cefr+-m(©) for
any ¢ € C". We can take a compact convex set K C w satisfying (4.2). By
applying Lemma 3.4 to p := Ty, L + (—=M) and K + (—M), for any small
e > 0, there exist entire functions ¢(¢), r(¢) and a constant C. > 0 such
that

p(¢) = 5(¢)a() + (<),
log |¢(O)] < Hrury(—a0) ()= H-nr(C) +el¢] + Cc = Hrur (C) +el¢] + C,
log |r(Q)] < Hry(—an) (€) +l¢] + C.

Thus if ¢ > 0 is taken small enough, we find analytic functionals @} €
O(2+ (—=M))" and R € O(w + (—M))" corresponding to ¢(¢) and r(¢) (i.e.
Q = g and R = r) such that T} = SQ+ R. Then for any g € N(2+(—M)),
we have

(T, g) = (T1,9) = (Q, S = g) + (R, g) = (R, g),
and this means T' = "o(R|n/(w+(—)))- ®

5. Application to differential-difference operators in the com-
plex domain. Let A := {\1,..., \;} be a finite set in C™, M its convex hull
and p;(¢) an entire function of minimal type for 1 < j <. We denote by S
the analytic functional whose Fourier-Borel transform is 2221 p; (¢ Vel
Then S is carried by M. Furthermore by Theorem 6.1.1 of Ronkin [R] and
by [I-Oj], we know h%(¢) = Hm(¢) and that S(¢) satisfies the condition
(S) in every direction in C™. Thus S satisfies all the hypotheses of Theo-
rem 4.2.

In particular, in the case where p;’s are elliptic (i.e. their characteristic
set is empty), we can prove that the characteristic set Char.,(S*) coincides
with

{Coo € ST #{j : Re((, \y) = Hu(¢)} = 2}

(See [I-O3] for more general results.) The figures below describe the case
where n = 1 and j=1, M =the convex hull of A. We also remark that in this
case, Char, (S*)= the exterior normal directions {n;00,n900,n300,n400}.

In Figure 2, every solution of S* f =0 holomorphic in w+(—M) continues
analytically to each of the four corners.
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