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On extendability of invariant distributions∗

by Bogdan Ziemian

Abstract. In this paper sufficient conditions are given in order that every distribution
invariant under a Lie group extend from the set of orbits of maximal dimension to the
whole of the space. It is shown that these conditions are satisfied for the n-point action
of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary
signature.

1. Notation and definitions. Let M be a p-dimensional Hausdorff
analytic manifold and let R : G×M →M be a smooth action of a connected
Lie group G on M . We shall denote by M/G the orbit space of the action
R and by π the natural projection M → M/G. For every subset A ⊂ M ,
InvA will stand for the set π−1(π(A)). Orbits of maximal dimension will be
called non-singular . The remaining orbits will be termed singular . An orbit
θ is said to be regular if the submanifold topology on θ coincides with the
topology induced from M (see [17], p. 68).

Two sets A1 and A2 are said to be non-separable iff any invariant neigh-
bourhoods of A1 and A2 have a non-empty intersection. An orbit θ is
called separable iff there is no orbit θ̃ 6= θ such that θ and θ̃ are non-
separable.

A set E ⊂ R
p is called semianalytic iff every point x ∈ E possesses a

neighbourhood U such that

E ∩ U =

p⋃

i=1

( q⋂

j=1

{gij > 0} ∩ {fi = 0}
)

with gij , fi analytic on U . A function f is called semianalytic iff its graph
is a semianalytic set.
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14 B. Ziemian

The Sobolev space Hm, m ∈ N, is the completion with respect to the
norm |f |m =

∑
|α|≤m

T
|Dαf(x)| dx of the space of all smooth functions f

such that |f |m is finite.
All remaining symbols and definitions can be found in [17].

2. Hyperbolic sets and their properties

Definition 1. Let Z be the set of singular orbits in M (1). We shall say
that Z is hyperbolic in M if

(a) for every compact set K ⊂M there exists a compact set VK , VK ∩Z
6= ∅, such that for every non-singular orbit θ if θ ∩K 6= ∅ then θ ∩ VK 6= ∅,

(b) the orbits in M \ Z are regular.

Definition 2. We say that Z is strongly hyperbolic if Z is hyberbolic
and the set B of all orbits in M \Z non-separable from Z has empty interior.

Proposition 1. Let Z be hyperbolic and let θ be an orbit such that

θ 6∈ B. Then every distribution u on M \ Z with suppu ⊂ θ extends to a

disrtibution on M .

P r o o f. Since θ 6∈ B there exist open invariant sets U1 and U2, U1 ∩ U2

=∅, such that Z⊂ U1, θ⊂ U2. Let ω∈Ωp
0 (M), the set of smooth compactly

supported densities on M . Select a ϕ ∈ C∞(M) such that ϕ = 1 in a
neighbourhood of θ and suppϕ ⊂ U2. Then ϕ · ω ∈ Ωp

0 (U2) and we define

ũ[ω] = u[ϕ · ω].

ũ is the desired extension of u.

Proposition 2. If Z is hyperbolic then for every compact set K ⊂ M
and every open covering {Uβ}β∈B of the set K \Z by invariant sets Uβ there

exist a finite number of indices β1, . . . , βr such that

K \ Z ⊂
r⋃

i=1

Uβi
.

P r o o f. By Definition 1 there exists a compact set VK ⊂ M \ Z with
π(K) ⊂ π(VK). The set VK being compact, there exist indices β1, . . . , βr

such that VK ⊂
⋃r

i=1 Uβi
. Since the set

⋃r
i=1 Uβi

is invariant the assertion
follows.

Remark 1. If we assume that U \Z consists of regular orbits then also
the converse of Proposition 2 is true.

Definition 3. Let Z be the set of singular orbits in M . Let K ⊂ M
be a compact subset of M with IntK 6= ∅ and K ⊂ U , an open neighbour-
hood. Suppose A1, . . . , Ar is an open covering of K \ Z. A family {ϕi}

r
i=1

(1) Then Z is a closed subset of M .
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of functions ϕi ∈ C∞(U \ Z) will be called a partition of unity on K \ Z
subordinate to the covering {Ai}

r
i=1 iff

(a) ϕi ≥ 0 for i = 1, . . . , r,

(b) K ∩ suppϕi ⊂ Ai, i = 1, . . . , r,

(c)
∑r

i=1 ϕi = 1 on K \ Z,

(d) if ψj → ψ0 in C∞
0 (U) as j → ∞, suppψj ⊂ K \ Z, then for every i,

ϕiψj → ϕiψ0 in C∞
0 (U) as j → ∞.

Theorem 1. Let M = R
p. Let Z be the set of hyperbolic orbits in M.

Fix a compact set K in M with non-empty interior. Put U1 = {x ∈ M :
dist(x,K) < 2}. Suppose that there exists an open covering {Ai}

r
i=1 of the

set U1 \ Z (1) consisting of sets whose complements Ac
i in M are semian-

alytic. Then there exists a partition of unity on K \ Z subordinate to the

covering {Ai}
r
i=1 of K.

P r o o f. Define

δ̃(x) = max(dist(x,Ac
1), . . . ,dist(x,Ac

r)), x ∈ U1.

We observe that δ̃ is a semianalytic function since the distance from a
semianalytic set and the maximum of semianalytic functions are also semi-
analytic.

The function δ̃ can vanish only on Z for if we take an arbitrary compact
set K1 ⊂ U1 \ Z then {Ai}

r
i=1 is an open covering of K1 and there exists

an ε > 0 such that for every x ∈ K1 the ball centred at x with radius ε is
contained in one of the Ai’s and so we have δ̃(x) ≥ ε for x ∈ K1.

Put δ(x) = min(1, δ̃(x)), x ∈ U1, and define U = {x ∈ M : dist(x,K)
< 1}. It follows from the inequality of  Lojasiewicz ([7], p. 85) that there

exist positive constants C̃ and ã such that

(1) δ(x) ≥ C̃(dist(x,Z))ã for x ∈ U.

We shall now construct the required partition of unity on K. To this end
we put

Aδ
i = {x ∈ Ai : dist(x,Ac

i ) > δ(x)/2}.

We assert that
⋃r

i=1Ai =
⋃r

i=1A
δ
i . To prove this we have to show that⋃r

i=1Ai ⊂
⋃r

i=1A
δ
i , the converse inclusion being obvious. So we take x ∈⋃r

i=1Ai. Let {i1, . . . , is} be the set of all indices 1 ≤ i≤ r such that x ∈

Ai1∩. . .∩Ais
. The definition of δ̃ implies that there exists an i0 ∈ {i1, . . . , is}

such that dist(x,Ac
i0

) = δ̃(x) and so x ∈ Aδ
i0

, which was to be proved.

(1) The overbar denotes closure.
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The partition is now easily constructed. Let χi be the characteristic
function of the set Ai and let

ϕ(x) =

{
e−1/(1−|x|2), |x| < 1,
0, |x| ≥ 1.

For x ∈ U \ Z we define

(2) ηi(x) = d
\

Rp

(
δ(y)

4

)−2p

ϕ

(
4(y − x)

δ(y)

)
χi(y) dy

where

d =
( \

Rp

ϕ(x) dx
)−1

sup
x,y∈U1

(
J

(
4(y − x)

δ(y)

)
·

(
δ(y)

4

)2p)
.

The integral in (2) makes sense since for a fixed x ∈ U \ Z the set {y :
|y − x| ≤ δ(x)} is compact and does not intersect Z. We also observe that

(3) d
\

Rd

(
δ(y)

4

)−2p

ϕ

(
4(y − x)

δ(y)

)
dy ≥ 1 for x ∈ U \ Z,

which follows by substitution z(y) = 4(y − x)/δ(y) from the fact that z is
“onto” R

p and the integrand is non-negative.

From (2) we see that ηi ∈ C∞(U \ Z) (since δ(y) > 0 on U \ Z) and
(supp ηi) ∩K ⊂ Ai. It remains to normalize ηi so we put

ϕi =
ηi∑r
i=1 ηi

.

The above properties of ηi imply in view of (3) that the ϕi satisfy items
(a)–(c) of Definition 3. To prove (d) we first show that for every multiindex
α there exist positive constants C and a such that

(4)

∣∣∣∣
∂αϕi(x)

∂xα

∣∣∣∣ ≤
C

(dist(x,Z))a
for x ∈ K \ Z, i = 1, . . . , r.

Inequality (4) is proved by induction on the length |α| of α. For α = 0 we
see from the definition of ϕi that

|ϕi(x)| ≤ 1, x ∈ U \ Z.

We now prove (4) for α = (1, 0′), 0′ ∈ R
p−1. Set h =

∑r
i=1 ηi. Since h ≥ 1

on U \ Z by (3), we have
∣∣∣∣
∂ϕi

∂x1

∣∣∣∣ ≤
∣∣∣∣
∂ηi

∂x1

∣∣∣∣ +

r∑

j=1

∣∣∣∣
∂ηj

∂x1

∣∣∣∣.

Thus it suffices to prove (4) for the functions ηi instead of ϕi.
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By differentiating (2) we find

∂ηi

∂x1
= d

\
U

(
4

δ(y)

)2p+1
∂

∂z1
ϕ

(
4(y − x)

δ(y)

)
χi(y) dy for x ∈ K \ Z.

Hence by (1) for x ∈ K \ Z we get
∣∣∣∣
∂ηi(x)

∂x1

∣∣∣∣ ≤ C2

\
U

1

(dist(y, Z))ã(2p+1)

∣∣∣∣
∂ϕ

∂z1

(
4(y − x)

δy

)∣∣∣∣χi(y) dy

≤ C3

\
U∩{y:|x−y|≤δ(y)/4}

dy

(dist(y, Z))ã(2p+1)

≤ C3

\
U∩{y:dist(y,Z)≥dist(x,Z)/2}

dy

(dist(y, Z))ã(2p+1)

≤ C4
1

(dist(x,Z))ã(2p+1)

\
U

dy

(where C2, C3, C4 are suitable positive constants).
To prove the penultimate inequality it is enough to show that

{y : |x− y| ≤ dist(y, Z)/4} ⊂ {y : dist(y, Z) ≥ dist(x,Z)/2},

which is equivalent, after passing to complements, to

{y : dist(y, Z) < dist(x,Z)/2} ⊂ {y : |x− y| > dist(y, Z)/4}.

To prove the last inclusion suppose conversely that for a certain y such that
dist(y, Z) < dist(x,Z)/2 we have |x − y| ≤ dist(y, Z)/4. Let w ∈ Z be
such that dist(y, Z) = |y − w|. Then |y − w| < dist(x,Z)/2 and |x − y| <
dist(x,Z)/8, hence |x− w| < 5

8 dist(x,Z), which is impossible since w ∈ Z.
Finally, we state a well-known general lemma which shows how (4) im-

plies (d) of Definition 3.

Lemma 1. Let Z be a closed subset of R
p, K a compact subset of R

p

and U an open neighbourhood of K. If a function ϕ ∈ C∞(U \ Z) satisfies

(4) for every α then for every function ψ ∈ C∞
0 (K) flat on Z, we have

(i) ψϕ ∈ C∞
0 (Rp) and is flat on Z ,

(ii) |∂α(ψϕ)/∂xα| ≤ C‖ψ‖m for certain constants C > 0, m ∈ N depend-

ing only on α where

‖ψ‖m =
∑

|β|≤m

sup
x∈K

∣∣∣∣
∂βψ

∂xβ
(x)

∣∣∣∣.

P r o o f. This follows from Taylor’s formula (see [8], p. 154).

Remark 2. Since Theorem 1 has a local character its proof generalizes
easily to the case where M is an analytic manifold.
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3. Theorems on extendability of invariant distributions. In what
follows M will be a fixed G-manifold as in Section 1. We also retain all
notation and definitions from [17] (e.g. Kα, Nα etc.)

Theorem 2. Let the set Z of singular orbits be hyperbolic in M. Let

{Nα}α∈A be the Hausdorff partition of the manifold (M \ Z)/G. Suppose

that

(a) for every non-singular orbit θ there exists an invariant neighbour-

hood Uθ such that π(Uθ) ⊂ Nα for some α, π(Uθ)
Nα

is compact and the

complement of Uθ in M is a semianalytic set ,

(b) for every sequence ωj ∈ Ωp
0 (π−1(Nα)) convergent to zero in Ωp

0 (M),
Kαωj is convergent to zero locally uniformly with all derivatives on Nα.

Then every G-invariant distribution on M \ Z extends to a distribution

on M .

P r o o f. Let u be an invariant distribution on M \Z. Then by Theorem 2
of [17] there exists a unique distribution {Tα}α∈A on N = (M \ Z)/G such
that

u[ω] = Tα[Kαω], ω ∈ Ωp
0 (π−1(Nα)).

Let ωj ∈ Ωp
0 (M \ Z), ωj → 0 in Ωp

0(M) as j → ∞. Let K be a compact
set containing all suppωj . Choose an open neighbourhood U1 of K with
compact closure U1. The sets {Uθ} form an invariant covering of U1 and by
Proposition 2 we can select a finite subcovering {Uθi

}r
i=1.

Next we apply the “manifold version” of Theorem 1 to obtain a partition
of unity {ϕi}

r
i=1 on K \Z subordinate to the covering {Uθi

}r
i=1. Let αi ∈ A

correspond to Uθi
as in (a). We observe that for every j,

u[ωj ] =

r∑

i=1

Tαi
[ai

j ]

where ai
j = Kαi

(ϕiωj).

Thus in order to prove that u[ωj ] → 0 it is enough to show that for every
fixed i, ai

j → 0 in Ωp−n
0 (Nαi

) as j → ∞. Since ωj → 0 in Ωp
0 (M) we infer

from condition (d) of Definition 3 that for every i, ϕiωj → 0 in Ωp
0 (M).

From the definition of the operation Kα we see that supp ai
j ⊂ π(Uθi

)
Nαi ,

which is compact by (a). From this and (b) we conclude that ai
j → 0 in

Ωp−n
0 (Nαi

) for every i = 1, . . . , r.

Now, we construct the required extension. To this end let U ⊂M be an
open set with U compact. By the above, the sets Ωp

0(U \Z) ⊂ Ωp
0 (U) satisfy

the assumptions of the Hahn–Banach theorem. It follows that there exists
a distribution ũ extending u|U\Z to U . Taking successive open sets U and
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gluing the distributions thus obtained we get the required extension. This
ends the proof of the theorem.

Remark 2. The extension which exists by Theorem 2 need not be in-
variant. In fact an example given in [3] shows that there exist invariant
distributions which are extendable but which have no invariant extensions.

Theorem 3. Let the set Z be strongly hyperbolic. If for every sequence

ωj ∈ Ωp
0 (π−1(Nα)) with ωj → ω0 in Ωp

0 (M) as j → ∞ the form Kαω0 is

C∞ on Nα then Kαωj converges to Kαω0 locally uniformly together with all

derivatives.

P r o o f. Let ωj ∈ Ωp
0 (π−1(Nα)), ωj → ω0 in Ωp

0 (M). We have to show
that Ltr(Kαωj) → Ltr(Kαω0) locally uniformly on Nα for every C∞ linear
differential operator L on N .

Let x ∈ Nα and let H be a coordinate system around x. We define a
distribution δH

x = δH(x) ◦ H
−1 where δa is the Dirac delta in R

p−n at the
point a. Suppose that aj = Ltr(Kαωj) is not locally uniformly convergent
to a0 = Ltr(Kαω0) on Nα. Then there exists an ε0 > 0 such that for every
j = 1, 2, . . . there exists an xj ∈ Nα \B (see Definition 2) such that

(5) |δHj
xj

[Ltr(aj) − Ltr(a0)]| ≥ ε0

(Hj a coordinate system around xj). Put

∆j [η] = ejδ
Hj
xj

[Ltr(Kαη)] for η ∈ Ωp
0(M \ Z)

where ej = ± is such that ∆j [aj − a0] ≥ ε0.
We observe that ∆j is a distribution on M \Z with support in π−1(xj).

In view of Proposition 1, ∆j extends to a distribution ∆̃j on M (because

xj 6∈ B). By assumption if ω ∈ Ωp
0(π−1(Nα)) (the closure of Ωp

0 (π−1(Nα))
in Ωp

0 (M)) then Kαω is C∞ on Nα, hence there is a constant Cω such that

(6) |δHj
xj

[Ltr(Kαω)]| ≤ Cω, j = 1, 2, . . .

From (6) we see that ∆̃j , j = 1, 2, . . . , satisfy the assumptions of the

Banach–Steinhaus theorem on Ωp
0 (π−1(Nα)). It follows from that theorem

that maxi∈N ∆̃i is a continuous operation on Ωp
0 (π−1(Nα)) (not a distribu-

tion since max is not additive). Thus in particular maxi∈N∆i[ωj − ω0] → 0
as j → ∞, which contradicts (5).

In an analogous way one proves the following “converse” of Theorem 2.

Theorem4. Let Z be hyperbolic. If for every sequence ωj ∈Ω
p
0 (π−1(Nα))

such that ωj → ω0 in Ωp
0(M), Kαω0 is of class C∞ on Nα and if every

invariant distribution on M \ Z extends to a distribution on M then Kαωj

converges to Kαω0 locally uniformly with all derivatives.

We now establish conditions under which (b) of Theorem 2 is satisfied.
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Theorem 5. Let {(Hk, Ak)} be a family of coordinate systems covering

M \ Z and such that :

(a) the coordinates H1
k , . . . ,H

p−n
k of the vector function Hk are constant

along orbits in M ,

(b) Hi
k, i = 1, . . . , p, extend to invariant analytic functions on M (de-

noted by the same symbol),

(c) for each k there exists an αk ∈ A such that π(Ak) ⊂ Nαk
.

If ωj ∈ Ωp
0 (M \ Z), suppωj ⊂ Ak, ωj → 0 in Ωp

0 (M) then Kαk
ωj → 0

as j → ∞ locally uniformly with all derivatives on Nk.

P r o o f. Fix a coordinate system (Hk, Ak) and let αk be such that π(Ak)
⊂ Nαk

.

In view of the Sobolev lemma ([10], p. 197) it suffices to show that locally
Kαk

ωj → 0 in Hm for all m (Hm is the Sobolev space). Let (Φk, π(Ak))
be the coordinates on Nαk

induced by (Hk, Ak) (see [17], p. 69). Define
K = Kαk

, H = Hk, A = Ak, si = Hi, i = 1, . . . , p − n, yi = Hp−n+i for
i = 1, . . . , n. Then by (a), Kωj has the following form in the coordinate
system Φ:

(Kωj)(s1, . . . , sp−n) =
\

Rn

(
ωj

JH

)
◦H−1(s1, . . . , sp−n, y1, . . . , yn) dy

where JH is the Jacobian of H. Let us compute

∂

∂s1
(Kωj)(s) =

\
Rn

∂

∂s1

((
ωj

JH

)
◦H−1(s, y)

)
dy.

We have

(7)

(
∂

∂s1

((
ωj

JH

)
◦H−1(s, y)

)
◦H =

ωjw0

(JH)2
+

p∑

i=1

∂ωj

∂xi
wi

(JH)2
.

where in view of (b), wi, i = 0, 1, . . . , p, are analytic functions in a neigh-
bourhood of A. Let Z1 be the set of zeros of the function JH. Then Z1 is
disjoint from A and from the  Lojasiewicz inequality

|JH(x)| ≥ C(dist(x,Z1))a, x ∈ D,

where D is a compact subset of M containing all suppωj and C, a are
positive constants. Since ωj are flat on Z1 we know from Lemma 1 that

there are constants C̃, ˜̃C such that

(8)

∣∣∣∣
ωj

JH

∣∣∣∣ ≤ C̃‖ωj‖m,

∣∣∣∣
1

JH

∂ωj

∂xi

∣∣∣∣ ≤
˜̃C‖ωj‖m

for some m ∈ N.
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Set

(9) ωj =
ωjw0

JH
+

1

JH

p∑

j=1

∂ωj

∂xi
wi.

Then from (7) and (8) we see that (∂/∂s1)Kωj = Kωj with ωj ∈ Ωp
0 (M \Z)

and ωj → 0 in Ωp
0 (M).

Now it is easy to show that\∣∣∣∣ ∂

∂s1
Kωj

∣∣∣∣ ds→ 0.

Namely we have\∣∣∣∣ ∂

∂s1
Kωj

∣∣∣∣ ds =
\
|Kωj | ds ≤

\
K|ωj | ds =

\
|ωj | → 0.

Take a point θ ∈ Nαk
and a coordinate system Φ̃ around θ in Nαk

. Sup-

pose that Φ̃ is induced by one of the coordinate systems (Hk, Ak). Denote

that system by (H̃, Ã). Let h be the characteristic function of an invariant

open neighbourhood U of θ such that π(U)
Nα

⊂ π(Ã). Then K(hωj) = Kωj

in a neighbourhood of θ and suppK(hωj) ⊂ π(Ã). We shall prove that
K(hωj) is convergent to zero on π(U) in Hm for every m.

Denote by ∂/∂s̃i the differentiations in the coordinate system Φ̃. Let

Ψ = H̃ ◦H−1. Then the transition mapping R for Φ and Φ̃ has the form

R(s) = (Ψ1(s, y), . . . , Ψp−n(s, y))

where y is an arbitrary point such that (s, y) belongs to the domain of Ψ .
Thus the Jacobi matrix DR has the form

(DR)(s) = (bij(s))i,j=1,...,p−n

where bij(s) = ∂Ψ i

∂sj
(s, y) and is independent of y. Let (aij) be the inverse

matrix to (bij). Then to the differentiation ∂/∂s̃1 in the coordinate system

Φ̃ there corresponds in the coordinate system Φ the operator

L =

p−n∑

i=1

ai1
∂

∂si

( ∂
∂s̃1

(ϕ ◦ R−1) = (Lϕ) ◦R−1). We want to show that aij ◦H is of the form
Aij/Bij where Aij and Bij are analytic functions of M and Bij can be zero
on the set on which all hωj are flat. To this end we observe that it follows

from the forms of the mappings H and H̃ and the formula for the inverse
of a matrix that bij ◦H = Dij/JH where Dij is an analytic function on M .
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Hence

aij ◦H =

Cij

(JH)p−n−1

Bij

(JH)p−n

where Cij and Bij are analytic functions on M .
To obtain the required representation observe that Bij can vanish on the

set on which all hωj are flat. This follows from the fact that (JR) ◦ H =
Bij/(JH)p−n is constant along orbits and JH is not zero on A.

We compute

LK(hωj)(s) =

p−n∑

i=1

ai1
∂

∂si
K(hωj)(s) =

p−n∑

i=1

ai1K(hωj)(s)

=

p−n∑

i=1

\
Rn

ai1(s)

(
hωj

JH

)
◦H−1(s, y) dy

=

p−n∑

i=1

\
Rn

(
Ai1hωj

Bi1JH

)
◦H−1(s, y) dy.

Define

ω̃j =

p−n∑

i=1

Ai1hωj

Bi1
.

In the same way as in the case of ω̃j we show that ω̃j → 0 in Ωp
0 (M) so that\

|LK(hωj)| ds → 0 as j → ∞.

The remaining part is proved by induction.

Proposition 4 (on regularity of foliations). Let S be an involutive C∞

differential system on an analytic T2-manifold. Let θ be a leaf of the foliation

given by S and suppose that θ is an analytic set. Then θ is regular.

P r o o f. Let p ∈ θ and let (H,U) be an arbitrary analytic coordinate
system around p such that there exists an analytic function ϕ on U and
θ ∩ U is the set of zeros of ϕ on U . Suppose θ is not regular. Then the
set H(θ ∩ U) has infinitely many components which have a condensation
point (the component of H(p)). Let W be the orthogonal complement of the
affine subspace tangent to H(θ) at H(p). Then W intersects transversally
the components of the set H(θ ∩ U) which are close enough to H(p). Thus
there is a neighbourhood V of the point H(p) in W such that W ∩H(θ∩U)
is an infinite set with H(p) as a condensation point and this set does not
contain any one-dimensional submanifold. But this is impossible since this
set is analytic (described by h = ϕ ◦H−1|W ). To see this take an arbitrary
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sequence xn → p̃ = H(p), xn ∈ W ∩ H(θ ∩ U). We can assume that the
sequence of vectors (xn − p̃)/|xn − p| is convergent to a vector α. Then all
derivatives of the function h at p̃ in the direction of the vector α are zero.
Since h(p̃) = 0 and h is analytic it must be zero along the vector α so the
set W ∩H(θ ∩ U) contains an interval, which is impossible.

4. Examples (n-point Lorentz invariant distributions). Let
SO0(1, 1) be the group of proper Lorentz rotations in R

2, i.e. the group
generated by the mappings

σβ(x1, x2) =

(
x1 + βx2√

1 − β2
,
βx1 + x2√

1 − β2

)
, |β| < 1.

Take the Cartesian product of n copies of R
2,

R
2 × . . . × R

2 = R
2n.

Let ξ ∈ R
2n, ξ = (ξ1, . . . , ξn), ξi ∈ R

2, i = 1, . . . , n.

We define an action of the group SO0(1, 1) on R
2n by putting

g(ξ1, . . . , ξn) = (gξ1, . . . , gξn), g ∈ SO0(1, 1).

This action is called the n-point action of the Lorentz group SO0(1, 1). A
distribution invariant under this action is called an n-point Lorentz invariant

distribution.

We recall certain facts concerning n-point Lorentz invariant polynomi-
als. Namely Weyl’s theorem [16] states that every n-point Lorentz invariant
polynomial can be expressed as a polynomial in a finite number of funda-
mental invariants. These invariants form the matrix

((ξi | ξj))i,j=1,...,n,

where ξi = (ξi,1, ξi,2) ∈ R
2, i = 1, . . . , n, and

(ξi | ξj) = ξi,1ξj,1 − ξi,2ξj,2.

Since only proper Lorentz transformations are considered we have for n ≥ 2
the additional invariants:

det(ξi1 , ξi2), {i1, i2} ⊂ {1, . . . , n}.

We intend to prove that every n-point Lorentz invariant distribution defined
outside the origin extends to the whole of the space R

2n. To this end we
will show that the assumptions of Theorem 5 and Theorem 2 are satisfied.

It is natural to form the coordinate systems in Theorem 5 from the
above invariants. Unfortunately the coordinate systems formed in this way
do not cover the whole of the space of non-singular orbits. Namely we lack
coordinate systems around the points ξ = (ξ1, . . . , ξn) 6= (0, . . . , 0), ξi ∈ R

2,
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which satisfy the equations

(ξi | ξj) = 0, i, j = 1, . . . , n.

Let v = (ξ1, . . . , ξn) be such a point. Write

〈v | ξ〉 =

n∑

i=1

(ξi,1ξi,1 + ξi,2ξi,2).

Then a coordinate system around v can be formed from the following family
of invariant rational functions:

(10)

fi(ξ) =
1

2〈v | ξ〉
((〈v | v〉2 − 〈v | ξ〉2)ξi,1 + (〈v | ξ〉2 + 〈v | v〉2)ξi,2),

gi(ξ) =
1

2〈v | ξ〉
((〈v | ξ〉2 + 〈v | v〉2)ξi,1 + (〈v | v〉2 − 〈v | ξ〉2)ξi,2).

Thus in Theorem 5 we have to admit functions of the form (10) and this
is possible since such functions satisfy the  Lojasiewicz inequality (apply the
standard  Lojasiewicz inequality to the numerator).

To prove that the set Z = {0} is hyperbolic we note that every non-
singular orbit is unbounded so that if it passes close to zero it must intersect
an annulus around zero.

It is also easy to see that assumption (b) of Theorem 2 is satisfied,
i.e. every non-singular orbit θ admits an invariant neighbourhood Uθ such
that π(Uθ) ⊂ Nα with π(Uθ) compact in Nα and whose complement is
semianalytic. For the proof suppose first that θ is a separable orbit. Take
an arbitrary point ξ0 ∈ θ and a coordinate system (H,A) around ξ0 whose
coordinates (H1, . . . ,Hp−1) are formed by the fundamental invariants. Then
there exists r0 sufficiently small such that the set

Uθ = Inv(A)

∩ {ξ ∈ R
2n : (H1(ξ) −H1(ξ0))2 + . . .+ (Hp−1(ξ) −Hp−1(ξ0))2 < r0}

has the required properties. To see that R
2n \ Uθ is semianalytic observe

that (R2n \ Uθ) ∩ Inv(A) is described by the condition

(H1(ξ) −H1(ξ0))2 + . . .+ (Hp−1(ξ) −Hp−1(ξ0))2 ≥ r0.

If θ is a non-separable orbit and v ∈ θ then for Uθ we take the set

{ξ ∈ R
2n : 〈ξ | v〉 > 0}

∩ {ξ ∈ R
2n : (H1(ξ) −H1(v))2 + . . .+ (Hp−1(ξ) −Hp−1(v))2 < r0},

where Hi, i = 1, . . . , p− 1, are functions of the form (10).

Finally, we remark that an analogous statement concerning extendability
of distributions invariant under the n-point action of SO0(p, q), p ≥ 1, q ≥ 1,
p+ q > 2, is not true for n > 1. E.g. for the 2-point action of SO0(1, 2) the
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function

exp

(
1

(1−x2
1 +x2

2 +x2
3)2 + (1−y2

1 +y2
2 +y2

3)2 + (1−x1y1 +x2y2 +x3y3)2

)
,

(x1, x2, x3, y1, y2, y3) ∈ R
6, does not extend to R

6.
The verification of the assumptions of Theorems 2 and 5 in the case of

a natural action of the group SO0(p, q), p, q ≥ 1 (n = 1) is immediate.
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[4] V. Ed én, Disributions invariant under the group of complex orthogonal transfor-
mations, Math. Scand. 14 (1964), 75–89.

[5] C. Herz, Invariant distributions, in: Proc. Sympos. Pure Math. 35, Part 2, Amer.
Math. Soc., 1979, 361–373.

[6] P. Jeanquart ier, Distributions et opérateurs différentiels homogènes et inva-
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