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On extendability of invariant distributions™

by [BOGDAN ZIEMIAN]

Abstract. In this paper sufficient conditions are given in order that every distribution
invariant under a Lie group extend from the set of orbits of maximal dimension to the
whole of the space. It is shown that these conditions are satisfied for the n-point action
of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary
signature.

1. Notation and definitions. Let M be a p-dimensional Hausdorff
analytic manifold and let R : GXx M — M be a smooth action of a connected
Lie group G on M. We shall denote by M /G the orbit space of the action
R and by 7 the natural projection M — M/G. For every subset A C M,
Inv A will stand for the set 7!(m(A)). Orbits of maximal dimension will be
called non-singular. The remaining orbits will be termed singular. An orbit
0 is said to be regular if the submanifold topology on # coincides with the
topology induced from M (see [17], p. 68).

Two sets A1 and A, are said to be non-separable iff any invariant neigh-
bourhoods of A; and A have a non-empty intersection. An orbit 6 is
called separable iff there is no orbit § # 6 such that § and 6 are non-
separable.

A set E C RP is called semianalytic iff every point x € E possesses a
neighbourhood U such that

Emvzf_]( q {95 > 0} N {f; = 0})

i=1  j=

with g5, fi analytic on U. A function f is called semianalytic iff its graph
is a semianalytic set.
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14 B. Ziemian

The Sobolev space H,,, m € N, is the completion with respect to the
norm |flm = 37, < § [P f(2)| dz of the space of all smooth functions f
such that | f|,, is finite.

All remaining symbols and definitions can be found in [17].

2. Hyperbolic sets and their properties

DEFINITION 1. Let Z be the set of singular orbits in M (!). We shall say
that Z is hyperbolic in M if

(a) for every compact set K C M there exists a compact set Vi, Vi NZ
# (), such that for every non-singular orbit 6 if 6 N K # () then 0 NV # 0,
(b) the orbits in M \ Z are regular.

DEFINITION 2. We say that Z is strongly hyperbolic if Z is hyberbolic
and the set B of all orbits in M \ Z non-separable from Z has empty interior.

PROPOSITION 1. Let Z be hyperbolic and let 8 be an orbit such that
0 ¢ B. Then every distribution w on M \ Z with suppu C 0 extends to a
disrtibution on M.

Proof. Since 6 ¢ B there exist open invariant sets U; and Us, Uy N Uy
=0, such that Z C Uy, 6 C Us. Let we 25(M), the set of smooth compactly
supported densities on M. Select a ¢ € C°°(M) such that ¢ = 1 in a
neighbourhood of # and supp ¢ C Us. Then ¢ -w € 25(Us) and we define

ulw] = ufp - w].
u is the desired extension of u.

PROPOSITION 2. If Z is hyperbolic then for every compact set K C M
and every open covering {Us}gep of the set K\ Z by invariant sets Ug there

erist a finite number of indices B1,..., 3, such that
K\Zc|]JUs,.
i=1

Proof. By Definition 1 there exists a compact set Vi C M \ Z with
m(K) C 7(Vk). The set Vi being compact, there exist indices (1, ..., 3,
such that Vi C |J;_, Ug,. Since the set |J;_, Ug, is invariant the assertion
follows.

REMARK 1. If we assume that U \ Z consists of regular orbits then also
the converse of Proposition 2 is true.

DEFINITION 3. Let Z be the set of singular orbits in M. Let K C M
be a compact subset of M with Int K # () and K C U, an open neighbour-
hood. Suppose Aq,..., A, is an open covering of K \ Z. A family {p;}7_,

(}) Then Z is a closed subset of M.
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of functions ¢; € C*(U \ Z) will be called a partition of unity on K \ Z
subordinate to the covering {A4;}7_, iff

(a) p; >0fori=1,...,r

(b) KNsuppp; C A;,i=1,...,r,

(€) Xicipi=lon K\ Z,

(d) if ¥; — 9o in Cg°(U) as j — oo, suppyy; C K \ Z, then for every i,
with; — ity in CF°(U) as j — oo.

THEOREM 1. Let M = RP. Let Z be the set of hyperbolic orbits in M.
Fiz a compact set K in M with non-empty interior. Put Uy = {x € M :
dist(x, K') < 2}. Suppose that there exists an open covering {A;}i_, of the
set Uy \ Z (1) consisting of sets whose complements AS in M are semian-

alytic. Then there exists a partition of unity on K \ Z subordinate to the
covering {A;}i_, of K.

Proof. Define
5(z) = max(dist(x, AJ),...,dist(x, AY)), «x € Uj.

We observe that 4 is a semianalytic function since the distance from a
semianalytic set and the maximum of semianalytic functions are also semi-
analytic.

The function & can vanish only on Z for if we take an arbitrary compact
set K3 C Uy \ Z then {A;}7_, is an open covering of K; and there exists
an € > 0 such that for every x € K; the ball centred at = with radius ¢ is

contained in one of the A;’s and so we have d(x) > ¢ for z € K;.

Put §(z) = min(1,4(z)), 2 € Uy, and define U = {z € M : dist(z, K)
< 1}. Tt follows from the inequality of Lojasiewicz ([7], p. 85) that there
exist positive constants C and @ such that

(1) 8(x) > C(dist(x, 2))*  for z € U.
We shall now construct the required partition of unity on K. To this end
we put
A = {x € A; : dist(z, AS) > §(z)/2}.
We assert that (J;_, 4; = J;_, AS. To prove this we have to show that

U_, 4 cU_, A2, the converse inclusion being obvious. So we take z €
Ui_, Ai. Let {i1,...,i5} be the set of all indices 1 < i < r such that z €

A;, N...NA;, . The definition of § implies that there exists an ig € {i1,...,is}
such that dist(z, AS,) = () and so # € A , which was to be proved.

(1) The overbar ~ denotes closure.
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The partition is now easily constructed. Let y; be the characteristic
function of the set A; and let

_ [0, ey <1,
Ple) = {o, 2| > 1.

For z € U\ Z we define

=
S
N—
N———
g
<
AS)
7 N
=
N
|
8
N—
N—
=
—~
<
N—
,
N

) o) =a § (

RP

1= (§eas) sy (5(M) - (42)7),

The integral in (2) makes sense since for a fixed z € U \ Z the set {y :
ly — x| < d(x)} is compact and does not intersect Z. We also observe that

(3) d | <M>_zp¢<w>dy >1 forzelU)\Z,

S 4 oy

which follows by substitution z(y) = 4(y — z)/d(y) from the fact that z is
“onto” RP and the integrand is non-negative.
From (2) we see that n;, € C®°(U \ Z) (since d(y) > 0 on U \ Z) and
(suppn;) N K C A;. It remains to normalize 7; so we put
o T
' 22:1 i
The above properties of 7; imply in view of (3) that the ¢; satisfy items
(a)—(c) of Definition 3. To prove (d) we first show that for every multiindex
« there exist positive constants C' and a such that

0%p;(x) C
) Jz> | — (dist(z, Z))e

Inequality (4) is proved by induction on the length |a| of a. For a = 0 we
see from the definition of ¢, that

lpi(z)| <1, =xzeU\Z

We now prove (4) for a = (1,0"), 0’ € RP~!. Set h ="', n;. Since h > 1
on U\ Z by (3), we have

where

foree K\Z,i=1,...,r.

T

2

Jj=1

on;
8%1

i
8%1

on;
8%1

Thus it suffices to prove (4) for the functions 7; instead of ;.
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By differentiating (2) we find

on; _dé<%>2p+liw<w>){i(y)dy for z € K\ Z.

duy ) \oly))  9a T\ 0(y)
Hence by (1) for x € K \ Z we get
Oni(x) : Op (4y — =)
‘ Ozy |~ Qé (dist(y, 2))a@+D |92, \ oy xi(y) dy
dy
S —
a(2p+1)
Untule—yl<sy/a (DY 2))
dy
S C3 S 1 a(2p+1
Un{y:dist(y,2)>dist(z,2)/2} (dist(y, Z))a@r+D)
1
| dy

< =
>~ 04 (dlSt(!E, Z))a(2p+1) o

(where Cy, C3, Cy are suitable positive constants).
To prove the penultimate inequality it is enough to show that

{y : o —y| < dist(y, 2)/4} C {y : dist(y, Z) > dist(z, Z)/2},
which is equivalent, after passing to complements, to

{y : dist(y, Z) < dist(z, Z)/2} C {y : |z —y| > dist(y, Z)/4}.
To prove the last inclusion suppose conversely that for a certain y such that
dist(y, Z) < dist(z,Z)/2 we have |z —y| < dist(y,Z)/4. Let w € Z be
such that dist(y,Z) = |y — w|. Then |y —w| < dist(z,Z)/2 and |z — y| <
dist(z, Z)/8, hence |z — w| < 2 dist(z, Z), which is impossible since w € Z.

Finally, we state a well-known general lemma which shows how (4) im-

plies (d) of Definition 3.

LEMMA 1. Let Z be a closed subset of RP, K a compact subset of RP
and U an open neighbourhood of K. If a function ¢ € C*°(U \ Z) satisfies
(4) for every a then for every function ¢ € C3°(K) flat on Z, we have

(i) Y € CC(RP) and is flat on Z,

(ii) 0% () /0x| < C||||m for certain constants C' > 0, m € N depend-
ing only on « where

0
1]l = Z Sup | 5

18]<m °€K

Proof. This follows from Taylor’s formula (see [8], p. 154).

REMARK 2. Since Theorem 1 has a local character its proof generalizes
easily to the case where M is an analytic manifold.
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3. Theorems on extendability of invariant distributions. In what
follows M will be a fixed G-manifold as in Section 1. We also retain all
notation and definitions from [17] (e.g. K,, N, etc.)

THEOREM 2. Let the set Z of singular orbits be hyperbolic in M. Let
{Na}aca be the Hausdorff partition of the manifold (M \ Z)/G. Suppose
that

(a) for every non-singular orbit 6 there exists an invariant neighbour-

hood Uy such that m(Uy) C N, for some «, 7T(U9)Na is compact and the

complement of Uy in M is a semianalytic set,
(b) for every sequence wj € 25(m~*(N,)) convergent to zero in 25(M),
K,wj is convergent to zero locally uniformly with all derivatives on N,.

Then every G-invariant distribution on M \ Z extends to a distribution
on M.

Proof. Let u be an invariant distribution on M\ Z. Then by Theorem 2
of [17] there exists a unique distribution {T,, }qaca on N = (M \ Z)/G such
that

ulw] = To[Kow], w € 25(r 1(N,)).

Let w; € 25(M\ Z), w; — 0in 25(M) as j — oo. Let K be a compact
set containing all suppw;. Choose an open neighbourhood U; of K with
compact closure U;. The sets {Uy} form an invariant covering of U; and by
Proposition 2 we can select a finite subcovering {Up, }7_;.

Next we apply the “manifold version” of Theorem 1 to obtain a partition
of unity {p;}7_, on K\ Z subordinate to the covering {Up, };_;. Let a; € A
correspond to Up, as in (a). We observe that for every j,

ulw;] =) Ta,[a]]
i=1

where a} = Ko, (@iw;).
Thus in order to prove that u[w;] — 0 it is enough to show that for every
fixed 4, a} — 0 in 27" (Ny,) as j — oo. Since w; — 0 in £2§(M) we infer

from condition (d) of Definition 3 that for every i, p;w; — 0 in 28(M).

g

From the definition of the operation K, we see that supp a§ c n(Uyp,) 7,
which is compact by (a). From this and (b) we conclude that a} — 0 in
207" (Ng,) for every i =1,...,7.

Now, we construct the required extension. To this end let U C M be an
open set with U compact. By the above, the sets 28(U\ Z) C 28(U) satisfy
the assumptions of the Hahn—Banach theorem. It follows that there exists

a distribution u extending u|¢n z to U. Taking successive open sets U and
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gluing the distributions thus obtained we get the required extension. This
ends the proof of the theorem.

REMARK 2. The extension which exists by Theorem 2 need not be in-
variant. In fact an example given in [3] shows that there exist invariant
distributions which are extendable but which have no invariant extensions.

THEOREM 3. Let the set Z be strongly hyperbolic. If for every sequence
wj € Q2577 (N,)) with wj — wq in 25(M) as j — oo the form Kywo is
C*> on N, then K,w; converges to K,wq locally uniformly together with all
derivatives.

Proof. Let w; € 25(n ' (N,)), w; — wo in 25(M). We have to show
that L™ (K,w;) — LY (K,wp) locally uniformly on N, for every C*° linear
differential operator L on .

Let x € N, and let H be a coordinate system around x. We define a
distribution 6 = OH(z) © H~! where 6, is the Dirac delta in RP~" at the
point a. Suppose that @; = L™ (K,wj) is not locally uniformly convergent
to @p = L"(K,wp) on N,. Then there exists an €9 > 0 such that for every
j=1,2,... there exists an z; € N, \ B (see Definition 2) such that
(5) |65 [L" (@) — L™ (@o)]| > o
(H; a coordinate system around z;). Put

Ajln] = €0, [LY(Kam)] - for n € 25(M\ 2)
where e; = + is such that A;[a@; — @y > &o.

We observe that A; is a distribution on M \ Z with support in 7! (z;).
In view of Proposition 1, A; extends to a distribution A~j on M (because
z; € B). By assumption if w € 25(7=*(N,)) (the closure of 28(7~1(N,))
in 25(M)) then K,w is C* on N,, hence there is a constant C,, such that
(6) 6L (Kow)]| < Coy §=1,2,...

From (6) we see that ANJ-, j = 1,2,..., satisfy the assumptions of the
Banach-Steinhaus theorem on 25 (7~1(N,)). It follows from that theorem
that max;ey A; is a continuous operation on 25 (71 (N,)) (not a distribu-
tion since max is not additive). Thus in particular max;en 4A;[w; — wo] — 0
as j — 0o, which contradicts (5).

In an analogous way one proves the following “converse” of Theorem 2.

THEOREM 4. Let Z be hyperbolic. If for every sequence w; € 28 (m~1(Ny))
such that w; — wo in Q25(M), Kowo is of class C* on N, and if every
invariant distribution on M \ Z extends to a distribution on M then K, w,
converges to K wq locally uniformly with all derivatives.

We now establish conditions under which (b) of Theorem 2 is satisfied.
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THEOREM 5. Let {(Hg, Ax)} be a family of coordinate systems covering
M\ Z and such that:

(a) the coordinates H,...,H " of the vector function Hy, are constant
along orbits in M,

(b) H, i =1,...,p, extend to invariant analytic functions on M (de-
noted by the same symbol),

(c) for each k there exists an ay € A such that m(Ay) C Ny, .

Ifwj € Q§(M\ Z), suppw; C Ay, wj — 0 in 25(M) then K,,w; — 0
as j — oo locally uniformly with oll derivatives on Nj.

Proof. Fix a coordinate system (Hy, Aj) and let o, be such that w(Ay)
C Na,.

In view of the Sobolev lemma ([10], p. 197) it suffices to show that locally
K,w; — 0 in H,, for all m (H,, is the Sobolev space). Let (®y,m(Ax))
be the coordinates on N,, induced by (Hy, Ax) (see [17], p. 69). Define
K=K, H=Hy, A=A, s,=H', i=1,...,p—n,y;, = HP~"" for
i =1,...,n. Then by (a), Kw; has the following form in the coordinate
system @:

Wi _
(ij)(slv"wsp*n) = S <J—;{> OH 1(317"' 7Sp*n7y17--- 7yn) dy
Rn

where JH is the Jacobian of H. Let us compute

]Rn
We have
0 w W;w v Dy,
7 —((=L)oH H=2 Ori
") (asl ((JH) ’ (s’y)> ST Hy +; (JH)?
where in view of (b), w;, i = 0,1,...,p, are analytic functions in a neigh-

bourhood of A. Let Z; be the set of zeros of the function JH. Then 77 is
disjoint from A and from the Lojasiewicz inequality

[JH(x)| = C(dist(z, Z1))", =z €D,

where D is a compact subset of M containing all suppw; and C, a are
positive constants. Since w; are flat on Z; we know from Lemma 1 that

there are constants C , C such that

(®)

for some m € N.

Rt
JH

L 0w
TH 9z

< Cllwjllm, < Cllwjllm
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Set

(9) wj =

wjwo L L 1 (%)j
JH JH 8

Then from (7) and (8) we see that (a/asl)ij = Kw; withw; € 2f(M\Z2)
and W; — 0 in Q28(M).
Now it is easy to show that

S

0

D5, ds — 0.

+—Kuw;

Namely we have

g‘imj ds = \|Kw;|ds < | K|@;|ds = ||@;| — 0.

881

Take a point § € N,, and a coordinate system & around 6 in Ng, - Sup-
pose that @ is induced by one of the coordinate systems (Hy, Ax). Denote
that system by (ﬁ , j) Let h be the characteristic function of an invariant
open neighbourhood U of # such that 7T(U)N C 7T(A) Then K (hwj) = Kw;
in a neighbourhood of ¢ and supp K (hw;) C 7(A). We shall prove that
K (hw,) is convergent to zero on 7(U) in H,, for every m.

Denote by 0/0s; the differentiations in the coordinate system ®. Let
W = H o H!. Then the transition mapping R for ¢ and ® has the form

R(s) = (F'(s,y),..., 9" "(s,9))

where y is an arbitrary point such that (s,y) belongs to the domain of ¥.
Thus the Jacobi matrix DR has the form

(DR)(s) = (bij(8))i,j=1,....p0-n

where b;;(s) = ‘gf (s,y) and is independent of y. Let (a;;) be the inverse
matrix to (b;;). Then to the differentiation 0/0s1 in the coordinate system

@ there corresponds in the coordinate system @ the operator

p—n a
L= ;1 =
; ' 0s;

(8%1(90 o R7') = (Lyp) o R™1). We want to show that a;; o H is of the form
A;;/B;; where A;; and B;; are analytic functions of M and B;; can be zero
on the set on which all hw; are flat. To this end we observe that it follows
from the forms of the mappings H and H and the formula for the inverse
of a matrix that b;; 0 H = D;;/JH where D;; is an analytic function on M.



22 B. Ziemian

Hence

_ By

(JH)p=n
where C;; and B;; are analytic functions on M.

To obtain the required representation observe that B;; can vanish on the
set on which all hw; are flat. This follows from the fact that (JR) o H =
B,;/(JH)P~™ is constant along orbits and JH is not zero on A.

We compute

LK (hw;)(s Z ai1g - K (hw;)(s) = Z a;1 K (hw;)(s)

= Z | ails <h°"ﬂ> o H™(s,y) dy

=1 R™
—Z | < Zliﬁ;) o H™!(s,y) dy.
i—=1 Rn 1
Define
p—n _
~ Ailhwj
i=1

In the same way as in the case of W; we show that w; — 0 in £2f(M) so that
S|LK(hwj)| ds —0 asj— oc.
The remaining part is proved by induction.

PROPOSITION 4 (on regularity of foliations). Let S be an involutive C*°
differential system on an analytic To-manifold. Let 6 be a leaf of the foliation
given by S and suppose that 0 is an analytic set. Then 0 is regular.

Proof. Let p € 0 and let (H,U) be an arbitrary analytic coordinate
system around p such that there exists an analytic function ¢ on U and
0 N U is the set of zeros of ¢ on U. Suppose 0 is not regular. Then the
set H(# NU) has infinitely many components which have a condensation
point (the component of H(p)). Let W be the orthogonal complement of the
affine subspace tangent to H(#) at H(p). Then W intersects transversally
the components of the set H(6 N U) which are close enough to H(p). Thus
there is a neighbourhood V' of the point H(p) in W such that WNH(ONU)
is an infinite set with H(p) as a condensation point and this set does not
contain any one-dimensional submanifold. But this is impossible since this
set is analytic (described by h = ¢ o H~!|y/). To see this take an arbitrary
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sequence x, — p = H(p), , € WN H(@ NU). We can assume that the
sequence of vectors (x,, — p)/|x, — p| is convergent to a vector a. Then all
derivatives of the function h at p in the direction of the vector « are zero.
Since h(p) = 0 and h is analytic it must be zero along the vector « so the
set W N H(ONU) contains an interval, which is impossible.

4. Examples (n-point Lorentz invariant distributions). Let
SO¢(1,1) be the group of proper Lorentz rotations in R?, i.e. the group
generated by the mappings

op(r1,72) = <:L;;1+_ﬁ;§7 fjll j;)’ 8] < 1.
Take the Cartesian product of n copies of R2,
R? x ... x R* = R*".
Let E€R?™ €= (&,...,6,), & ER2i=1,...,n.
We define an action of the group SOg(1, 1) on R?™ by putting

g, 6n) = (9615, 96), g €800(1,1).

This action is called the n-point action of the Lorentz group SOg(1,1). A
distribution invariant under this action is called an n-point Lorentz invariant
distribution.

We recall certain facts concerning n-point Lorentz invariant polynomi-
als. Namely Weyl’s theorem [16] states that every n-point Lorentz invariant
polynomial can be expressed as a polynomial in a finite number of funda-
mental invariants. These invariants form the matrix

(& 1€5))ij=1,....n5
where &; = (&71,&72) S R2, i=1,...,n, and
(&il&5) = &1 — &i 28,2

Since only proper Lorentz transformations are considered we have for n > 2
the additional invariants:

det(gingh)v {ilviQ} - {1,...,71}-

We intend to prove that every n-point Lorentz invariant distribution defined
outside the origin extends to the whole of the space R?". To this end we
will show that the assumptions of Theorem 5 and Theorem 2 are satisfied.

It is natural to form the coordinate systems in Theorem 5 from the
above invariants. Unfortunately the coordinate systems formed in this way
do not cover the whole of the space of non-singular orbits. Namely we lack
coordinate systems around the points & = (£1,...,&,) # (0,...,0), & € R2,
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which satisfy the equations
(£z|£]):07 iajzlw"an'
Let v = (§;,...,&,) be such a point. Write

n

(v|&) = Z(Emfm + & 06i2)-

i=1
Then a coordinate system around v can be formed from the following family
of invariant rational functions:

1
oy O =TT I - C18+ (16 + )
1(6) = T (O]9 + @ [0))6 + (0|0 = W] 92)0)

Thus in Theorem 5 we have to admit functions of the form (10) and this
is possible since such functions satisfy the Lojasiewicz inequality (apply the
standard Lojasiewicz inequality to the numerator).

To prove that the set Z = {0} is hyperbolic we note that every non-
singular orbit is unbounded so that if it passes close to zero it must intersect
an annulus around zero.

It is also easy to see that assumption (b) of Theorem 2 is satisfied,
i.e. every non-singular orbit # admits an invariant neighbourhood Uy such
that w(Uyp) C N, with 7(Uy) compact in N, and whose complement is
semianalytic. For the proof suppose first that 6 is a separable orbit. Take
an arbitrary point &y € € and a coordinate system (H, A) around &, whose

coordinates (H1,..., HP~1) are formed by the fundamental invariants. Then
there exists rg sufficiently small such that the set
Up = Inv(A)

N{EER™™ : (H'(§) — H'(€))* + ..+ (HP™H(§) — HP ™' (&))* <o}

has the required properties. To see that R?" \ Uy is semianalytic observe
that (R?" \ Uy) N Inv(A) is described by the condition

(H (&) — H'(&))* + ... + (HP7H(&) — H'™'(€0))* = 0.
If 6 is a non-separable orbit and v € 6 then for Uy we take the set
{€ e R™ : (¢]v) > 0}
N{E € R : (H'(€) — H'(0)) + ...+ (H'™1(&) — H'™'(v))? < ro},
where H', i =1,...,p — 1, are functions of the form (10).
Finally, we remark that an analogous statement concerning extendability

of distributions invariant under the n-point action of SOy(p,q), p > 1, ¢ > 1,
p+q > 2, is not true for n > 1. E.g. for the 2-point action of SO¢(1,2) the
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function

1
exp )
<(1 —ai+a3+a3)?+ (1—yi+y3+v3)2 + (L—21y1 + 2212 +x3y3)2>

(21,79, 73,Y1,Y2,y3) € RS, does not extend to RS.

The verification of the assumptions of Theorems 2 and 5 in the case of

a natural action of the group SOg(p,q), p,q > 1 (n = 1) is immediate.
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