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Abstract. Let κ be a positive, continuous, submultiplicative function on R
+ such

that limt→∞ e
−ωtt−ακ(t) = a for some ω ∈ R, α ∈ R+ and a ∈ R

+. For every λ ∈ (ω,∞)
let φλ(t) = e

−λt for t ∈ R
+. Let L1κ(R

+) be the space of functions Lebesgue integrable
on R

+ with weight κ, and let E be a Banach space. Consider the map φ• : (ω,∞) ∋ λ→
φλ ∈ L

1
κ(R

+). Theorem 5.1 of the present paper characterizes the range of the linear
map T → Tφ• defined on L(L

1
κ(R

+);E), generalizing a result established by B. Hennig
and F. Neubrander for κ(t) = eωt. If κ ≡ 1 and E = R then Theorem 5.1 reduces to
D. V. Widder’s characterization of the Laplace transform of a function in L∞(R+). Some
applications of Theorem 5.1 to the theory of one-parameter semigroups of operators are
discussed. In particular a version of the Hille–Yosida generation theorem is deduced for
C0 semigroups (St)

t∈R
+
such that sup

t∈R
+
(κ(t))−1‖St‖ <∞.

0. Introduction. Inversion formulas for the Laplace transform play
an important role in the theory of one-parameter semigroups of operators.
E. Hille’s original proof of the Hille–Yosida generation theorem is related
to the Post–Widder real formula for the inverse Laplace transform. This
formula is close to

(a) Widder’s “general representation theorem”, [W;I], p. 303,

and to

(b) Widder’s characterization of the Laplace transform of an element of
L∞(R+), [W;I], pp. 315–316.
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The generalization of (b) to functions with values in a Banach space, due
to W. Arendt [A], is important for the theory of integrated and regularized
semigroups of operators. Arendt’s proof of his generalization of (b) consists
in a reduction to the classical Widder version of (b) by means of linear func-
tionals. B. Hennig and F. Neubrander [H-N] and A. Bobrowski [B] have
reproved Arendt’s result in the framework of linear operators from L1(R+)
into a Banach space. The argument in [H-N] is based on (a). The proof
in [B] is based on a “representation theorem” related to the R. S. Phillips
real inversion formula for the Laplace transform ([Ph]; [H-P], p. 221, Theo-
rem 6.6.3).

Similarly to the above-mentioned result of [H-N] and [B], Theorem 5.1
of the present paper (described in the Abstract) is a generalization of (b)
from elements T of L∞(R+), i.e. linear functionals T on L1(R+), to linear
operators T from L1

κ
(R+) into a Banach space E. In contrast to [H-N], and

similarly to [B], the proof of Theorem 5.1 is direct: neither (a) nor (b) is used
in this proof, and (b) follows at once from Theorem 5.1 applied to κ ≡ 1
and E = R or E = C. Moreover, some estimations which are troublesome
for general κ, become obvious when κ ≡ 1, and the proof of Theorem 5.1
for κ ≡ 1 is simpler than Widder’s original proof of (b), based on (a).

The space L1
κ
(R+) is a convolution Banach algebra. Let X be a Ba-

nach space, L(X) the Banach algebra of continuous linear operators from X
into X, and Hom(L1

κ
(R+);L(X)) the corresponding set of homomorphisms

of Banach algebras. The elements of Hom(L1
κ
(R+);L(X)) are nothing but

continuous representations of the convolution Banach algebra L1
κ(R+) on

the Banach space X. The present paper expounds the case when the oper-
ator T occurring in Theorem 5.1 belongs to Hom(L1

κ(R+);L(X)). In this
connection notice that if T ∈ Hom(L1

κ(R+);L(X)) and D0 = {ϕ ∈ C∞
c (R) :

suppϕ ⊂ R+} then the following two conditions are equivalent (1):

(i) T |D0
is an L(X)-valued semigroup distribution in the sense of

J. L. Lions [L],

(ii) there is a unique C0 semigroup (St)t∈R+ ⊂ L(X) such that
supt∈R+(κ(t))−1‖St‖ <∞ and

T (ϕ)x =

∞\
0

ϕ(t)Stx dt

(1) Indeed, (ii)⇒(i) is an easy consequence of Definition 1.1 in [L], p. 142. On the
other hand, by (4.1) and (9.3) in the present paper, Tφ• ∈ Wκ(L(X)) and Tφ• is a
pseudoresolvent with values in L(X). By Lemma 2.1 and Proposition 11.4 of the present
paper, if (i) holds, then conditions (iv) and (v) of Definition 1.1 in [L] imply that Tφ• is the
resolvent of a densely defined, closed linear operator A from X into X. By Theorem 12.2
and Lemma 2.1, A is the infinitesimal generator of a semigroup satisfying (ii).
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for all ϕ ∈ L1
κ(R+) and x ∈ X, the integral being understood in the sense

of Bochner (2).

Theorem 12.2 of the present paper deals with C0 operator semigroups
and refines the Hille–Yosida generation theorem. For every M ∈ [1,∞) and
every function κ with properties as in the abstract, Theorem 12.2 character-
izes the class of the infinitesimal generators of C0 semigroups (St)t∈R+ such
that supt∈R+(κ(t))−1‖St‖ = M , while the Hille–Yosida theorem gives such
a characterization only for exponential functions κ. The proof is based on
the reconstruction of a semigroup from (a candidate for) the infinitesimal

generator along the scheme: the generator
(1)
→ the resolvent

(2)
→ the homomor-

phism of the convolution algebra L1
κ
(R+) into the Banach algebra L(X)

(3)
→

the semigroup. Step (1) is standard. Step (2) is based on Theorem 5.1 which
contains all the technical difficulties. Step (3) resembles a procedure known
in the representation theory of groups.

Acknowledgements. The author is greatly indebted to Wojciech Cho-
jnacki for helpful discussions, for drawing the author’s attention to the fac-
torization theorem for Banach algebras, and for indicating the analogues of
Theorem 10.2 in the theory of representations of groups.

1. The weight function κ and the space L1
κ
(R+). Throughout this

paper R
+ = (0,∞), R+ = [0,∞), the numbers ω ∈ R, α ∈ R+ and a ∈ R

+

are fixed, and κ is a fixed strictly positive, continuous, submultiplicative
function on R+ such that κ(0) = 1 and

(1.1) lim
t→∞

κ(t)

eωttα
= a.

Submultiplicativity of κ means that

κ(t+ u) ≤ κ(t)κ(u) for all t and u in R+.

Let K be either R or C, and let L1
κ(R+) be the space of the equivalence

classes of K-valued functions Lebesgue integrable on R
+ with weight κ.

Equipped with the norm

‖ϕ‖1,κ =

∞\
0

|ϕ(t)|κ(t) dt, ϕ ∈ L1
κ(R+),

L1
κ
(R+) is a Banach space.

(2) Representations of L1(R+) defined in this way are (implicitly) used in the proof
given in [S-K], pp. 307–309, of the Trotter–Kato approximation theorem for C0 semigroups.
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The strict positivity, continuity and the property (1.1) of κ imply that

(1.2) lim
λ→∞

(κ0(t))
−1 λ

n+1

n!

∞\
0

sne−λs
κ0(s) ds

∣∣∣
n=[λt]

= 1

uniformly with respect to t ∈ R+, where

κ0(t) = e−ωt
κ(t).

The uniformity in (1.2) is crucial for the proof of Theorem 5.1. The
pointwise limit (1.2) is considered in [W;I], p. 289, Theorem 6b, under as-
sumptions weaker than ours. The standard weight functions used in the
theory of operator semigroups have the form κ(t) = eωt, so that κ0 ≡ 1 and
the uniformity in (1.2) is a trivial consequence of the equality

λn+1

n!

∞\
0

sne−λs ds = 1, λ ∈ R
+.

However in some papers concerning integrated operator semigroups (for in-
stance [deL-H-W-W], [deL-J]) the weight functions κ(t) = eωt(1+ ct)k with
ω ∈ R, c ∈ R

+, k = 0, 1, . . . are considered. It is natural to associate such
weight functions with semigroups of (k + 1) × (k + 1) matrices of the form

exp



t




ω c
ω c

. . .
. . .

ω c
ω







= eωt




1 ct (ct)2/2 . . . (ct)k/k!
1 ct . . . (ct)k−1/(k − 1)!

. . .

ct
1



.

Except for the proof of the uniformity in (1.2), the use of our more general
weight functions does not cause any complications. Conditions (1.1) and
(1.2) are insignificant in Sections 2, 3, 8 and 10, and in Sections 2–10 and 12
it is natural to use as general weight functions as possible.

In the proof of the uniformity in (1.2) we use the equality

(1.3) lim
x→∞

Γ (x+ α)

xαΓ (x)
= 1

for the Euler Γ function, which is an easy consequence of the Stirling formula
([R;I], Sec. 8.22). For all µ ∈ R

+ and β ∈ R
+ consider the probabilistic

gamma density on R+ ([J-K-B], Chap. 17)
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γλ,β(s) =
λβ

Γ (β)
sβ−1e−λs, s ∈ R+.

The mean value of γλ,β is β/λ, and the variance is β/λ2. A standard appli-
cation of the Chebyshev inequality shows that

(1.4) if ϕ is a bounded uniformly continuous function on R+, then

lim
λ→∞

∞\
0

γλ,[λt]+1(s)ϕ(s) ds = ϕ(t)

uniformly with respect to t ∈ R+.

In terms of the densities γλ,β the equality (1.2) takes the form

(1.5) lim
λ→∞

(κ0(t))
−1

∞\
0

γλ,[λt]+1(s)κ0(s) ds = 1.

Lemma 1.1. The limit relation (1.5) holds uniformly with respect to t in

any compact subinterval of R+.

P r o o f. Fix any t0 ∈ R
+. We will prove that (1.5) holds uniformly with

respect to t ∈ [0, t0]. To this end take any T ∈ (t0 + 1,∞) and define

(1.6) cT (s) =





1 if s ∈ [0, T − 1],
T − s if s ∈ (T − 1, T ),
0 if s ∈ [T,∞).

From (1.4) it follows that

lim
λ→∞

(κ0(t))
−1

∞\
0

γλ,[λt]+1(s)cT (s)κ0(s) ds = 1

uniformly with respect to t ∈ [0, T − 1]. Hence the proof of Lemma 1.1 will
be complete once it is shown that

(1.7) lim
λ→∞

sup
t∈[0,t0]

∞\
T−1

γλ,[λt]+1(s)κ0(s) ds = 0.

Let C=sups∈R+ κ0(s)e
−s. Then C<∞, by (1.1). If λ∈(T/(T − 1 − t0),∞)

then, by Chebyshev’s inequality,

sup
t∈[0,t0]

∞\
T−1

γλ,[λt]+1(s)κ0(s) ds

≤ C sup
t∈[0,t0]

(
λ

λ− 1

)[λt]+1 ∞\
T−1

γλ−1,[λt]+1(s) ds
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≤ C

(
1 +

1

λ− 1

)(λ−1)t0+(t0+1)

sup
t∈[0,t0]

(
T − 1 −

[λt] + 1

λ− 1

)−2
[λt] + 1

(λ− 1)2

≤ Cet0

(
1 +

1

λ− 1

)t0+1
λt0 + 1

(λ(T − 1 − t0) − T )2
,

whence (1.7) follows.

Proposition 1.2. The limit relation (1.2) holds uniformly with respect

to t ∈ R+.

P r o o f. For every T ∈ [1,∞) define

mT = inf
s≥T−1

κ0(s)

sα
, MT = sup

s≥T−1

κ0(s)

sα
,

nT = inf
t≥T

tα

κ0(t)
, NT = sup

t≥T

tα

κ0(t)
.

Condition (1.1 ) implies that limT→∞mT = limT→∞MT =a, limT→∞ nT =
limT→∞NT = a−1, and hence

(1.8) lim
T→∞

mTnT = lim
T→∞

MTNT = 1.

For all λ ∈ R
+, t ∈ R+, and every continuous function ϕ on R+ such that

sups≥1 |ϕ(s)|/sα <∞ define

Iλ,t(ϕ) =

∞\
0

γλ,[λt]+1(s)ϕ(s) ds.

Proposition 1.2 is equivalent to the claim that

lim
λ→∞

sup
t∈R+

|(κ0(t))
−1Iλ,t(κ0) − 1| = 0.

By Lemma 1.1,

lim
λ→∞

sup
t∈[0,T ]

|(κ0(t))
−1Iλ,t(κ0) − 1| = 0 for every T ∈ R

+.

Hence, by (1.8), Proposition 1.2 will follow once it is shown that

mTnT ≤ lim inf
λ→∞

inf
t∈[T,∞)

(κ0(t))
−1Iλ,t(κ0)(1.9)

≤ lim sup
λ→∞

sup
t∈[T,∞)

(κ0(t))
−1Iλ,t(κ0) ≤MTNT

for every T ∈ [1,∞).

To prove (1.9), take any T ∈ [1,∞) and define the function cT by (1.6).
Then

mT s
α −mT cT (s)sα ≤ κ0(s) ≤MT s

α + cT (s)κ0(s)
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for every s ∈ R+. As a consequence,

(1.10) mTnT t
−αIλ,t(ϕα) −mTDIλ,t(cTϕα)

≤ (κ0(t))
−1Iλ,t(κ0) ≤MTNT t

−αIλ,t(ϕα) +DIλ,t(cT κ0)

for every t ∈ [T,∞), where D = supt∈R+(κ0(t))
−1 <∞, and

ϕα(s) = sα for s ∈ R+.

Since the function cT vanishes on [T,∞), from (1.4) and (1.10) it follows
that

mTnT lim inf
λ→∞

inf
t∈[T,∞)

t−αIλ,t(ϕα) ≤ lim inf
λ→∞

inf
t∈[T,∞)

(κ0(t))
−1Iλ,t(κ0)

and

lim sup
λ→∞

sup
t∈[T,∞)

(κ0(t))
−1Iλ,t(κ0) ≤MTNT lim sup

λ→∞
sup

t∈[T,∞)

t−αIλ,t(ϕα).

These inequalities reduce the proof of (1.9) to showing that

(1.11) lim
λ→∞

sup
t∈[T,∞)

|t−αIλ,t(ϕα) − 1| = 0.

To this end, note that

t−αIλ,t(ϕα) =
λ[λt]+1

tα[λt]!

∞\
0

s[λt]+αe−λs ds

=
λ[λt]+1

tα[λt]!
·
Γ ([λt] + 1 + α)

λ[λt]+1+α

=

(
[λt] + 1

λt

)α
Γ ([λt] + 1 + α)

([λt] + 1)αΓ ([λt] + 1)
.

Hence

sup
t∈[T,∞)

|t−αIλ,t(ϕα) − 1|

≤

((
1 +

1

λT

)α

− 1

)
sup

x≥λT

Γ (x+ α)

xαΓ (x)
+ sup

x≥λT

∣∣∣∣
Γ (x+ α)

xαΓ (x)
− 1

∣∣∣∣.

By (1.3), the last estimate implies (1.11).

2. The exponentials in L1
κ(R+). For every λ ∈ (ω,∞) let φλ be

the element of L1
κ(R+) represented by the exponential function t → e−λt

restricted to R
+. Since (∂/∂λ)ne−λt = (−t)ne−λt, it follows that the map

(2.1) φ• : (ω,∞) ∋ λ→ φλ ∈ L1
κ(R+)
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is infinitely differentiable in the norm of L1
κ(R+). In terms of the map φ•

the uniform limit condition (1.2) takes the form

(2.2) lim
λ→∞

(κ0(t))
−1λ

n+1

n!

∥∥∥∥
(
∂

∂λ

)n

φλ+ω

∥∥∥∥
1,κ

∣∣∣∣
n=[λt]

= 1

uniformly with respect to t ∈ R+. If t = 0 then n = [λt] = 0, and (2.2) yields

(2.3) lim
λ→∞

λ‖φλ‖1,κ = 1.

Lemma 2.1. The set {φλ : λ ∈ (ω,∞)} is linearly dense in L1
κ(R+).

P r o o f. For every u ∈ R+ let 1(0,u] be the element of L1
κ
(R+) represented

by the characteristic function of the interval (0, u]. The set spanK{1(0,u] :
u ∈ R

+} is dense in L1
κ(R+) because it consists of all those elements of

L1
κ(R+) which are represented by K-valued piecewise constant functions on

R
+ with bounded supports. Therefore it is sufficient to show that

(2.4) 1(0,u] ∈ span
R
{φλ : λ ∈ (ω,∞)}

for every u ∈ R
+, where the closure is taken in the norm topology of L1

κ(R+).

To prove (2.4), fix any u ∈ R
+. By (2.3), for every λ ∈ (ω,∞) the series

∞∑

n=1

(−1)n+1 e
nλu

n!
φnλ

of elements of L1
κ
(R+) is absolutely convergent in the norm of L1

κ
(R+). The

sum ψλ,u of this series is in span
R
{φn λ : n = 1, 2, . . .}, and hence (2.4) will

follow once we prove

(2.5) lim
λ→∞

‖ψλ,u − 1(0,u]‖1,κ = 0.

The element ψλ,u of L1
κ
(R+) is represented by the function

ψ0
λ,u(t) = −

∞∑

n=1

(−eλ(u−t))n

n!
= 1 − exp(−eλ(u−t)).

Thus 0 ≤ ψ0
λ,u(t) ≤ 1 and

ψ0
λ,u(t) = es|s=0

s=−eλ(u−t) < eλ(u−t),

whence

∞\
u

ψ0
λ,u(t)κ(t) dt ≤ κ(u)

∞\
u

e−λ(t−u)
κ(t− u) dt = κ(u)‖φλ‖1,κ,
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so that

‖ψλ,u − 1(0,u]‖1,κ =

u\
0

(1 − ψ0
λ,u(t))κ(t) dt +

∞\
u

ψ0
λ,u(t)κ(t) dt

≤

u\
0

κ(t) exp(−eλ(u−t)) dt + κ(u)‖φλ‖1,κ .

By the Lebesgue dominated convergence theorem, and by (2.3), the last
estimate implies (2.5).

The above proof is inspired by a remark on p. 165 of [H-N] concerning
the Phragmén inversion formula for the Laplace–Stieltjes transform.

3. The spaces L(L1
κ
(R+);E), Lip

κ
(R+;E) and Mκ(E). Let E be a

Banach space over the field K, and L(L1
κ(R+);E) the space of continuous

linear operators from L1
κ(R+;K) into E. Denote by Lipκ(R+;E) the set of

E-valued functions g on R+ satisfying the condition g(0) = 0 and having
finite norm

‖g‖Lip
κ

= sup
0≤s<t<∞

( t\
s

κ(u) du
)−1

‖g(t) − g(s)‖E .

Equipped with this norm, Lipκ(R+;E) is a Banach space.

Let R be the ring of Lebesgue measurable subsets B of R
+ such thatT

B
κ(t) dt < ∞. Define Mκ(E) to be the set of E-valued measures G on

R (3) such there is a finite positive C satisfying

(3.1) ‖G(B)‖E ≤ C
\
B

κ(t) dt for every B ∈ R.

Equipped with the norm

‖G‖Mκ
= the smallest C satisfying (3.1),

Mκ(E) is a Banach space.

If T ∈ L(L1
κ
(R+);E) then

GT : R ∋ B → T1B ∈ E

is a measure in Mκ(E) such that ‖GT ‖Mκ
≤ ‖T‖, and

gT : R+ ∋ t→ T1(0,t] ∈ E

(3) The terminology used here follows [Ha], pp. 19, 24, 30. Estimate (3.1) implies
that limn→∞ ‖G(Bn)‖E = 0 whenever (Bn)n∈N is a decreasing sequence of sets in R such
that
⋂
n∈N
Bn = ∅. It follows that G is countably additive on R, that is, G(

⋃
n∈N
Bn) =

∑
n∈N
G(Bn) whenever (Bn)n∈N is a disjoint sequence in R such that

⋃
n∈N
Bn ∈ R.
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is a function in Lipκ(R+;E) such that ‖gT ‖Lip
κ

≤ ‖T‖. If G ∈Mκ(E) then

gG : R+ ∋ t→ G((0, t]) ∈ E

is a function in Lipκ(R+;E) such that ‖gG‖Lip
κ

≤ ‖G‖Mκ
.

Proposition 3.1. The map I1 : T → GT is a linear isometry of

L(L1
κ
(R+);E) onto Mκ(E). The map I2 : T → gT is a linear isometry

of L(L1
κ(R+);E) onto Lipκ(R+;E). Hence the map I2 ◦ I

−1
1 : G→ gG is a

linear isometry of Mκ(E) onto Lipκ(R+;E).

P r o o f. Since the maps are linear and contractive, it remains to prove
that

(3.2) for every G ∈Mκ(E) there is a unique T ∈ L(L1
κ(R+);E) such that

GT = G and ‖T‖ ≤ ‖G‖Mκ
,

and

(3.3) for every g ∈ Lipκ(R+;E) there is a unique T ∈ L(L1
κ(R+);E) such

that gT = g and ‖T‖ ≤ ‖g‖Lip
κ

.

To this end, let S1 be the set of those elements ϕ of L1
κ(R+) which

are represented by functions ϕ0 for which the set ϕ0(R
+) is finite. Then

ϕ−1
0 (c)∈R for every c ∈ K \ {0}. Let S2 be the set of those elements ϕ

of L1
κ(R+) which are represented by piecewise constant functions ϕ0. If

T ∈ L(L1
κ
(R+);E), G = GT and g = gT then

(3.4) Tϕ =
∑

c∈ϕ0(R+)\{0}

cG(ϕ−1
0 (c)) for every ϕ ∈ S1

and

(3.5) Tϕ =
∑

c∈ϕ0(R+)\{0}

c[g(supϕ−1
0 (c))−g(inf ϕ−1

0 (c))] for every ϕ ∈ S2,

so that the restriction T |S1
is uniquely determined byG, and T |S2

is uniquely
determined by g. Since S1 and S2 are dense subsets of L1

κ(R+), the operator
T ∈ L(L1

κ(R+);E) is uniquely determined by each of the above restrictions,
and the uniqueness parts of (3.2) and (3.3) follow.

To prove the existence part of (3.2), take any G ∈ Mκ(E) and define
T : S1 → E by (3.4). Then

‖Tϕ‖E ≤
∑

c∈ϕ0(R+)\{0}

|c| · ‖G‖Mκ

\
ϕ−1

0 (c)

κ(t) dt = ‖G‖Mκ
· ‖ϕ‖1,κ

for every ϕ ∈ S1. Since S1 is dense in L1
κ
(R+), it follows that T can be

uniquely extended to an operator belonging to L(L1
κ(R+);E). If the exten-

sion is denoted again by T , then ‖T‖ ≤ ‖G‖Mκ
, and T1B = G(B) for every

B ∈ R, by (3.4). The existence part of (3.3) may be proved by a similar
argument based on (3.5).
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If T ∈ L(L1
κ(R+);E) then

(3.6) Tϕ =

∞\
0

ϕ(t)GT (dt) for every ϕ ∈ L1
κ
(R+),

the integral with respect to the E-valued measure GT being understood
in the Lebesgue–Bartle–Dunford–Schwartz sense ([D-S;I], Sec. IV.10; [D-U],
p. 56). In particular,

(3.7) Tφλ =

∞\
0

e−λt GT (dt) for every λ ∈ (ω,∞),

so that the function (ω,∞) ∋ λ → Tφλ ∈ E is the Laplace transform of
the E-valued measure GT . Since gT (t) = GT ((0, t]), a formal integration by
parts leads from (3.7) to

(3.8) Tφλ = λ

∞\
0

e−λtgT (t) dt for every λ ∈ (ω,∞).

This formula is indeed true if the integral is understood in the Bochner
sense. For the proof, observe that for every λ ∈ (ω,∞) the continuous
L1

κ
(R+)-valued function R

+ ∋ t → λe−λt1(0,t] ∈ L1
κ
(R+) is absolutely in-

tegrable on R
+ and the Bochner integral

T∞
0
λe−λt1(0,t] dt is an element of

L1
κ
(R+) represented by the function

s→

∞\
0

λe−λt1(0,t](s) dt = λ

∞\
s

e−λt dt = e−λs.

Hence
T∞
0
λe−λt1(0,t] dt = φλ, and so

Tφλ =

∞\
0

λe−λtT1(0,t] dt = λ

∞\
0

e−λtgT (t) dt.

4. The Widder space Wκ(E). If E is a Banach space over the field
K then we define Wκ(E) as the normed linear space over K whose elements
are those maps f : (ω,∞) → E which are infinitely differentiable in the
norm topology of E and have finite norm

(4.1) ‖f‖Wκ(E) = sup

{
‖(∂/∂λ)nf(λ)‖E

‖(∂/∂λ)nφλ‖1,κ
: λ ∈ (ω,∞), n = 0, 1, . . .

}
.

The term by term differentiation theorem implies that Wκ(E) is a Ba-
nach space. For reasons which will be explained after Corollary 5.2, we
call Wκ(E) the Widder space. The map φ• defined by (2.1) belongs to
Wκ(L1

κ(R+)) and ‖φ•‖Wκ(L1
κ

(R+)) = 1.
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Lemma 4.1. If E is a Banach space and f ∈ Wκ(E), then the map

f : (ω,∞) → E is real analytic and for every µ ∈ (ω,∞) the Taylor series

of f with center at µ has convergence radius no smaller than µ− ω.

P r o o f. Fix any µ ∈ (ω,∞) and λ ∈ (ω, 2µ−ω). We have to prove that
limn→∞ ‖Rn‖E = 0, where

Rn = f(λ) −

n∑

m=0

1

m!
f (m)(µ)(λ− µ)m =

λ\
µ

(λ− ν)n

n!
f (n+1)(ν) dν.

Take any ω′ ∈ (ω, µ) such that λ ∈ (ω′, 2µ− ω′) and let

M = sup
t∈R+

e−ω′t
κ(t).

Then M <∞, by (1.1). Furthermore, by (4.1),

‖Rn‖E ≤ ‖f‖Wκ(E)

∣∣∣∣
λ\
µ

(λ− ν)n

n!

∥∥∥∥
(
∂

∂ν

)n+1

φν

∥∥∥∥
1,κ

dν

∣∣∣∣

≤M‖f‖Wκ(E)

∣∣∣∣
λ\
µ

(λ− ν)n

n!

∣∣∣∣
∞\
0

(
∂

∂ν

)n+1

e(ω
′−ν)t dt

∣∣∣∣ dν
∣∣∣∣

= M‖f‖Wκ(E)(n+ 1)

∣∣∣∣
λ\
µ

(λ− ν)n

(ν − ω′)n+2
dν

∣∣∣∣

and hence it remains to check that

(4.2) lim
n→∞

(n+ 1)

λ\
µ

(λ− ν)n

(ν − ω′)n+2
dν = 0.

Put

τ =
λ− ν

ν − ω′
, θ =

λ− µ

µ− ω′
.

Then
1

ν − ω′
=

τ + 1

λ− ω′
, |θ| < 1,

and

(n+ 1)

∣∣∣∣
λ\
µ

(λ− ν)n

(ν − ω′)n+2
dν

∣∣∣∣ = (n+ 1)

∣∣∣∣
λ\
µ

(
λ− ν

ν − ω′

)n

d
1

ν − ω′

∣∣∣∣

=
n+ 1

λ− ω′

∣∣∣
θ\
0

τn dτ
∣∣∣ =

|θ|n+1

λ− ω′
,

whence (4.2) follows (4).

(4) Lemma 4.1 and its proof, due to the present author, were first published in [B] in
the case of κ(t) = eωt.
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The following lemma refers to the calculations on p. 21 of [G].

Lemma 4.2. Let f be a real analytic map from an interval I ⊂ (ω,∞)
to a Banach space E. For every λ ∈ I put

|f |λ = sup

{
‖(∂/∂λ)nf(λ)‖E

‖(∂/∂λ)nφλ‖1,κ
: n = 0, 1, . . .

}
.

Then the [0,∞]-valued function λ→ |f |λ increases on I.

P r o o f. Lemma 4.2 will follow once it is shown that if |f |µ < ∞ for
some µ ∈ I, then |f |λ ≤ |f |µ for every λ ∈ I ∩ (ω, µ]. So, suppose that µ ∈ I
and |f |µ <∞. Since φ• ∈Wκ(L1

κ(R+)), it follows from Lemma 4.1 that
(
∂

∂λ

)n

φλ =

∞∑

m=0

(λ− µ)m

m!

(
∂

∂µ

)n+m

φµ

for every n = 0, 1, . . . and λ ∈ (ω, 2µ − ω), the series being absolutely
convergent in the norm of L1

κ(R+). Hence, by real analyticity of f ,
∥∥∥∥
(
∂

∂λ

)n

f(λ)

∥∥∥∥
E

≤

∞∑

m=0

∥∥∥∥
(λ− µ)m

m!

(
∂

∂µ

)n+m

f(µ)

∥∥∥∥
E

≤ |f |µ

∞∑

m=0

∥∥∥∥
(λ− µ)m

m!

(
∂

∂µ

)n+m

φµ

∥∥∥∥
1,κ

<∞

for all n = 0, 1, . . . and λ ∈ I ∩ (ω, 2µ− ω). If λ ∈ I ∩ (ω, µ] then

(−1)n (λ− µ)m

m!

(
∂

∂µ

)n+m

φµ(t) =
tn+m(µ− λ)m

m!
e−µt ≥ 0

for all t ∈ R
+ and m = 0, 1, . . . , so that

∞∑

m=0

∥∥∥∥
(λ− µ)m

m!

(
∂

∂µ

)n+m

φµ

∥∥∥∥
1,κ

=

∥∥∥∥
∞∑

m=0

(λ− µ)m

m!

(
∂

∂µ

)n+m

φµ

∥∥∥∥
1,κ

=

∥∥∥∥
(
∂

∂λ

)n

φλ

∥∥∥∥
1,κ

.

Therefore, if λ ∈ I ∩ (ω, µ], then ‖(∂/∂λ)nf(λ)‖E ≤ |f |µ‖(∂/∂λ)nφλ‖1,κ for
every n = 0, 1, . . . , which means that |f |λ ≤ |f |µ.

Lemma 4.3. If E is a Banach space, ω′ ∈ (ω,∞), and f0 : (ω′,∞) → E
is an infinitely differentiable map such that supλ∈(ω′,∞) |f0|λ < ∞, then

there is a unique map f ∈Wκ(E) such that f |(ω′,∞) = f0.

P r o o f. The same argument as in the proof of Lemma 4.1 shows that the
map f0 is real analytic on (ω′,∞). Take any µ ∈ (ω′,∞). Since |f0|µ < ∞
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and φ• ∈Wκ(L1
κ(R+)), Lemma 4.1 implies that

∞∑

m=0

∥∥∥∥
(λ− µ)m

m!

(
∂

∂µ

)m

f0(µ)

∥∥∥∥
E

≤ |f0|µ

∞∑

m=0

∥∥∥∥
(λ− µ)m

m!

(
∂

∂µ

)m

φµ

∥∥∥∥
1,κ

<∞

for every λ ∈ (ω, 2µ− ω). Hence the formula

f(λ) =





∞∑

m=0

(λ− µ)m

m!

(
∂

∂µ

)m

f0(µ) if λ ∈ (ω, ω′],

f0(λ) if λ ∈ (ω′,∞),

determines a real analytic map f : (ω,∞)→E extending f0. By Lemma 4.2,
‖f‖Wκ(E) = supλ∈(ω,∞) |f |λ = supλ∈(ω′,∞) |f0|λ <∞, so that f ∈Wκ(E).

Let C be a closed convex cone in a Banach space E, and let I ⊂ R be
an interval. A map f : I → E will be called C-completely monotonic on I
if it is infinitely differentiable and (−1)n(∂/∂λ)nf(λ) ∈ C for every λ ∈ I.
This terminology follows [W;I], p. 145, and [W;II], p. 154, where E = R and
C = R+.

Lemma 4.4. If f ∈ Wκ(E), ω′ ∈ (ω,∞), and f |(ω′,∞) is C-completely

monotonic on (ω′,∞), then f is C-completely monotonic on (ω,∞).

P r o o f. It is sufficient to show that if µ∈(ω,∞) and (−1)m(∂/∂µ)mf(µ)
∈ C for every m = 0, 1, . . . , then (−1)n(∂/∂λ)nf(λ) ∈ C for all λ ∈ (ω, µ]
and n = 0, 1, . . . Since f ∈Wκ(E), it follows from Lemma 4.1 that
(
∂

∂λ

)n

f(λ) =

∞∑

m=0

(λ− µ)m

m!

(
∂

∂µ

)n+m

f(µ) for every λ ∈ (ω, 2µ− ω),

the series being absolutely convergent in the norm of E. Hence if λ ∈ (ω, µ],
then

(−1)n

(
∂

∂λ

)n

f(λ) =

∞∑

m=0

(µ− λ)m

m!
(−1)n+m

(
∂

∂µ

)n+m

f(µ) ∈ C.

5.The main result. Let φ• ∈Wκ(L1
κ(R+)) be the map defined by (2.1)

and let E be a Banach space. For every operator T ∈ L(L1
κ(R+);E) consider

the E-valued function Tφ• : λ→ Tφλ defined on (ω,∞). The following the-
orem extends to continuous submultiplicative weight functions κ satisfying
condition (1.1) the result proved earlier for κ(t) = eωt by B. Hennig and
F. Neubrander in [H-N], Lemma 2.3 and Theorem 2.5.

Theorem 5.1. The map T → Tφ• is an isometric isomorphism of the

space of operators L(L1
κ(R+);E) onto the Widder space Wκ(E).

P r o o f. Clearly, T → Tφ• is a linear operator from L(L1
κ(R+);E) into

Wκ(E) with norm no greater than 1. Therefore Theorem 1 will follow once
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it is shown that for every f ∈ Wκ(E) there is a unique T ∈ L(L1
κ(R+);E)

such that

(5.1) ‖T‖L(L1
κ

(R+);E) ≤ ‖f‖Wκ(E)

and

(5.2) Tφλ = f(λ) for every λ ∈ (ω,∞).

The uniqueness of T satisfying (5.2) follows at once from Lemma 2.1.

The existence will follow once for every f ∈ Wκ(E) and every µ ∈ R
+

we construct Tµ ∈ L(L1
κ
(R+);E) such that

(5.1)µ ‖Tµ‖L(L1
κ

(R+);E) ≤ Kµ‖f‖Wκ(E)

and

(5.2)µ Tµφλ = θµf(ω + θµ(λ− ω)) for every λ ∈ (ω,∞),

where

Kµ = sup
t∈R+

(κ0(t))
−1µ

n+1

n!

∥∥∥∥
(
∂

∂µ

)n

φµ+ω

∥∥∥∥
1,κ

∣∣∣∣
n=[µt]

and

θµ =
µ

λ− ω
(1 − e(ω−λ)/µ).

Indeed, limµ→∞ θµ = 1, so that by (5.2)µ,

(5.3) lim
µ→∞

Tµφλ = f(λ) for every λ ∈ (ω,∞),

in the norm of E. Furthermore, limµ→∞Kµ = 1, by (2.2), and hence (5.1)
implies

(5.4) lim sup
µ→∞

‖Tµ‖L(L1
κ

(R+);E) ≤ ‖f‖Wκ(E).

Since, by Lemma 2.1, the set {φλ : λ ∈ (ω,∞)} is linearly dense in L1
κ(R+),

from (5.3) and (5.4) it follows that limµ→∞ Tµ = T exists in the strong
operator topology of L(L1

κ(R+);E). Also from (5.3) and (5.4) it follows
that T satisfies (5.1) and (5.2).

To construct Tµ satisfying (5.1)µ and (5.2)µ, fix f ∈Wκ(E) and µ ∈ R
+.

For every t ∈ R
+ put

(5.5) gµ(t) = µeωt (−µ)n

n!
f (n)(ω + µ)|n=[µt].

Then, according to (4.1),

‖gµ(t)‖E ≤ ‖f‖Wκ(E)e
ωtµ

n+1

n!

∥∥∥∥
(
∂

∂µ

)n

φω+µ

∥∥∥∥
1,κ

∣∣∣∣
n=[µt]

(5.6)

= ‖f‖Wκ(E)e
ωtKµκ0(t) = Kµ‖f‖Wκ(E)κ(t)
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for every t ∈ R+. Furthermore, the E-valued function t→ gµ(t) is piecewise
continuous on R

+. Therefore, by (5.6), the formula

(5.7) Tµϕ =

∞\
0

ϕ(t)gµ(t) dt, ϕ ∈ L1
κ
(R+),

in which the integral is understood in the sense of Bochner, determines an
operator Tµ ∈ L(L1

κ
(R+);E) satisfying (5.1)µ. To check (5.2)µ, take any

λ ∈ (ω,∞). Since, for every n = 0, 1, . . . ,

µ(−µ)n

(n+1)/µ\
n/µ

e(ω−λ)t dt =
µ(−µ)n

λ− ω
(1 − e(ω−λ)/µ)e(ω−λ)n/µ

= θµ(−µe(ω−λ)/µ)n,

and since |−µe(ω−λ)/µ| < µ, from (5.5), (5.7) and Lemma 4.1 it follows that

Tµφλ = µ

∞∑

n=0

( (n+1)/µ\
n/µ

e(ω−λ)t dt
) (−µ)n

n!
f (n)(ω + µ)

= θµ

∞∑

n=0

(−µe(ω−λ)/µ)n

n!
f (n)(ω + µ)

= θµf(ω + µ− µe(ω−λ)/µ) = θµf(ω + θµ(λ− ω)).

Thus (5.2)µ is satisfied.

The main idea of the above proof is similar to one of the proof of Theo-
rem 2.5 in [H-N]. The difference lies in another choice of the approximating
operators: the operators (5.7) defined by means of the functions (5.5) replace

the operators T̃k : L1(R+) ∋ ϕ →
T∞
0
ϕ(t)g̃k(t) dt ∈E defined on p. 160 of

[H-N] by means of the functions

(5.8) g̃k(t) =
(−1)k

k!

(
k

t

)k+1

f (k)

(
k

t

)
, t ∈ R

+, k = 1, 2, . . .

In the scalar case the functions (5.8) occur in the Post–Widder inversion
formula for the Laplace transform, and in the “general representation the-
orem” of Widder (Theorem 11a of Chapter VII of [W;I], p. 303). If ω = 0,
κ ≡ 1, X is a Banach space, E = L(X), and R

+ ∋ λ→ f(λ) = Rλ ∈ L(X)
is the resolvent of a bounded C0 semigroup (St)t∈R+ ⊂ L(X), then

(i) g̃k(t) =
(

k
tRk/t

)k+1
for t ∈ R

+ and k = 1, 2, . . . , which is related to
the E. Hille approximation formula
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(5.9) lim
k→∞

sup
t∈[0,b]

∥∥∥∥
(
k

t
Rk/t

)k

x− Stx

∥∥∥∥
X

= 0

for all x ∈ X and b ∈ R
+,

(ii) gµ(t) = (µRµ)[µt]+1 for t ∈ R+ and µ ∈ R
+, so that

(5.10) lim
µ→∞

sup
t∈[0,b]

‖(µRµ)[µt]+1x− Stx‖X = 0

for all x ∈ X and b ∈ R
+ (by Theorem 3.6 of [K;II], Sec. IX.3.3, or Theorem

6.5 of [E-K], p. 31, or Theorem 6.7 of [P], p. 96).

The formula (5.9) is related to E. Hille’s proof of the Hille–Yosida
generation theorem (see [H], p. 238; [H-P], p. 362; [K;II], Sec. IX.1.2;
[P], pp. 33–35). The formula (5.10) is related to the “implicit scheme”
of the finite difference approximation to the solutions of the ACP ([Kr],
pp. 350–351), and was used by H. Trotter in his proof of the Trotter–Kato
approximation theorem for C0 semigroups ([T]; [Y;II], pp. 270–271). In [B]
a formula analogous to (5.5) and (5.8) has the form

(5.11) ˜̃gµ(t) = −e−µt
∞∑

n=0

(−µ2t)n+1

n!(n+ 1)!
f (n)(µ).

The expression on the right side of (5.11) occurs in R. S. Phillips’ [P] inver-
sion formula for the Laplace transform. See [H-P], p. 221, Theorem 6.6.3. If
X is a Banach space and R

+ ∋ λ → f(λ) = Rλ ∈ L(X) is the resolvent of
a bounded C0 semigroup (St)t∈R+ ⊂ L(X), then

(iii) ˜̃gµ(t) + e−µt = e−µt
∑∞

n=0
tn

n! (µ
2Rµ)n = exp t(µ2Rµ − µ) and

(5.12) lim
µ→∞

sup
t∈[0,b]

‖[exp t(µ2Rµ − µ)]x− Stx‖X = 0

for all b ∈ R
+ and x ∈ X, according to the approximation formula of

K. Yosida ([Y;II], Remark on p. 248; [E-K], p. 14, Proposition 2.7;
[P], p. 21, Theorem 5.5).

K. Yosida’s famous proof [Y;I] of the Hille–Yosida generation theorem
is related to the approximation (5.12). See [Y;II], pp. 246–249; [H-P],
pp. 361–362; [D], pp. 48–51; [D-M;C], p. 312; [D-S;I], Sec. VIII.1, Theo-
rem 13; [G], p. 18; [S-K], pp. 304–307; [P], pp. 8–11.

6. Complete monotonicity and positivity. Let E be a Banach
space and let C ⊂ E be a closed convex cone. As in Lemma 4.4, an E-valued
infinitely differentiable function f defined on (ω,∞) is called C-completely
monotonic if (−1)nf (n)(λ) ∈ C for every n = 0, 1, . . . and λ ∈ (ω,∞). An
operator T ∈ L(L1

κ(R+);E) will be called C-positive if Tϕ ∈ C for every
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real positive ϕ ∈ L1
κ(R+). Let T → Tφ• be the isometric isomorphism of

L(L1
κ(R+);E) onto Wκ(E) appearing in Theorem 5.1.

Theorem 6.1. Let E be a Banach space and let C ⊂ E be a closed convex

cone. Then the isomorphism T → Tφ• maps the cone of C-positive oper-

ators in L(L1
κ
(R+);E) onto the cone of C-completely monotonic elements

of Wκ(E).

P r o o f. Since φ• is an (L1
κ(R+))+-completely monotonic element of

Wκ(L1
κ(R+)), it follows that if T ∈ L(L1

κ(R+);E) is C-positive, then Tφ• ∈
Wκ(E) is C-completely monotonic. It remains to show that if f ∈ Wκ(E)
is C-completely monotonic then there is a C-positive T ∈ L(L1

κ(R+);E)
such that f = Tφ•. To this end, let us refer to the proof of Theorem 5.1.
Consider the functions gµ : R

+ → E defined by (5.5) and the operators Tµ

defined by (5.7). If f ∈ Wκ(E) is C-completely monotonic, then gµ(t) ∈ C
for every µ ∈ R

+, so that the operator Tµ is C-positive for every µ ∈ R
+.

Since the cone C closed, it follows that the strong limit T = limµ→∞ Tµ is
also C-positive.

7. Corollaries to Theorem 5.1. Let “a.e.” mean “almost every” or
“almost everywhere” in the sense of the one-dimensional Lebesgue measure.

Corollary 7.1 (D. V. Widder). A function f : (ω,∞) → K belongs to

Wκ(K) if and only if there is a function h ∈ L∞(R+) such that

∞\
0

e−λth(t)κ(t) dt = f(λ) for every λ ∈ (ω,∞).

For every f ∈Wκ(K) such a function h is unique up to equality a.e. on R
+,

and

ess sup
t∈R+

|h(t)| = ‖f‖Wκ(K).

P r o o f. By Theorem 5.1, f ∈ Wκ(K) if and only if there is a unique
continuous linear functional T on L1

κ(R+) such that ‖T‖ = ‖f‖Wκ(K) and
Tφλ = f(λ) for every λ ∈ (ω,∞). By the F. Riesz representation theo-
rem ([D-S;I], Sec. IV.8, Theorem 5; [S-K], p. 156, Corollary 6.1.1; [Y;II],
p. 115, Example 3) for every continuous linear functional T on L1

κ
(R+)

there is a unique element h of L∞(R+) such that ess supt∈R+ |h(t)| = ‖T‖
and

T∞
0
ϕ(t)h(t)κ(t) dt = Tϕ for every ϕ ∈ L1

κ
(R+). By Lemma 2.1, this

yields the assertion.

If ω = 0 and κ ≡ 1 then Corollary 7.1 coincides with Widder’s char-
acterization of the Laplace transform of an element of L∞(R+), given in
Theorems 16a and 16b of [W;I], pp. 315–316, and Theorem 8 of [W;II],
p. 157. Theorem 5.1 may be viewed as a generalization of this last result of
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Widder to functions with values in a Banach space E. For this reason we
call Wκ(E) the Widder space. Theorem 5.1, Proposition 3.1 and equality
(3.8) yield the following

Corollary 7.2 (W. Arendt; B. Hennig and F. Neubrander). Let f be

a function defined on (ω,∞) with values in a Banach space E. Then the

following four conditions are equivalent :

(a) f ∈Wκ(E),

(b) there is a unique operator T ∈ L(L1
κ
(R+);E) such that f = Tφ•,

(c) there is a unique measure G ∈Mκ(E) such that

f(λ) =

∞\
0

e−λtG(dt) for every λ ∈ (ω,∞),

(d) there is a unique function g ∈ Lipκ(R+;E) such that

f(λ) = λ

∞\
0

e−λtg(t) dt for every λ ∈ (ω,∞).

If the above equivalent conditions are satisfied , then

G(B) = T1B for every B ∈ R,

g(t) = T1(0,t] for every t ∈ R+
,

and

‖f‖Wκ(E) = ‖T‖L(L1
κ

(R+);E) = ‖G‖Mκ (E) = ‖g‖Lip
κ

(R+;E).

The equivalence (a)⇔(d) of Corollary 7.2 was discovered by W. Arendt
in his well known paper [A], and appeared to be a crucial result for the the-
ory of integrated semigroups of operators. Theorem 1.1 and Corollary 1.2
of [A], pp. 329–330, are concerned with κ ≡ 1 and κ(t) = eωt. B. Hen-
nig and F. Neubrander in [H-N] have deduced the result of Arendt from
theorems about operators from L1(R+) into E. Our Proposition 3.1 and
Theorem 5.1 follow [H-N]. For κ(t) = (1 + t)k the equivalence (a)⇔(d) was
established in [deL-H-W-W], p. 194, Theorem 2.6, without proving that
‖g‖Lip

κ

= ‖f‖Wκ
. In [A], [H-N] and [deL-H-W-W] difficult classical results

are exploited: in [A]—the Widder characterization of the Laplace transform
of an element of L∞(R+); in [H-N]—the “general representation theorem”
of Widder, adapted in Lemma 2.2, p. 157, to functions with values in a
Banach space; in [deL-H-W-W]—the Bernstein theorem about completely
monotonic functions, used in the proof of Lemma 2.2, p. 191.

If E is a Banach space then L∞(R+;E) denotes the space of the equiv-
alence classes of those functions h : R

+ → E which are strongly Lebesgue
measurable and essentially bounded on R

+. Equipped with the norm ‖h‖∞
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=ess supt∈R+ ‖h(t)‖E , L∞(R+;E) is a Banach space. In the following lemma
all the integrals of E-valued functions are understood in the Bochner sense.

Lemma 7.3. Let E be a Banach space. The following four properties of

E are equivalent :

(i) f ∈Wκ(E) if and only if there is h ∈ L∞(R+;E) such that f(λ) =T∞
0
e−λt

κ(t)h(t) dt for every λ ∈ (ω,∞),

(ii) for every g ∈ Lipκ(R+;E) there is h ∈ L∞(R+;E) such that g(t) =Tt
0

κ(u)h(u) du for every t ∈ R+,

(iii) for every g ∈ Lipκ(R+;E) the Fréchet derivative Dg(t) exists for

a.e. t ∈ R+,
(iv) for every uniformly lipschitzian function g : [0, 1] → E the Fréchet

derivative Dg(t) exists for a.e. t ∈ [0, 1],
(v) for every absolutely continuous function g : [0, 1] → E the Fréchet

derivative Dg(t) exists for a.e. t ∈ [0, 1].

P r o o f. By integration by parts, the equality in (i) is equivalent to

f(λ) = λ
T∞
0
e−λt[

Tt
0

κ(u)h(u) du] dt for every λ ∈ (ω,∞). Hence (i)⇔(ii)
follows from (a)⇔(d) of Corollary 7.2 by the invertibility of the Laplace
transform. (ii)⇒(iii) follows from Theorem 8 in Sec. III.12 of [D-S;I], or
from Theorem 2 in [Y;II], p. 134, concerning differentiation of a Bochner
integral.

If (iii) holds then there is an h ∈ L∞(R+;E) such that Dg(t) = κ(t)h(t)

for a.e. t ∈ R+. Let g̃(t) =
Tt
0

κ(u)h(u) dt. The functions g and g̃ are locally

uniformly lipschitzian on R+, g(0) = g̃(0) = 0 andDg(t) = κ(t)h(t) = Dg̃(t)
for a.e. t ∈ R

+, again by the theorem about differentiation of a Bochner
integral. By Theorem 8.18 of [R;II], it follows that l(g(t) − g̃(t)) = 0 for
every t ∈ R+ and every linear functional l ∈ E∗. Hence g = g̃ by the
Hahn–Banach theorem, proving (iii)⇒(ii).

(iii)⇔(iv) is a consequence of the fact that for any b ∈ R
+ the restric-

tion g|[0,b] of g ∈ Lipκ(R+;E) may be an arbitrary uniformly Lipschitzian
E-valued function on [0, b]. (v)⇒(iv) is obvious.

Finally, (iv)⇒(v) is a consequence of the Lebesgue theorem about dif-
ferentiability a.e. of a scalar absolutely continuous function ([R;II], The-
orem 8.18). Indeed, suppose that g : [0, 1] → E is absolutely continuous

and let v(t) = t + supπ

∑n(π)
i=1 ‖g(ti)) − g(ti−1)‖E , the supremum being

taken over all partitions π : 0 = t0 < t1 < . . . < tn(π) = t of [0, t].

Then v : [0, 1] → R+ is increasing and absolutely continuous, and v−1 :
[0, v(1)] → [0, 1] and g̃ = g ◦ v−1 : [0, v(1)] → E are uniformly lipschitzian.
By the Lebesgue theorem, the derivative Dv(t) exists for every t ∈ [0, 1]\N ,
where N is a null set for the Lebesgue measure. If (iv) holds, then the
Fréchet derivative Dg̃(u) exists for every u ∈ [0, v(1)] \ M , where M is
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a null set. Hence the Fréchet derivative Dg(t) = Dg̃(v(t)) · Dv(t) exists
for every t ∈ [0, 1] \ (N ∪ v−1(M)). Since v−1 is uniformly lipschitzian,
v−1(M) is a null set. Hence the Fréchet derivative Dg(t) exists for a.e.
t ∈ [0, 1].

According to the definition given in [D-U], pp. 106–107, a Banach space
E is called a Gelfand space if the condition (v) from Lemma 7.3 is satisfied.
A Banach space is a Gelfand space if and only if it has the Radon–Nikodym
property (5).

Corollary 7.4 ([A], Theorem 1.4, p. 331). Corollary 7.1 remains true

for functions taking values in a Banach space E if and only if E is a Gelfand

space.

Let X denote a Banach space. Applications of Corollary 7.2 in the the-
ory of operator semigroups and integrated semigroups are concerned with
E=L(X), the Banach algebra of continuous linear endomorphisms of X. In
this connection consider a bounded C0 semigroup (s(t))t∈R+ ⊂ L(X). Then

for every t ∈ R+ there is an operator g(t) ∈ L(X) such that

g(t)x =

t\
0

s(u)x du for every x ∈ X.

The L(X)-valued function t→ g(t) belongs to Lipκ(R+;L(X)) for κ ≡ 1.

Lemma 7.5. If for a.e. t ∈ R+ the derivative Dg(t) exists in the norm

topology of L(X), then the semigroup (s(t))t∈R+ is continuous on the open

halfaxis R
+ in this topology.

P r o o f. The assumptions imply that

lim
n→∞

‖n(g(t+ 1/n) − g(t)) − s(t)‖ = 0 for a.e. t ∈ R+,

whence it follows that the L(X)-valued function t → s(t) is strongly mea-
surable on R+ with respect to the Lebesgue measure ([Y;II], p. 130). From
now on we follow an argument of N. Dunford [D]. (See [D-S;I], Sec. VIII.1,
proof of Lemma 3; [H-P], p. 305, Th. 10.2.3; [Y;II], p. 234). Fix any t0 ∈ R

+

and put d = 1
2
t0. Then

(∗) ‖s(t0 + h)− s(t0)‖ = ‖s(t0 − t)[s(t+ h)− s(t)]‖ ≤M‖s(t+ h)− s(t)‖

for all t ∈ [d, 2d] and h ∈ [−d, d], where M = supt∈R+ ‖s(t)‖. The strong
Lebesgue measurability of the bounded L(X)-valued function t → s(t) im-
plies that for any fixed h ∈ [−d, d] the bounded positive function t →

(5) In [D-U], the Radon–Nikodym property is defined on p. 61, and its equivalence
with the Gelfand property is not stated explicitly, but follows from Theorem 2 on p. 107,
Theorem 7 on p. 136, and Corollary 8 on p. 138.
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‖s(t+ h) − s(t)‖ is Lebesgue measurable on [d, 2d] and

lim
h→0

2d\
d

‖s(t+ h) − s(t)‖ dt = 0.

(See [H-P], p. 86, Theorem 3.83.) The estimate (∗) implies that

‖s(t0 + h) − s(t0)‖ ≤
M

d

2d\
d

‖s(t+ h) − s(t)‖ dt whenever h ∈ [−d, d].

Corollary 7.6. If X is a Banach space such that there exists a C0

semigroup (s(t))t∈R+ ⊂ L(X) which is not continuous on R
+ in the norm

topology of L(X), then L(X) is not a Gelfand space.

8. Convolution and the semigroup of right translations in

L1
κ(R+). This section contains some basic material needed in the sequel.

The proofs are standard and are included only for completeness.

8.1. Convolution in L1
κ
(R+). Let ϕ and ψ be elements of L1

κ
(R+) rep-

resented by functions ϕ0 and ψ0. Then the function (s, t) → ϕ0(s)ψ0(t− s)
is Lebesgue measurable on ∆ = {(s, t) ∈ R

2 : 0 < s < t < ∞}. By submul-
tiplicativity of κ, and by the Fubini–Tonelli theorem,

(8.1)
\\
∆

|ϕ0(s)ψ0(t− s)|κ(t) ds dt

≤
\\
∆

|ϕ0(s)ψ0(t− s)|κ(s)κ(t− s) ds dt

=

∞\
0

|ϕ0(s)κ(s)|
[∞\

s

|ψ0(t− s)κ(t− s)| dt
]
ds

= ‖ϕ‖1,κ‖ψ‖1,κ <∞,

so that the set

N =
{
t ∈ R

+ :

t\
0

|ϕ0(s)ψ0(t− s)| ds = ∞
}

has one-dimensional Lebesgue measure zero. Again by the Fubini–Tonelli
theorem, it follows that

t→ η(t) = 1R+\N (t)

t\
0

ϕ0(s)ψ0(t− s) ds = 1R+\N (t)

t\
0

ϕ(s)ψ(t − s) ds

is a finite-valued function Lebesgue measurable on R
+ such that

∞\
0

|η(t)|κ(t) dt =
\\
∆

|ϕ0(s)ψ0(t− s)|κ(t) ds dt ≤ ‖ϕ‖1,κ‖ψ‖1,κ .
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The element of L1
κ(R+) represented by η depends only on ϕ and ψ, is de-

noted by ϕ ∗ ψ, and is called the convolution of ϕ and ψ. Evidently,

(8.2) ‖ϕ ∗ ψ‖1,κ ≤ ‖ϕ‖1,κ‖ψ‖1,κ

and

(8.3) ϕ ∗ ψ = ψ ∗ ϕ

for all ϕ and ψ in L1
κ
(R+). Furthermore,

(8.4) (ϕ ∗ ψ) ∗ ζ = ϕ ∗ (ψ ∗ ζ)

for all ϕ, ψ and ζ in L1
κ
(R+). Indeed, if ϕ, ψ and ζ are represented by

functions ϕ0, ψ0 and ζ0 then, similarly to the case of N , the set

M =
{
t ∈ R

+ :

t\
0

(|ϕ0| ∗ |ψ0|)(s)|ζ0(t− s)| ds = ∞
}

has one-dimensional Lebesgue measure zero. Furthermore, for every t ∈
R

+\M the function (r, s) → ϕ0(r)ψ0(s− r)ζ0(t− s) is Lebesgue measurable
on ∆t = {(r, s) ∈ R

2 : 0 < r < s < t}, and by the Fubini–Tonelli theorem,\\
∆t

|ϕ0(r)ψ0(s− r)ζ0(t− s)| dr ds =

t\
0

(|ϕ0| ∗ |ψ0|)(s)|ζ0(t− s)| ds <∞.

Thus, again by the Fubini–Tonelli theorem, if t ∈ R
+\M , then

t\
0

[ϕ ∗ ψ](s)ζ(t− s) ds =

t\
0

[ s\
0

ϕ0(r)ψ0(s− r) dr
]
ζ0(t− s) ds

=
\\
∆t

ϕ0(r)ψ0(s− r)ζ0(t− s) dr ds

=

t\
0

ϕ0(r)
[ t\

r

ψ0(s − r)ζ0(t− s) ds
]
dr

=

t\
0

ϕ0(r)
[ t−r\

0

ψ0(u)ζ0(t− r − u) du
]
dr

=

t\
0

ϕ(r)[ψ ∗ ζ](t− r) dr,

which yields (8.4).
It is obvious that the convolution operator ∗ : L1

κ
(R+) × L1

κ
(R+) →

L1
κ
(R+) is bilinear. Hence conditions (8.2), (8.3) and (8.4) mean that

L1
κ
(R+) is a convolution Banach algebra.

8.2. Right translations in L1
κ(R+). If ϕ0 is a function on R

+ then for
every t ∈ R+ the right translate of ϕ0 by t is, by definition, the function ϕ0

t
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on R
+ such that

ϕ0
t (s) =

{
0 if s ∈ (0, t],
ϕ0(s − t) if s ∈ (t,∞).

If t ∈ R+ and ϕ is an element of L1
κ(R+) represented by a function ϕ0,

then
∞\
0

|ϕ0
t (s)|κ(s) ds =

∞\
t

|ϕ0(s− t)|κ(s) ds =

∞\
0

|ϕ0(u)|κ(t+ u) du

≤ κ(t)

∞\
0

|ϕ0(u)|κ(u) du = κ(t)‖ϕ‖1,κ ,

so that there is a unique element ϕt of L1
κ
(R+) represented by ϕ0

t . This
element ϕt depends only on ϕ and t, and is called the right translate of ϕ
by t. The preceding estimate shows that

‖ϕt‖1,κ ≤ κ(t)‖ϕ‖1,κ

for all ϕ ∈ L1
κ(R+) and t ∈ R+. As a consequence, for every t ∈ R

+ the

operator Ut of right translation by t, i.e. the operator Ut : ϕ → ϕt, belongs
to L(L1

κ(R+)) and

(8.5) ‖Ut‖L(L1
κ

(R+)) ≤ κ(t).

The right translation operators constitute a one-parameter semigroup. Since
the set {1(0,a] : a ∈ R

+} is linearly dense in L1
κ
(R+) and

‖Ut1(0,a] − 1(0,a]‖1,κ = ‖1(a,a+t] − 1(0,t]‖1,κ ≤
( a+t\

a

+

t\
0

)
κ(u) du,

it follows by (8.5) that

(8.6) lim
t↓0

‖Utϕ− ϕ‖1,κ = 0

for every ϕ ∈ L1
κ
(R+). Conditions (8.5) and (8.6) imply that for every

ϕ ∈ L1
κ
(R+) the map R+ ∋ t → Utϕ ∈ L1

κ
(R+) is continuous in the norm

of L1
κ(R+) (see [Y;II], p. 233; [D], p. 13; [G], p. 22, Exercise 2.18.1). Hence

(Ut)t∈R+ ⊂ L(L1
κ(R+)) is a C0 semigroup.

8.3. Convolution in L1
κ
(R+) as a Bochner integral. If ϕ and ψ are in

L1
κ
(R+), and ϕ is represented by a function ϕ0, then the L1

κ
(R+)-valued

function R
+ ∋ t → ϕ0(t)Utψ ∈ L1

κ
(R+) is strongly Lebesgue measurable

[Y;II; p. 130], and, by (8.5),
∞\
0

|ϕ(t)| ‖Utψ‖1,κ dt ≤

∞\
0

|ϕ(t)|κ(t)‖ψ‖1,κ dt = ‖ϕ‖1,κ‖ψ‖1,κ .

Hence the Bochner integral
T∞
0
ϕ(t)Utψ dt exists.
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Lemma 8.3.1. If ϕ and ψ are in L1
κ(R+), then ϕ ∗ ψ =

T∞
0
ϕ(t)Utψ dt,

the integral (of the equivalence class of L1
κ(R+)-valued functions) being un-

derstood in the sense of Bochner.

P r o o f. It is sufficient to show that

(8.7)
\
B

[∞\
0

ϕ(t)Utψ dt
]
(s) ds =

\
B

(ϕ ∗ ψ)(s) ds

for all ϕ and ψ in L1
κ
(R+) and for every bounded Lebesgue measurable

subset B of R
+. Since ϕ →

T
B
ϕ(s) ds is a continuous linear functional on

L1
κ
(R+), by Corollary 2 of [Y;II], p. 134, it follows that\

B

[∞\
0

ϕ(t)Utψ dt
]
(s) ds =

∞\
0

ϕ(t)
[ \

B

[Utψ](s) ds
]
dt(8.8)

=

∞\
0

ϕ(t)
[ \

B

ψt(s) ds
]
dt.

Let ϕ0 and ψ0 be any functions representing ϕ and ψ. Then the function
(t, s) → ϕ0(t)ψ0(s − t)1B(s) is Lebesgue measurable on ∆ = {(t, s) : 0 <
t < s <∞}, and by the Fubini–Tonelli theorem,\\

∆

|ϕ0(t)ψ0(s− t)|1B(s) ds dt =
\
B

[ s\
0

|ϕ0(t)ψ0(s− t)| dt
]
ds

≤ ( inf
s∈B

κ(s))−1‖|ϕ| ∗ |ψ|‖1,κ

≤ ( inf
s∈B

κ(s))−1‖ϕ‖1,κ‖ψ‖1,κ <∞.

Hence, again by the Fubini–Tonelli theorem,

∞\
0

ϕ(t)
[ \

B

ψt(s) ds
]
dt =

∞\
0

ϕ0(t)
[∞\

t

ψ0(s− t)1B(s) ds
]
dt(8.9)

=
\\
∆

ϕ0(t)[ψ0(s− t)1B(s)] ds dt

=

∞\
0

1B(s)
[ s\

0

ϕ0(t)ψ0(s− t) dt
]
ds

=
\
B

(ϕ ∗ ψ)(s) ds.

The equality (8.7) follows from (8.8) and (8.9).
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Corollary 8.3.2. If ϕ ∈ L1
κ(R+) and t ∈ R+, then

t\
0

Usϕds =

∞\
0

1(0,t](s)Usϕds = 1(0,t] ∗ ϕ,

where the function R+ ∋ s → Usϕ ∈ L1
κ(R+) is continuous in the norm of

L1
κ(R+). Hence

(8.10) Utϕ =
d

dt
[1(0,t] ∗ ϕ]

for all t ∈ R+ and ϕ ∈ L1
κ(R+), the derivative being computed in the norm

of L1
κ
(R+).

8.4. A bounded approximate unit in L1
κ(R+). As a consequence of Lem-

ma 8.3.1,

(8.11)

∞\
0

e−λtUtϕdt = φλ ∗ ϕ

for all λ ∈ (ω,∞) and ϕ ∈ L1
κ
(R+), which means that the map (ω,∞) ∋ λ→

φλ∗ ∈ L(L1
κ
(R+)) is the resolvent of the semigroup (Ut)t∈R+ ⊂ L(L1

κ
(R+)).

Since this semigroup is of class C0, its resolvent is regular ([D-M;C], p. 310),
that is,

(8.12) lim
λ→∞

‖λφλ ∗ ϕ− ϕ‖1,κ = 0

for every ϕ ∈ L1
κ(R+). Furthermore, from continuity of the map (2.1), and

from (2.3), it follows that

(8.13) sup
λ∈[ω+ε,∞)

‖λφλ‖1,κ <∞

for every ε > 0. Conditions (8.12) and (8.13) mean that, for every ε > 0,
the net (λφλ)λ∈[ω+ε,∞) is a bounded approximate unit ([H-R;II], p. 87;
[Pal], p. 520) in the commutative convolution Banach algebra L1

κ
(R+).

9. Homomorphisms of the convolution algebra L1
κ(R+) into a

Banach algebra A and pseudoresolvents in Wκ(A). Let A be a Banach
algebra. A pseudoresolvent defined on (ω,∞) and taking values in A is by
definition a map r : (ω,∞) → A satisfying the resolvent equation

(9.1) r(λ) − r(µ) = (µ− λ)r(λ)r(µ)

for all λ and µ in (ω,∞). It is easy to see that the range of a pseudoresolvent
consists of mutually commuting elements of A, and if r(λ) = 0 for some
λ ∈ (ω,∞), then r vanishes identically on (ω,∞). An application of the
Neumann series shows that every pseudoresolvent r : (ω,∞) → A is a real
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analytic A-valued function on (ω,∞) such that

(9.2)

(
∂

∂λ

)n

r(λ) = (−1)nn![r(λ)]n+1

for all λ ∈ (ω,∞) and n = 1, 2, . . . (See [H-P], Sec. 5.8; [D-S;II], Sec. IX.1;
[D-M;C], Sec. XII.5; [Y], Sec. VII.4.) If r : (ω,∞) → A is a pseudoresolvent
then, by (9.1),

‖r(µ)‖ = lim
λ→∞

∥∥∥∥λr(λ)

[
1

λ
+
λ− µ

λ
r(µ)

]∥∥∥∥ ≤ ‖r(µ)‖ lim inf
λ→∞

λ‖r(λ)‖

for every µ ∈ (ω,∞). Thus, if r : (ω,∞) → A is a non-vanishing pseu-
doresolvent, then lim infλ→∞ λ‖r(λ)‖ ≥ 1. From this, by (2.3) and (4.1), it
follows that if r ∈ Wκ(A) and r is a non-vanishing pseudoresolvent, then
‖r‖Wκ(A) ≥ 1.

A direct computation (or an application of (8.11)) shows that

(9.3) the map (2.1), i.e. the map φ• : (ω,∞) ∋ λ → φλ ∈ L1
κ(R+) is

a pseudoresolvent with values in the convolution Banach algebra
L1

κ
(R+).

From (9.2), (4.1) and Lemma 4.2 it follows that if r ∈Wκ(A) and r is a
pseudoresolvent, then

‖r‖Wκ(A) = sup

{
‖[r(λ)]n‖A

‖φ∗n
λ ‖1,κ

: λ ∈ (ω,∞), n = 1, 2, . . .

}
(9.4)

= lim
λ→∞

sup
n=1,2,...

‖[r(λ)]n‖A

‖φ∗n
λ ‖1,κ

.

Let Hom(L1
κ
(R+);A) denote the set of all continuous homomorphisms

of the convolution Banach algebra L1
κ
(R+) into a Banach algebra A. If

T ∈ Hom(L1
κ(R+);A), then ‖Tϕ‖ = limλ→∞ ‖Tλφλ · Tϕ‖ ≤ ‖T‖ · ‖Tϕ‖ for

every ϕ ∈ L1
κ(R+), by (8.12) and (2.3). Hence if 0 6= T ∈ Hom(L1

κ(R+);A),
then ‖T‖L(L1

κ
(R+);A) ≥ 1. From (9.3) it follows that

(9.5) if T ∈ Hom(L1
κ(R+);A), then Tφ• : (ω,∞) ∋ λ → Tφ• ∈ A is a

pseudoresolvent with values in A.

Theorem 9.1. Let A be a Banach algebra. For every map r : (ω,∞) →
A the following two conditions are equivalent :

(a) r is a pseudoresolvent and r ∈Wκ(A),
(b) there is T ∈ Hom(L1

κ(R+);A) such that r = Tφ•.

If these conditions are satisfied then there is exactly one T satisfying (b),
and ‖T‖L(L1

κ
(R+);A) = ‖r‖Wκ(A).

P r o o f. According to Theorem 5.1, the map T → Tφ• is an isometry of
L(L1

κ(R+);A) onto Wκ(A). It remains to prove that T ∈Hom(L1
κ(R+);A) if
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and only if Tϕ• is a pseudoresolvent. The “only if” part is (9.5).Now suppose
that T ∈ L(L1

κ(R+);A) and Tφ• is a pseudoresolvent. Let λ ∈ (ω,∞),
µ ∈ (ω,∞), λ 6= µ. Then

T (φλ ∗ φµ) = T

(
1

µ− λ
[φλ − φµ]

)
=

1

µ− λ
[Tφλ − Tφµ]

because φ• is a pseudoresolvent, whence T (φλ ∗ φµ) = Tφλ · Tφµ, because
Tφ• is a pseudoresolvent. Thus, by continuity,

T (ϕ ∗ ψ) = Tϕ · Tψ

for all ϕ and ψ in {φλ : λ ∈ (ω,∞)}. By bilinearity and density (Lemma
2.1), this remains true for all ϕ and ψ in L1

κ(R+).

Corollary 9.2. Suppose that C is a closed convex cone in a Banach

algebra A such that C · C ⊂ C. Let T ∈ Hom(L1
κ(R+);A). Then Tϕ ∈ C

for every positive ϕ ∈ L1
κ(R+) if and only if Tφλ ∈ C for every λ ∈ (ω,∞).

P r o o f. If Tφλ ∈ C for every λ ∈ (ω,∞), then (Tφλ)n ∈ C for all
λ ∈ (ω,∞) and n = 1, 2, . . . because C ·C ⊂ C. By (9.2), it follows that the
map Tφ• : (ω,∞)→ A is C-completely monotonic. Hence, by Theorem 6.1,
the operator T is C-positive.

10. Representations of the convolution algebra L1
κ
(R+) and

one-parameter semigroups of operators. LetX be a Banach space, and
L(X) the Banach algebra of continuous linear operators from X into X. Let
L(L1

κ(R+);L(X)) be the Banach space of linear operators from L1
κ(R+) into

L(X) continuous with respect to the norm topologies of L1
κ(R+) and L(X).

By the uniform boundedness principle, a linear map T : L1
κ(R+) → L(X)

belongs to L(L1
κ(R+);L(X)) if and only if the bilinear map L1

κ(R+)×X ∋
(ϕ, x) → T (ϕ)x ∈ X is continuous with respect to the norm topologies of
L1

κ
(R+) and X.

A continuous representation of the convolution algebra L1
κ
(R+) on a

Banach space X is, by definition, an element of Hom(L1
κ
(R+);L(X)), i.e.

an operator T in L(L1
κ(R+);L(X)) such that T (ϕ ∗ψ) = T (ϕ) ·T (ψ) for all

ϕ and ψ in L1
κ(R+).

According to Section 8.4, the convolution Banach algebra L1
κ(R+) has a

bounded approximate unit. Hence the Cohen–Hewitt factorization theorem
([H-R;II], p. 268, Theorem 32.22; [Pal], p. 535, Theorem 5.2.2) implies that
whenever X is a Banach space and T ∈ Hom(L1

κ
(R+);L(X)), then the set

(10.1) Y = T (L1
κ(R+))X = {T (ϕ)x : ϕ ∈ L1

κ(R+), x ∈ X}

is a closed linear subspace of X. Applying the same factorization theorem
to X = L1

κ(R+) and to T̃ : L1
κ(R+) ∋ ϕ → ϕ∗ ∈ L(L1

κ(R+)) and making
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use of the fact that, by (8.12), L1
κ(R+) ∗ L1

κ(R+) is dense in L1
κ(R+), one

concludes that L1
κ(R+) ∗ L1

κ(R+) = L1
κ(R+). Hence

(10.2) Y = T (L1
κ(R+))Y = {T (ϕ)y : ϕ ∈ L1

κ(R+), y ∈ Y }.

Lemma 10.1. Let T be a continuous representation of the convolution

algebra L1
κ(R+) on a Banach space X, and let Y be defined by (10.1). Then

for every t ∈ R+ and y ∈ Y the derivative d
dt [T (1(0,t])y] exists in the norm

topology of X. Furthermore, whenever

(10.3) y = T (ϕ)x,

where ϕ ∈ L1
κ
(R+) and x ∈ X, then

(10.4)
d

dt
[T (1(0,t])y] = T (Utϕ)x

for every t ∈ R+, where Utϕ is the right translate of ϕ by t.

P r o o f. As a consequence of (8.10), if ϕ ∈ L1
κ(R+) and t ∈ R+, then

T (Utϕ) = d
dt [T (1(0,t])T (ϕ)], the derivative being computed in the norm of

L(X). Hence, if t ∈ R+, y ∈ Y, ϕ ∈ L1
κ
(R+), x ∈ X, and (10.3) is satisfied,

then (10.4) holds with the derivative computed in the norm of X.

Theorem 10.2. Let T be a continuous representation of the convolution

algebra L1
κ
(R+) on a Banach space X, and let Y be the closed linear sub-

space of X defined by (10.1). Let (Ut)t∈R+ be the semigroup of right trans-

lations in L1
κ(R+). Then there is a unique C0 semigroup (St)t∈R+ ⊂ L(Y )

such that

(10.5) StT (ϕ) = T (Utϕ) for every t ∈ R+ and ϕ ∈ L1
κ
(R+).

This unique semigroup satisfies the estimate

(10.6) ‖St‖L(Y ) ≤ κ(t)‖T‖L(L1
κ

(R+);L(X)) for every t ∈ R
+.

P r o o f. Uniqueness. If t ∈ R+, St ∈ L(Y ) and StT (ϕ) = T (Utϕ) for ev-
ery ϕ ∈ L1

κ(R+), then Sty = d
dt [T (1(0,t])y] for every y ∈ Y , by Lemma 10.1.

Existence. By Lemma 10.1, for every t ∈ R+ there is an algebraically
linear operator St : Y → Y such that

(10.7) Sty =
d

dt
[T (1(0,t])y] for every y ∈ Y,

the derivative being computed in the norm topology of X. It follows that

‖Sty‖ = lim
h↓0

1

h
‖T (1(t,t+h])y‖ ≤ ‖T‖

(
lim
h↓0

1

h
‖1(t,t+h]‖1,κ

)
‖y‖ = ‖T‖κ(t)‖y‖,

so that St ∈ L(Y ) and ‖St‖L(Y ) ≤ ‖T‖L(L1
κ

(R+);L(X)) · κ(t). Again from
(10.7), and from Lemma 10.1, it follows that StT (ϕ)x = T (Utϕ)x for all
ϕ ∈ L1

κ(R+) and x ∈ X. Hence (St)t∈R+ ⊂ L(Y ) satisfies (10.5) and (10.6).
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Since every y ∈ Y may be represented in the form (10.3), from (10.5) it
follows that S0 = id |Y and for every y ∈ Y the Y -valued function t → Sty
is continuous on R+ in the norm topology of Y . Finally, whenever t1 ∈ R+,
t2 ∈ R+, y ∈ Y , and ϕ ∈ L1

κ
(R+) and x ∈ X are chosen to satisfy (10.3),

then, by (10.5),

St1St2y = St1St2T (ϕ)x = St1T (Ut2ϕ)x = T (Ut1Ut2ϕ)x

= T (Ut1+t2ϕ)x = St1+t2T (ϕ)x = St1+t2y.

Thus (St)t∈R+ is a C0 semigroup.

Remarks. Without using the Cohen–Hewitt factorization theorem, one
could define Y = spanT (L1

κ
(R+))X and prove Theorem 10.2 by an al-

most unchanged argument. According to W. Chojnacki [C], the semigroup

appearing in Theorem 10.2 may by defined by St = ˜̃T (εt) where εt is the

unit mass at t, ˜̃T = T̃W , T̃ is the extension (of B. E. Johnson’s type)
of T |Y to a representation on Y of the algebra D(L1

κ(R+)) of centraliz-
ers of L1

κ(R+) and W is an isomorphism (of J. G. Wendel’s type) of the
convolution algebra Mκ(K) onto D(L1

κ(R+)). Here Mκ(K) is the set of
signed (if K = R) or complex (if K = C) measures µ on R+ such that
‖µ‖Mκ

=
T
R+ κ(t) |µ|(dt) < ∞. Such an approach to Theorem 10.2 follows

the familiar method of reconstructing a representation of a locally compact
group G from a representation of the group algebra L1(G). See [J], Sec. 9;
[H-R;I], Theorem 22.7; [Pal], Sec. 1.9.13.

Corollary 10.3. Under the assumptions of Theorem 10.2,

(10.8) T (ϕ)T (ψ) = T (ψ)T (ϕ) =

∞\
0

ϕ(t)StT (ψ) dt

for all ϕ and ψ in L1
κ(R+), the integral of the L(X;Y )-valued function

t → ϕ(t)StT (ψ) = ϕ(t)T (Utψ) being taken in the sense of Bochner. As a

consequence,

(10.9) T (ϕ) = lim
λ→∞

T (λφλ ∗ ϕ) = lim
λ→∞

∞\
0

ϕ(t)StT (λφλ) dt

for every ϕ ∈ L1
κ
(R+), the limit being taken in the norm topology of L(X),

and

(10.10) T (ϕ)y =

∞\
0

ϕ(t)Sty dy

for all ϕ ∈ L1
κ(R+) and y ∈ Y , the integral of the Y -valued function t →

ϕ(t)Sty being taken in the sense of Bochner.
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P r o o f. According to Lemma 8.3.1 and (10.5),

T (ϕ)T (ψ) = T (ϕ ∗ ψ) = T
(∞\

0

ϕ(t)Utψ dt
)

=

∞\
0

ϕ(t)T (Utψ) dt =

∞\
0

ϕ(t)StT (ψ) dt

for all ϕ and ψ in L1
κ(R+), proving (10.8). The equality (10.9) follows from

(8.12) and (10.8), while (10.10) follows from (10.8) by representing y in the
form y = T (ψ)x.

11. Pseudoresolvents on (ω,∞) with values in L(X), their regu-

larity spaces, and their generators. The material of the present chapter
forms the basis for Theorem 12.5. However for Theorem 12.2 this material
is unnecessary.

Let X be a Banach space, and L(X) the Banach algebra of continuous
linear operators on X. We will consider a pseudoresolvent on (ω,∞) with
values in L(X), i.e. a map

(11.1) (ω,∞) ∋ λ→ Rλ ∈ L(X)

satisfying the resolvent equation

(11.2) Rλ −Rµ = (µ− λ)RλRµ

for all λ and µ in (ω,∞). It follows from (11.2) that (Rλ)λ∈(ω,∞) is a com-
mutative family of operators, and that the kernel K and range ℑ of Rλ are
both independent of λ. See [Y;II], pp. 215–216. The formula

(11.3) G = {(x, y) ∈ X ×X : λRλx− x = Rλy for every λ ∈ (ω,∞)}

defines a closed linear subspace of X×X. Following [D-M; XII-XVI], p. 243,
we will call G the extended generator of the pseudoresolvent (11.1). Equa-
tion (11.2) implies that

(11.4) if x ∈ X, y ∈ X, and there exists a µ ∈ (ω,∞) such that µRµx−x
= Rµy, then (x, y) ∈ G.

Indeed, it follows from (11.2) that if µRµx− x = Rµy, then

Rλy = [1 + (µ− λ)Rλ]Rµy = [1 + (µ− λ)Rλ][µRµx− x]

= µRµx− x+ µ(µ− λ)RλRµx+ (λ− µ)Rλx

= µRµx− x+ µ(Rλ −Rµ)x+ (λ− µ)Rλx = λRλx− x

for every λ ∈ (ω,∞). The domain of the extended generator G is, by defini-
tion, the set

(11.5) D(G) = {x ∈ X : there exists y ∈ X such that (x, y) ∈ G}.
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It follows that

(11.6) D(G) = ℑ.

Indeed, if (x, y) ∈ G and µ ∈ (ω,∞), then x = Rµ(µx− y) ∈ ℑ. Conversely,
if x ∈ ℑ and µ ∈ (ω,∞), then x = Rµz for some z ∈ X, so that µRµx−x =
Rµy for y = µx− z, whence (x, y) ∈ G by virtue of (11.4).

Appendix I in [Ki] contains a necessary and sufficient condition for a
subspace of X ×X to be the extended generator of a pseudoresolvent. If a
pseudoresolvent (11.1) is the Laplace transform of a measurable contraction
semigroup in a function space, then the extended generator (11.3) coincides
with the full generator of the semigroup defined in [E-K], pp. 23–24. See
also [R-Y], p. 263.

If K = {0} then G is the graph of a closed operator from X into X
whose resolvent set contains (ω,∞), and the pseudoresolvent (11.1) is the
resolvent of this operator.

According to [D-M;C], p. 314, the regularity space of the pseudoresolvent
(11.1) is, by definition, the linear set

(11.7) R = {x ∈ X : lim
λ→∞

‖λRλx− x‖ = 0}.

It is obvious that

(11.8) R ⊂ ℑ,

where ℑ denotes the closure of ℑ in the norm topology of X. If x ∈ R∩K,
then x = limλ→∞ λRλx = limλ→∞ λ · 0 = 0, so that

(11.9) R ∩K = {0}.

From commutativity of the family of operators (Rλ), it follows that

(11.10) RλR ⊂ R

for every λ ∈ (ω,∞).
According to [Hi], p. 98, and [D-M;C], p. 314, the generator of the pseu-

doresolvent (11.1) is defined to be the operator A from X into X with
domain D(A) such that

(11.11) x ∈ D(A) and y = Ax if and only if lim
λ→∞

‖λ(λRλx−x)−y‖ = 0.

Denote by G(A) the graph of A. Definition (11.11) is equivalent to

(11.12) G(A) = {(x, y) ∈ X ×X : lim
λ→∞

‖λ(λRλx− x) − y‖ = 0}.

It is obvious that

(11.13) D(A) ⊂ R.

Furthermore,

(11.14) (X × R) ∩G ⊂ G(A) ⊂ (R ×ℑ) ∩G.
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Indeed, if (x, y) ∈ (X×R)∩G, then limλ→∞ λRλy = y and λRλx−x = Rλy
for every λ ∈ (ω,∞), so that y = limλ→∞ λ(λRλx− x) and (x, y) ∈ G(A).
Hence (X × R) ∩ G⊂G(A). If (x, y) ∈ G(A), then x∈R ⊂ ℑ, by (11.13)
and (11.8), so that λ(λRλx − x) ∈ ℑ for every λ ∈ (ω,∞), and hence
y = limλ→∞ λ(λRλx−x)∈ℑ. Thus G(A) ⊂ R×ℑ. Furthermore, if (x, y)∈
G(A) and µ ∈ (ω,∞), then

Rµy = Rµ lim
λ→∞

λ(λRλx− x) = lim
λ→∞

λ(λRµRλx−Rµx)

= lim
λ→∞

λ(µRµRλx−Rλx) = (µRµ − 1) lim
λ→∞

λRλx = µRµx− x,

by (11.2) and (11.13). Hence G(A) ⊂ (R ×ℑ) ∩G.

Example. Consider an operator B ∈ L(X) such that B2 = 0. The
constant map (ω,∞) ∋ λ → B ∈ L(X) is then a pseudoresolvent for which
ℑ ⊂ K, G = {(−By, y) : y ∈ X} and R = {0}.

From now on we will make some additional assumptions on the pseu-
doresolvent (11.1). The statements of Lemma 11.1 to Proposition 11.4 are
contained in Section 7, pp. 314–316, of Chapter XII of [D-M;C]. Our pre-
sentation expounds the role of the extended generator G.

Lemma 11.1. If limλ→∞ ‖Rλx‖ = 0 for every x ∈ X, then ℑ ⊂ R.

P r o o f. Let x ∈ ℑ. Fix µ ∈ R
+ and choose z ∈ X such that x = Rµz.

Then, by (11.2), λRλx − x = λRλRµz − Rµz = Rλ(µRµz − z), so that
x ∈ R.

Proposition 11.2. If

(11.15) lim sup
λ→∞

λ‖Rλ‖L(X) <∞,

then

(11.16) R = ℑ

and

(11.17) G(A) = (X × R) ∩G = (R × R) ∩G.

P r o o f. Condition (11.15) implies that R = R, and hence equalities
(11.16) and (11.17) follow from (11.8), (11.14) and Lemma 11.1.

Corollary 11.3. If condition (11.15) is satisfied then R is a closed

linear subspace of X, and A is a closed operator from X into X with domain

and range contained in R.

The following Proposition 11.4 implies at once that a pseudoresolvent
which has range dense in X and satisfies (11.15) is the resolvent of a densely
defined operator. See [D], p. 37, Theorem 2.6; [P], p. 37, Theorem 9.4.
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Proposition 11.4. If condition (11.15) is satisfied and A is treated as

an operator from R into R then the resolvent set of A contains (ω,∞) and

(11.18) (λ−A)−1 = Rλ|R

for every λ ∈ (ω,∞). Furthermore, D(A) is dense in R.

P r o o f. If x ∈ D(A) and λ ∈ (ω,∞), then (x,Ax) ∈ G by (11.14),
whence λRλx− x = RλAx. This means that

(11.19) Rλ(λ−A)x = x for all λ ∈ (ω,∞) and x ∈ D(A).

If x ∈ R and λ ∈ (ω,∞), then, by Proposition 11.2, Rλx ∈ ℑ ⊂ R

and (Rλx, λRλx − x) ∈ (R × R) ∩ G = G(A), so that Rλx ∈ D(A) and
(λ−A)Rλx = λRλx−ARλx = λRλx− [λRλx− x] = x. Hence

(11.20) Rλx ∈ D(A) and (λ−A)Rλx = x for all λ ∈ (ω,∞) and x ∈ R.

From (11.19), (11.20) and Corollary 11.3 it follows that if A is treated as an
operator from R into R, then its resolvent set contains (ω,∞) and (11.18)
holds. Furthermore, by (11.20), if x ∈ R then λRλx ∈ D(A) for every
λ ∈ (ω,∞) and hence x = limλ→∞ λRλx belongs to the closure of D(A),
proving that D(A) is dense in R.

Proposition 11.5. If the Banach space X is reflexive and the pseudore-

solvent (11.1) satisfies condition (11.15), then X splits into the direct sum

X = K + R.

P r o o f. Since every reflexive Banach space is locally sequentially weakly
compact, Proposition 11.5 is a consequence of Corollary 1′ in [Y;II], Chap.
VIII, Sec. 4, p. 218. The following proof does not refer to weak compactness.
The direct sum K+R is a closed subspace of X, because the projector P of
K+R onto R witk Ker(P ) = K is continuous. Indeed, Px = limλ→∞ λRλx
for every x ∈ K + R, and continuity of P follows from (11.15). Let X∗ be
the space adjoint to X, and for every λ ∈ (ω,∞) let R∗

λ be the operator
adjoint to Rλ. The map

(11.21) (ω,∞) ∋ λ→ R∗
λ ∈ L(X∗)

is a pseudoresolvent satisfying a condition analogous to (11.15). Let K∗ =
KerR∗

λ, ℑ∗ = RangeR∗
λ, and let R

∗ be the regularity space of the pseudore-
solvent (11.21). Then K∗ ∩ R

∗ = {0} and, by Proposition 11.2, R∗ = ℑ∗.
Furthermore, R

⊥ = ℑ⊥ = K∗ and ⊥
R

∗ = ⊥ℑ∗ = K. If X is reflexive, then
K⊥ = (⊥R

∗)⊥ = R
∗, by Theorem 2 in [Y;II], p. 137. As a consequence,

(K + R)⊥ = K⊥ ∩ R
⊥ = R

∗ ∩K∗ = {0} and K + R = X.

12. The Hille–Yosida theorem. Let X be a Banach space, and L(X)
the Banach algebra of continuous linear operators on X. The following
Proposition 12.1 coincides with Theorem 11 in Sec. VIII.1 of [D-S;I].
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Proposition 12.1. Let (St)t∈R+ ⊂ L(X) be a C0 semigroup such that

supt∈R+(κ(t))−1‖St‖L(X) < ∞. Let A be a linear operator from X into X
with domain D(A). Then the following two conditions are equivalent :

(a) A is the infinitesimal generator of the semigroup (St)t∈R+ , i.e. the

graph of A is equal to
{

(x, y) ∈ X ×X : lim
h↓0

∥∥∥∥
1

h
(Shx− x) − y

∥∥∥∥
X

= 0

}
,

(b) A is a closed operator from X into X, the resolvent set of A contains

(ω,∞), and

(λ−A)−1x =

∞\
0

e−λtStx dt for all λ ∈ (ω,∞) and x ∈ X.

P r o o f. We follow [D-S;I]. There is at most one operator A satisfying (b),
and hence we are reduced to proving (a)⇒(b). So, suppose that (a) holds.
Note that

1

h
(Sh − 1)

∞\
0

e−λtStx dt =

∞\
0

e−λtSt
1

h
(Sh − 1)x dt

=
eλh − 1

h

∞\
0

e−λtStx dt− eλh 1

h

h\
0

e−λtStx dt

for all h ∈ R
+, λ ∈ (ω,∞) and x ∈ X. By a passage to the limit as h ↓ 0, it

follows that
∞\
0

e−λtSt(λ−A)x dt = x for all λ ∈ (ω,∞) and x ∈ D(A),

and
∞\
0

e−λtStx dt ∈ D(A) and (λ−A)

∞\
0

e−λtStx dt = x

for all λ ∈ (ω,∞) and x ∈ X.

These equalities mean that for every λ ∈ (ω,∞) the operator λ−A, defined
on D(A), has inverse (λ−A)−1 defined on the whole X and (λ−A)−1x =T∞
0
e−λtStx dt for every x ∈ X. It follows that A is closed and its resolvent

set contains (ω,∞).

The following Theorem 12.2 refines the Hille–Yosida generation theorem
in the sense of extending the class of weight functions considered from those
of the form κ(t) = eωt to those described in Section 1. However both the
theorems apply to the same class of semigroups, namely to all C0 semigroups.
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Theorem 12.2. Let A be a linear operator from a Banach space X into

X with domain D(A). Then the following two conditions are equivalent :

(i) A is the infinitesimal generator of a C0 semigroup (St)t∈R+ ⊂ L(X)
such that supt∈R+(κ(t))−1‖St‖L(X) <∞.

(ii) D(A) is dense in X, A is a closed operator from X into X with re-

solvent set containing (ω,∞), and the map (ω,∞)∋λ→ (λ−A)−1∈ L(X)
belongs to the Widder space Wκ(L(X)).

If the above equivalent conditions are satisfied , then

(iii) sup
t∈R+

(κ(t))−1‖St‖L(X) = sup
λ∈(ω,∞), n=1,2,...

‖(λ−A)−n‖L(X)

‖φ∗n
λ ‖1,κ

.

P r o o f. (i)⇒[(ii)&(iii)]. It is easy to check that if (i) holds, then there
is a unique continuous representation T of the convolution algebra L1

κ(R+)
on the Banach space X such that

(12.1) T (ϕ)x =

∞\
0

ϕ(t)Stx dt for all ϕ ∈ L1
κ
(R+) and x ∈ X,

the integral being understood in the sense of Bochner. It is also easy to
prove that

(12.2) ‖T‖L(L1
κ

(R+);L(X)) = sup
t∈R+

(κ(t))−1‖St‖L(X).

From (12.1) it follows that the set T (C1
c (R+))X is dense in X, and that

T (C1
c (R+))X ⊂ D(A). Hence D(A) is dense in X.
According to Theorem 9.1, the map Tφ• is a pseudoresolvent in

Wκ(L(X)) such that

(12.3) ‖Tφ•‖Wκ(L(X)) = ‖T‖L(L1
κ

(R+);L(X)).

By Proposition 12.1 and (12.1), A is a closed operator from X into X,
the resolvent set of A contains (ω,∞), and (λ − A)−1 = Tφλ for every
λ ∈ (ω,∞). The last equality implies that the map (ω,∞) ∋ λ→ (λ−A)−1

∈ L(X) belongs to Wκ(L(X)). Finally, (iii) follows from (9.4), (12.2)
and (12.3).

(ii)⇒(i). Suppose that (ii) holds. Then the map (ω,∞) ∋ λ→ (λ−A)−1

∈ L(X) is a pseudoresolvent in Wκ(L(X)). By Theorem 9.1 there is a
T ∈ Hom(L1

κ(R+);L(X)) such that

T (φλ) = (λ−A)−1 for every λ ∈ (ω,∞).

It follows that D(A) ⊂ Y , where, according to the notation of Chapter 10,

Y = T (L1
κ
(R+))X.

Since D(A) is dense in X, the Cohen–Hewitt factorization theorem (see
(10.1)) implies that Y = X. Thus, by Theorem 10.2, there is a unique C0
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semigroup (St)t∈R+ ⊂ L(X) satisfying (10.5) such that

sup
t∈R+

(κ(t))−1‖St‖L(X) <∞.

By (10.10),

(λ−A)−1x = T (φλ)x =

∞\
0

e−λtStx dt for all λ ∈ (ω,∞) and x ∈ X.

Hence, by Proposition 12.1, A is the infinitesimal generator of (St)t∈R+ .

Remark 12.3. If X is a reflexive Banach space, then the postulate
in (ii) that D(A) is dense in X is a consequence of the remaining part of
this condition. Indeed, if X is reflexive and A is a closed operator from
X into X with domain D(A) such that the resolvent set of A contains
(ω,∞) and lim supλ→∞ λ‖(λ − A)−1‖ < ∞, then, according to T. Kato
[K;I], D(A) is dense in X. This may be deduced from Proposition 11.5: for
the pseudoresolvent (ω,∞) ∋ λ→ (λ−A)−1 ∈ L(X) one has K = {0} and
ℑ = D(A), whence D(A) = ℑ = R = R +K = X.

Remark 12.4 ([E-K], Corollary 2.8(a), p. 14). Suppose that the equiv-
alent conditions (i) and (ii) of Theorem 12.2 are satisfied and that C is a
closed convex cone in X. Then

(I) StC ⊂ C for every t ∈ R+

if and only if

(II) (λ−A)−1C ⊂ C for every λ ∈ (ω,∞).

Indeed, (I)⇒(II) is a simple consequence of Proposition 12.1. To prove
(II)⇒(I), let T ∈ Hom(L1

κ
(R+);L(X)) be defined by (12.1). Then T (φλ) =

(λ − A)−1 for every λ ∈ (ω,∞), by Proposition 12.1(b). Hence, by Corol-

lary 9.2 applied to the closed convex cone C̃ = {B ∈ L(X) : BC ⊂ C}
in L(X), condition (II) implies that

T∞
0
ϕ(t)Stx dt = T (ϕ)x ∈ C whenever

x ∈ C and ϕ ∈ L1
κ(R+) is positive. From this (i) follows by an approxima-

tion Stx = limn→∞

T∞
0
ϕn(u)Sux du with positive ϕn ∈ L1

κ
(R+).

Theorem 12.5. Let X be a Banach space and let R• : (ω,∞) ∋ λ →
Rλ ∈ L(X) be a pseudoresolvent belonging to Wκ(L(X)). Let A be the

generator of this pseudoresolvent (defined by (11.11)), R its regularity space

(defined by (11.7)), and ℑ the range of Rλ (independent of λ). Then

(i) there is a unique representation T of the convolution algebra L1
κ(R+)

on the Banach space X such that ‖T‖L(L1
κ

(R+);L(X)) = ‖R•‖Wκ(L(X)) and

Tφ• = R•,

(ii) R = ℑ = T (L1
κ(R+))X = T (L1

κ(R+))R,
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(iii) there is a unique C0 semigroup (St)t∈R+ ⊂ L(R) such that

‖St‖L(R) ≤ κ(t)‖R•‖Wκ(L(X)) and StT (ϕ) = T (Utϕ)

for all t ∈ R+ and ϕ ∈ L1
κ(R+),

(iv)
T∞
0
e−λtStx dt = Rλx for all λ ∈ (ω,∞) and x ∈ R,

(v) G(A) ⊂ R × R and A is a closed operator from R into R,

(vi) if A is treated as an operator from R into R, then (ω,∞) is con-

tained in the resolvent set of A, (λ − A)−1 = Rλ|R for every λ ∈ (ω,∞),
and A is the infinitesimal generator of the semigroup in (iii).

P r o o f. Assertion (i) follows from Theorem 9.1. Since R• ∈Wκ(L(X)),
from (2.3) and (9.4) it follows that R• satisfies (11.15). Hence the equality
R = ℑ in (ii) follows from Proposition 11.2. From (i) and Lemma 2.1 it
follows that, for every λ ∈ (ω,∞), ℑ = T (φλ)X ⊂ T (L1

κ(R+))X ⊂ ℑ, and
hence T (L1

κ(R+))X = ℑ, by the Cohen–Hewitt factorization theorem. The
last equality in (ii) follows from (10.2).

Assertions (iii) and (iv) follow from (i), (ii), Theorem 10.2, and (10.10).
By (11.15) and Corollary 11.3, condition (v) holds. Furthermore, according
to Proposition 11.4, if A is treated as an operator from R into R, then the
resolvent set of A contains (ω,∞), and (λ − A)−1 = Rλ|R for every λ ∈
(ω,∞). From the last equality, (iv), and Proposition 12.1, it follows that A
is the infinitesimal generator of the semigroup from (iii). Thus condition (vi)
holds.

Remark 12.5. It follows from Theorem 2.4 of [F-Y], p. 31, that the semi-

group in Theorem 12.5(iii) extends to a semigroup (S̃)t∈R+ ⊂ L(R +K),
K = KerRλ, which admits on R + K the Yosida approximation not nec-
essarily uniform near t = 0. (Recall that, according to Proposition 11.5,
R + K = X if X is reflexive.) The operators 〈e•A, ϕ〉 and etA ∗ ϕ oc-
curring on p. 33 of [F-Y] are nothing but our T (ϕ) and T (Ut

̂

ϕ), where
[Ut

̂

ϕ ](s) = ϕ(t− s) if s ∈ [0, t], = 0 if s ∈ (t,∞).
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