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Abstract. A harmonic function in a cylinder with the normal derivative vanishing on
the boundary is expanded into an infinite sum of certain fundamental harmonic functions.
The growth condition under which it is reduced to a finite sum of them is given.

1. Introduction. Let R™ (n > 2) denote the n-dimensional Euclidean
space. The solution of the Neumann problem for an infinite cylinder
Iy(D)={(X,y) eR": X €D, —co0<y< oo},

with D a bounded domain of R"~!, is not unique, because we can add to each
solution harmonic functions in I, (D) with normal derivatives vanishing on
the boundary. Hence, to classify general solutions we need to characterize
such functions. If D = (0,7) and I,(D) is the strip

H={(z,y) eR*:0<z <7 —00<y< o}

then by applying a result of Widder [6, Theorem 2] which characterizes a
harmonic function in H vanishing continuously on the boundary 0H of H,
we can obtain the following result:

THEOREM A. Let h(z,y) be a harmonic function in H such that Oh/0x
vanishes continuously on OH. Then

h(z,y) = Aoy + Bo + Z(Akeky + Bre k) cos kz,
k=1

where the series converges for all x and y, and Ay, By, A1, B1, Az, Ba, ... are
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constants such that
s

2
Ape® + Bre H = 2 S hz,y)kxdx (k=1,2,...).
77
0
Although this theorem is easily proved, we cannot proceed similarly in
the case where I,(D) is a cylinder in R™ (n > 3). This kind of problem was
originally treated by Bouligand [1] in 1914.

THEOREM B (Bouligand [1, p. 195)). Let h(X,y) be a harmonic function
in I, (D) such that the normal derivative of h vanishes continuously on the
boundary OI,(D) of [,(D). If h(X,y) tends to zero as |y| — oo, then
hX,y) is identically zero in I, (D).

In this paper we shall prove a cylindrical version of Theorem A (The-
orem). As corollaries we shall obtain two results generalizing Theorem B
(Corollaries 1 and 2).

2. Preliminaries. Let D be a bounded domain in R*~! (n > 3) having
a sufficiently smooth boundary dD. For example, D can be a C?%-domain
(0 < a < 1) in R"~! bounded by a finite number of mutually disjoint closed
hypersurfaces (see Gilbarg and Trudinger [3, pp. 88-89] for the definition of
C?%-domain). Consider the Neumann problem

(2.1) (At + w)p(X) =0
for any X = (z1,...,2,-1) € D,
. / _
(2.2) Ll (Vae(0),0(X) =0
for any X’ € 9D, where
0? 0? 0 0
Ay 1==—+...+ =——, ne1==—,...,=——
! 8%% + + 8%%71 v ! <8x1 8xn1>

and v(X') is the outer unit normal vector at X’ € 9D.

Let {ur (D)}, be the non-decreasing sequence of non-negative eigen-
values of this Neumann problem. In this sequence we write p (D) the num-
ber of times equal to the dimension of the corresponding eigenspace. If the
normalized eigenfunction corresponding to p (D) is denoted by ¢ (D)(X),
the set of consecutive eigenfunctions corresponding to the same value of
pi(D) in the sequence {¢x(D)(X)}32,, forms an orthonormal basis for the
eigenspace of the eigenvalue ui (D). It is evident that po(D) = 0 and

0o(D)(X)=|D|7/* (XeD), |D=\dx.
D

In the following we shall denote {p (D)}, and {¢r(D)(X)}2, by
{n(k) 172, and {@r (X))}, respectively, without specifying D. For each D
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there is a sequence {k;} of non-negative integers such that kg =0, k; =1,
(ki) < p(kitr),

pki) = plki +1) = p(ki +2) = ... = p(kiy1 — 1)
and {Qk,, Pki+1,- -+ Phir—1) is an orthonormal basis for the eigenspace of

the eigenvalue p(k;) (i = 0,1,2,...). Since D has a sufficiently smooth
boundary, we know that

(k) ~ A(D,n)k* ™= (k — o)

and
> {er(X)} ~ B(D,n)t" D2 (¢ — o)

p(k)<t

uniformly with respect to X € D, where A(D,n) and B(D,n) are constants
depending on D and n (e.g. see Carleman [2], Minakshisundaram and Plei-
jel [4], Weyl [5]). Hence there exist positive constants M;, My such that

MEY =D < k) (k=1,2,...)
and
lop(X)| < MakY? (X eD, k=1,2,...).
3. Statement of our results. The gradient of a function f(P) defined
on I',(D) is

P = () 2. 5 )

(P=(x1,...,2p-1,y) € I,(D)). We first remark that

I(P) = eVF™¥p(X) and  Jy(P) = e VFFIg(X)
(P = (X,y) € I,(D)) are harmonic functions on I},(D) satisfying
(Vali(P),v(Q)) =0

lim
P—Q, Pel, (D)
and

I Voudi(P), =0,
poim, , (Vndk(P),¥(Q))

where v(Q) is the outer unit normal vector at @ € 9%, (D).
THEOREM. Let h(P) be a harmonic function on I',(D) satisfying

(3.1) poolm (Vuh(P),u(@) =0

for any Q € 0L, (D). Then

h(P) = Aoy + By + > _(ApIi(P) + ByJi(P))
k=1
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for any P = (X,y) € I,(D), where the series converges uniformly and
absolutely on any compact subset of the closure I',(D) of I,(D), and Ay, B
(k=0,1,2,...) are constants such that

(32) ApeVH®Y 4 BreVIRY = | WX, y)pp(X)dX  (k=1,2,...).
D

COROLLARY 1. Let p and q be non-negative integers. If h(P) is a har-
monic function on I,(D) satisfying (3.1) and

(3.3) lim e—\/#(sz—l)th(y) =0, lim e\/u(kqﬂ)th(y) =0,

Yy—00 Yy——00
where
My (y) = sup [h(X,y)] (—00 <y < o0),
XeD
then
kpt1—1 kgr1—1
h(P)=Aw+Bo+ > Ale(P)+ Y BpJu(P)
k=1 k=1

for any P = (X,y) € I,(D), where A, (k=0,1,...,kpt1—1) and By, (k =
0,1,...,kgt1 — 1) are constants.

COROLLARY 2. Let h(P) be a harmonic function on I, (D) satisfying
(3.1) and

Mi(y) = o(eVFOI)  (jy| — o0).

Then h(P) = Aoy + By for any P = (X,y) € I,(D), where Ag and By are
constants.

4. Proofs of Theorem and Corollaries 1,2. Let f(X,y) be a function
on I, (D). The function ¢k (f,y) of y (—oo <y < 00) defined by

cr(fry) = | F(X,p)en(X) dX
D

is simply denoted by ¢k (y) in the following, without specifying f.

LEMMA 1. Let h(P) be a harmonic function on I,(D) satisfying (3.1).
Then

(41) Cg(y) = Aoy + Bg,
(4.2) er(y) = AgeVHRY L Bre~ ViKY (L =12 )

with constants Ay, By (k> 0) and
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{eVH®) (=v2) _ oV/uk) (=0) ¢y (1)
VIR (1 =y2) _ o\/n(k) (y2—y1)
{eVr®) =) _ oV/ik) (5=v1) Y ¢ (o)

e\/@(yl—yz) _ em(yz—yl)
for any y1 and ya,—00 <y <y < oo (k=1,2,3,...).

Proof. First of all, we remark that h € C?(I},(D)) (Gilbarg and Trudin-
ger [3, p. 124]). Since

(4.3) ce(y) =

V(An 1 h(X,9)er(X) dX = | h(X,y)(An_190k(X))dX  (—00 <y < 00),
D D

from Green'’s identity, (2.2) and (3.1), we have

0?cr(y) _ S azh()g,y) op(X)dX = — S Ap_1h(X,y)or(X) dX

oy? D Ay D
= — | X, p)(An_100(X)) dX
D
= (k) | h(X,y)r(X) dX = p(k)er(y)
D

from (2.1) (k=0,1,2,...). With constants A and By (k =0,1,2,...) these
give
Co(y) = Agy + Bg

and

nly) = ApeVHRY L BreVi®y (=12, ),
which are (4.1) and (4.2). When we solve for Ay and By, the equations
ck(y;) = Ake\/myi + Bk.e*\/myi (i=1,2),
we immediately obtain (4.3).
REMARK. From (4.2) we have, for k =1,2,...

lim cp(y)e VF®Y = Ay and  lim ¢ (y)eVFRY = By
Y—00 Yy— —00
LEMMA 2. Let h(P) be a harmonic function on I,(D) satisfying (3.1).
Let y be any number and y1, y2 be two any numbers satisfying —oo < y1 <
y—1, y+ 1<y <oo. For two non-negative integers p and q,

> le@)] - ler(X)] < L(p) My (y1) + L(q) M (2),

k=kptq+1
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where
L(j) = M22|D| Z k‘exp(—w/Mlkl/(nfl)).
k=kji1

Proof. From Lemma 1, we see that

euly) = (Vi) — )} L EVIEE Y )

+exp{v/u(k)(y — y2)} 11__ :}i{;{{;\/\/?:))((yyf—_ yyz))}} ‘

k(y2).

Hence
(44) S el en(X)] < I+ I,
k=kptq+1
where
I = Z exp{—/ (k) (y — y1) }Her ()] - [or(X)]
k=kpt1
L= exp{—v/ulk)(y2 — v)}ex ) llon(X)].
k=kqt1
For I, we have
(4.5) I < M3|D|Mp(y1) Z kexp(—+/u(k))
k=kpt1
< M3|D|Mp(y1) Z /fexp(—«/]\41]?1/(”*1))7
k=kpi1
because y — vy > 1.
For I, we also have
k=kqt1

Finally (4.4)—(4.6) give the conclusion of the lemma.

Proof of Theorem. Take any compact set T' C I,(D) and two numbers
Y1, Yo satisfying

max{y: (X,y) €T} +1<ys, min{y: (X,y)eT}—-1>uy.

Let (X,y) be any point in 7. Since ¢ (y) is the Fourier coefficient of the
function h(X,y) of X with respect to the orthonormal sequence {y5(X)}22 .,
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we have
hX,y) = crly)er(X)
k=0

where the series converges uniformly and absolutely on 7' by Lemma 2.
Further (4.1) and (4.2) of Lemma 1 give (3.2). The proof of the Theorem is
complete.

Proof of Corollaries 1 and 2. From (3.3) and the Remark, it follows that
A =0 for any k > k1 and By, = 0 for any k& > k1. Hence the Theorem
immediately gives the conclusion of Corollary 1. By putting p = ¢ = 0 in
Corollary 1, we obtain Corollary 2 at once.
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