Harmonic functions in a cylinder with normal derivatives vanishing on the boundary

by Ikuko Miyamoto and Hidenobu Yoshida (Chiba)
Dedicated to the memory of Professor Bogdan Ziemian

Abstract

A harmonic function in a cylinder with the normal derivative vanishing on the boundary is expanded into an infinite sum of certain fundamental harmonic functions. The growth condition under which it is reduced to a finite sum of them is given.

1. Introduction. Let $\mathbb{R}^{n}(n \geq 2)$ denote the n-dimensional Euclidean space. The solution of the Neumann problem for an infinite cylinder

$$
\Gamma_{n}(D)=\left\{(X, y) \in \mathbb{R}^{n}: X \in D,-\infty<y<\infty\right\},
$$

with D a bounded domain of \mathbb{R}^{n-1}, is not unique, because we can add to each solution harmonic functions in $\Gamma_{n}(D)$ with normal derivatives vanishing on the boundary. Hence, to classify general solutions we need to characterize such functions. If $D=(0, \pi)$ and $\Gamma_{n}(D)$ is the strip

$$
H=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\pi,-\infty<y<\infty\right\}
$$

then by applying a result of Widder [6, Theorem 2] which characterizes a harmonic function in H vanishing continuously on the boundary ∂H of H, we can obtain the following result:

Theorem A. Let $h(x, y)$ be a harmonic function in H such that $\partial h / \partial x$ vanishes continuously on ∂H. Then

$$
h(x, y)=A_{0} y+B_{0}+\sum_{k=1}^{\infty}\left(A_{k} e^{k y}+B_{k} e^{-k y}\right) \cos k x,
$$

where the series converges for all x and y, and $A_{0}, B_{0}, A_{1}, B_{1}, A_{2}, B_{2}, \ldots$ are

[^0]constants such that
$$
A_{k} e^{k y}+B_{k} e^{-k y}=\frac{2}{\pi} \int_{0}^{\pi} h(x, y) k x d x \quad(k=1,2, \ldots)
$$

Although this theorem is easily proved, we cannot proceed similarly in the case where $\Gamma_{n}(D)$ is a cylinder in $\mathbb{R}^{n}(n \geq 3)$. This kind of problem was originally treated by Bouligand [1] in 1914.

Theorem B (Bouligand [1, p. 195]). Let h(X,y) be a harmonic function in $\Gamma_{n}(D)$ such that the normal derivative of h vanishes continuously on the boundary $\partial \Gamma_{n}(D)$ of $\Gamma_{n}(D)$. If $h(X, y)$ tends to zero as $|y| \rightarrow \infty$, then $h(X, y)$ is identically zero in $\Gamma_{n}(D)$.

In this paper we shall prove a cylindrical version of Theorem A (Theorem). As corollaries we shall obtain two results generalizing Theorem B (Corollaries 1 and 2).
2. Preliminaries. Let D be a bounded domain in $\mathbb{R}^{n-1}(n \geq 3)$ having a sufficiently smooth boundary ∂D. For example, D can be a $C^{2, \alpha}$-domain $(0<\alpha<1)$ in \mathbb{R}^{n-1} bounded by a finite number of mutually disjoint closed hypersurfaces (see Gilbarg and Trudinger [3, pp. 88-89] for the definition of $C^{2, \alpha_{-}}$-domain). Consider the Neumann problem

$$
\begin{equation*}
\left(\Delta_{n-1}+\mu\right) \varphi(X)=0 \tag{2.1}
\end{equation*}
$$

for any $X=\left(x_{1}, \ldots, x_{n-1}\right) \in D$,

$$
\begin{equation*}
\lim _{X \rightarrow X^{\prime}, X \in D}\left(\nabla_{n-1} \varphi(X), \nu\left(X^{\prime}\right)\right)=0 \tag{2.2}
\end{equation*}
$$

for any $X^{\prime} \in \partial D$, where

$$
\Delta_{n-1}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{n-1}^{2}}, \quad \nabla_{n-1}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n-1}}\right)
$$

and $\nu\left(X^{\prime}\right)$ is the outer unit normal vector at $X^{\prime} \in \partial D$.
Let $\left\{\mu_{k}(D)\right\}_{k=0}^{\infty}$ be the non-decreasing sequence of non-negative eigenvalues of this Neumann problem. In this sequence we write $\mu_{k}(D)$ the number of times equal to the dimension of the corresponding eigenspace. If the normalized eigenfunction corresponding to $\mu_{k}(D)$ is denoted by $\varphi_{k}(D)(X)$, the set of consecutive eigenfunctions corresponding to the same value of $\mu_{k}(D)$ in the sequence $\left\{\varphi_{k}(D)(X)\right\}_{k=0}^{\infty}$ forms an orthonormal basis for the eigenspace of the eigenvalue $\mu_{k}(D)$. It is evident that $\mu_{0}(D)=0$ and

$$
\varphi_{0}(D)(X)=|D|^{-1 / 2} \quad(X \in D), \quad|D|=\int_{D} d X .
$$

In the following we shall denote $\left\{\mu_{k}(D)\right\}_{k=0}^{\infty}$ and $\left\{\varphi_{k}(D)(X)\right\}_{k=0}^{\infty}$ by $\{\mu(k)\}_{k=0}^{\infty}$ and $\left\{\varphi_{k}(X)\right\}_{k=0}^{\infty}$ respectively, without specifying D. For each D
there is a sequence $\left\{k_{i}\right\}$ of non-negative integers such that $k_{0}=0, k_{1}=1$, $\mu\left(k_{i}\right)<\mu\left(k_{i+1}\right)$,

$$
\mu\left(k_{i}\right)=\mu\left(k_{i}+1\right)=\mu\left(k_{i}+2\right)=\ldots=\mu\left(k_{i+1}-1\right)
$$

and $\left\{\varphi_{k_{i}}, \varphi_{k_{i}+1}, \ldots, \varphi_{k_{i+1}-1}\right\}$ is an orthonormal basis for the eigenspace of the eigenvalue $\mu\left(k_{i}\right)(i=0,1,2, \ldots)$. Since D has a sufficiently smooth boundary, we know that

$$
\mu(k) \sim A(D, n) k^{2 /(n-1)} \quad(k \rightarrow \infty)
$$

and

$$
\sum_{\mu(k) \leq t}\left\{\varphi_{k}(X)\right\}^{2} \sim B(D, n) t^{(n-1) / 2} \quad(t \rightarrow \infty)
$$

uniformly with respect to $X \in D$, where $A(D, n)$ and $B(D, n)$ are constants depending on D and n (e.g. see Carleman [2], Minakshisundaram and Pleijel [4], Weyl [5]). Hence there exist positive constants M_{1}, M_{2} such that

$$
M_{1} k^{2 /(n-1)} \leq \mu(k) \quad(k=1,2, \ldots)
$$

and

$$
\left|\varphi_{k}(X)\right| \leq M_{2} k^{1 / 2} \quad(X \in D, k=1,2, \ldots) .
$$

3. Statement of our results. The gradient of a function $f(P)$ defined on $\Gamma_{n}(D)$ is

$$
\nabla_{n} f(P)=\left(\frac{\partial f}{\partial x_{1}}(P), \ldots, \frac{\partial f}{\partial x_{n-1}}(P), \frac{\partial f}{\partial y}(P)\right)
$$

$\left(P=\left(x_{1}, \ldots, x_{n-1}, y\right) \in \Gamma_{n}(D)\right)$. We first remark that

$$
I_{k}(P)=e^{\sqrt{\mu(k)} y} \varphi_{k}(X) \quad \text { and } \quad J_{k}(P)=e^{-\sqrt{\mu(k)} y} \varphi_{k}(X)
$$

$\left(P=(X, y) \in \Gamma_{n}(D)\right)$ are harmonic functions on $\Gamma_{n}(D)$ satisfying

$$
\lim _{P \rightarrow Q, P \in \Gamma_{n}(D)}\left(\nabla_{n} I_{k}(P), \nu(Q)\right)=0
$$

and

$$
\lim _{P \rightarrow Q, P \in \Gamma_{n}(D)}\left(\nabla_{n} J_{k}(P), \nu(Q)\right)=0,
$$

where $\nu(Q)$ is the outer unit normal vector at $Q \in \partial \Gamma_{n}(D)$.
Theorem. Let $h(P)$ be a harmonic function on $\Gamma_{n}(D)$ satisfying

$$
\begin{equation*}
\lim _{P \rightarrow Q, P \in \Gamma_{n}(D)}\left(\nabla_{n} h(P), \nu(Q)\right)=0 \tag{3.1}
\end{equation*}
$$

for any $Q \in \partial \Gamma_{n}(D)$. Then

$$
h(P)=A_{0} y+B_{0}+\sum_{k=1}^{\infty}\left(A_{k} I_{k}(P)+B_{k} J_{k}(P)\right)
$$

for any $P=(X, y) \in \Gamma_{n}(D)$, where the series converges uniformly and absolutely on any compact subset of the closure $\overline{\Gamma_{n}(D)}$ of $\Gamma_{n}(D)$, and A_{k}, B_{k} ($k=0,1,2, \ldots$) are constants such that

$$
\begin{equation*}
A_{k} e^{\sqrt{\mu(k)} y}+B_{k} e^{-\sqrt{\mu(k)} y}=\int_{D} h(X, y) \varphi_{k}(X) d X \quad(k=1,2, \ldots) \tag{3.2}
\end{equation*}
$$

Corollary 1. Let p and q be non-negative integers. If $h(P)$ is a harmonic function on $\Gamma_{n}(D)$ satisfying (3.1) and

$$
\begin{equation*}
\underset{y \rightarrow \infty}{\lim } e^{-\sqrt{\mu\left(k_{p+1}\right)} y} M_{h}(y)=0, \quad \varliminf_{y \rightarrow-\infty} e^{\sqrt{\mu\left(k_{q+1}\right)} y} M_{h}(y)=0, \tag{3.3}
\end{equation*}
$$

where

$$
M_{h}(y)=\sup _{X \in D}|h(X, y)| \quad(-\infty<y<\infty),
$$

then

$$
h(P)=A_{0} y+B_{0}+\sum_{k=1}^{k_{p+1}-1} A_{k} I_{k}(P)+\sum_{k=1}^{k_{q+1}-1} B_{k} J_{k}(P)
$$

for any $P=(X, y) \in \Gamma_{n}(D)$, where $A_{k}\left(k=0,1, \ldots, k_{p+1}-1\right)$ and $B_{k}(k=$ $\left.0,1, \ldots, k_{q+1}-1\right)$ are constants.

Corollary 2. Let $h(P)$ be a harmonic function on $\Gamma_{n}(D)$ satisfying (3.1) and

$$
M_{h}(y)=o\left(e^{\sqrt{\mu(1)}|y|}\right) \quad(|y| \rightarrow \infty)
$$

Then $h(P)=A_{0} y+B_{0}$ for any $P=(X, y) \in \Gamma_{n}(D)$, where A_{0} and B_{0} are constants.
4. Proofs of Theorem and Corollaries 1, 2. Let $f(X, y)$ be a function on $\Gamma_{n}(D)$. The function $c_{k}(f, y)$ of $y(-\infty<y<\infty)$ defined by

$$
c_{k}(f, y)=\int_{D} f(X, y) \varphi_{k}(X) d X
$$

is simply denoted by $c_{k}(y)$ in the following, without specifying f.
Lemma 1. Let $h(P)$ be a harmonic function on $\Gamma_{n}(D)$ satisfying (3.1). Then

$$
\begin{gather*}
c_{0}(y)=A_{0} y+B_{0} \tag{4.1}\\
c_{k}(y)=A_{k} e^{\sqrt{\mu(k)} y}+B_{k} e^{-\sqrt{\mu(k)} y} \quad(k=1,2, \ldots) \tag{4.2}
\end{gather*}
$$

with constants $A_{k}, B_{k}(k \geq 0)$ and

$$
\begin{align*}
c_{k}(y)= & \frac{\left\{e^{\sqrt{\mu(k)}\left(y-y_{2}\right)}-e^{\sqrt{\mu(k)}\left(y_{2}-y\right)}\right\} c_{k}\left(y_{1}\right)}{e^{\sqrt{\mu(k)}}\left(y_{1}-y_{2}\right)}-e^{\sqrt{\mu(k)}\left(y_{2}-y_{1}\right)} \tag{4.3}\\
& +\frac{\left\{e^{\sqrt{\mu(k)}\left(y_{1}-y\right)}-e^{\sqrt{\mu(k)}\left(y-y_{1}\right)}\right\} c_{k}\left(y_{2}\right)}{e^{\sqrt{\mu(k)}\left(y_{1}-y_{2}\right)}-e^{\sqrt{\mu(k)}\left(y_{2}-y_{1}\right)}}
\end{align*}
$$

for any y_{1} and $y_{2},-\infty<y_{1}<y_{2}<\infty(k=1,2,3, \ldots)$.
Proof. First of all, we remark that $h \in C^{2}\left(\overline{\Gamma_{n}(D)}\right)$ (Gilbarg and Trudinger [3, p. 124]). Since
$\int_{D}\left(\Delta_{n-1} h(X, y)\right) \varphi_{k}(X) d X=\int_{D} h(X, y)\left(\Delta_{n-1} \varphi_{k}(X)\right) d X \quad(-\infty<y<\infty)$,
from Green's identity, (2.2) and (3.1), we have

$$
\begin{aligned}
\frac{\partial^{2} c_{k}(y)}{\partial y^{2}} & =\int_{D} \frac{\partial^{2} h(X, y)}{\partial y^{2}} \varphi_{k}(X) d X=-\int_{D} \Delta_{n-1} h(X, y) \varphi_{k}(X) d X \\
& =-\int_{D} h(X, y)\left(\Delta_{n-1} \varphi_{k}(X)\right) d X \\
& =\mu(k) \int_{D} h(X, y) \varphi_{k}(X) d X=\mu(k) c_{k}(y)
\end{aligned}
$$

from $(2.1)(k=0,1,2, \ldots)$. With constants A_{k} and $B_{k}(k=0,1,2, \ldots)$ these give

$$
c_{0}(y)=A_{0} y+B_{0}
$$

and

$$
c_{k}(y)=A_{k} e^{\sqrt{\mu(k)} y}+B_{k} e^{-\sqrt{\mu(k)} y} \quad(k=1,2, \ldots)
$$

which are (4.1) and (4.2). When we solve for A_{k} and B_{k} the equations

$$
c_{k}\left(y_{i}\right)=A_{k} e^{\sqrt{\mu(k)} y_{i}}+B_{k} e^{-\sqrt{\mu(k)} y_{i}} \quad(i=1,2)
$$

we immediately obtain (4.3).
Remark. From (4.2) we have, for $k=1,2, \ldots$

$$
\lim _{y \rightarrow \infty} c_{k}(y) e^{-\sqrt{\mu(k)} y}=A_{k} \quad \text { and } \quad \lim _{y \rightarrow-\infty} c_{k}(y) e^{\sqrt{\mu(k)} y}=B_{k}
$$

Lemma 2. Let $h(P)$ be a harmonic function on $\Gamma_{n}(D)$ satisfying (3.1). Let y be any number and y_{1}, y_{2} be two any numbers satisfying $-\infty<y_{1}<$ $y-1, y+1<y_{2}<\infty$. For two non-negative integers p and q,

$$
\sum_{k=k_{p+q+1}}^{\infty}\left|c_{k}(y)\right| \cdot\left|\varphi_{k}(X)\right| \leq L(p) M_{h}\left(y_{1}\right)+L(q) M_{h}\left(y_{2}\right)
$$

where

$$
L(j)=M_{2}^{2}|D| \sum_{k=k_{j+1}}^{\infty} k \exp \left(-\sqrt{M_{1}} k^{1 /(n-1)}\right) .
$$

Proof. From Lemma 1, we see that

$$
\begin{aligned}
c_{k}(y)= & \exp \left\{-\sqrt{\mu(k)}\left(y-y_{1}\right)\right\} \frac{1-\exp \left\{2 \sqrt{\mu(k)}\left(y-y_{2}\right)\right\}}{1-\exp \left\{2 \sqrt{\mu(k)}\left(y_{1}-y_{2}\right)\right\}} c_{k}\left(y_{1}\right) \\
& +\exp \left\{\sqrt{\mu(k)}\left(y-y_{2}\right)\right\} \frac{1-\exp \left\{2 \sqrt{\mu(k)}\left(y_{1}-y\right)\right\}}{1-\exp \left\{2 \sqrt{\mu(k)}\left(y_{1}-y_{2}\right)\right\}} c_{k}\left(y_{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{k=k_{p+q+1}}^{\infty}\left|c_{k}(y)\right| \cdot\left|\varphi_{k}(X)\right| \leq I_{1}+I_{2} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}=\sum_{k=k_{p+1}}^{\infty} \exp \left\{-\sqrt{\mu(k)}\left(y-y_{1}\right)\right\}\left|c_{k}\left(y_{1}\right)\right| \cdot\left|\varphi_{k}(X)\right| \\
& I_{2}=\sum_{k=k_{q+1}}^{\infty} \exp \left\{-\sqrt{\mu(k)}\left(y_{2}-y\right)\right\}\left|c_{k}\left(y_{2}\right)\right|\left|\varphi_{k}(X)\right| .
\end{aligned}
$$

For I_{1}, we have

$$
\begin{align*}
I_{1} & \leq M_{2}^{2}|D| M_{h}\left(y_{1}\right) \sum_{k=k_{p+1}}^{\infty} k \exp (-\sqrt{\mu(k)}) \tag{4.5}\\
& \leq M_{2}^{2}|D| M_{h}\left(y_{1}\right) \sum_{k=k_{p+1}}^{\infty} k \exp \left(-\sqrt{M_{1}} k^{1 /(n-1)}\right)
\end{align*}
$$

because $y-y_{1}>1$.
For I_{2}, we also have

$$
\begin{equation*}
I_{2} \leq M_{2}^{2}|D| M_{h}\left(y_{2}\right) \sum_{k=k_{q+1}}^{\infty} k \exp \left(-\sqrt{M_{1}} k^{1 /(n-1)}\right) \tag{4.6}
\end{equation*}
$$

Finally (4.4)-(4.6) give the conclusion of the lemma.
Proof of Theorem. Take any compact set $T \subset \overline{\Gamma_{n}(D)}$ and two numbers y_{1}, y_{2} satisfying

$$
\max \{y:(X, y) \in T\}+1<y_{2}, \quad \min \{y:(X, y) \in T\}-1>y_{1} .
$$

Let (X, y) be any point in T. Since $c_{k}(y)$ is the Fourier coefficient of the function $h(X, y)$ of X with respect to the orthonormal sequence $\left\{\varphi_{k}(X)\right\}_{k=0}^{\infty}$,
we have

$$
h(X, y)=\sum_{k=0}^{\infty} c_{k}(y) \varphi_{k}(X)
$$

where the series converges uniformly and absolutely on T by Lemma 2 . Further (4.1) and (4.2) of Lemma 1 give (3.2). The proof of the Theorem is complete.

Proof of Corollaries 1 and 2. From (3.3) and the Remark, it follows that $A_{k}=0$ for any $k \geq k_{p+1}$ and $B_{k}=0$ for any $k \geq k_{q+1}$. Hence the Theorem immediately gives the conclusion of Corollary 1. By putting $p=q=0$ in Corollary 1, we obtain Corollary 2 at once.

References

[1] M. G. Bouligand, Sur les fonctions de Green et de Neumann du cylindre, Bull. Soc. Math. France 42 (1914), 168-242.
[2] T. Carleman, Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes, C. R. Skand. Math. Kongress 1934, 34-44.
[3] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977.
[4] S. Minakshisundaram and \AA. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242-256.
[5] H. Weyl, Das asymptotische Verteilungsgestez der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), 441-479.
[6] D. V. Widder, Functions harmonic in a strip, Proc. Amer. Math. Soc. 12 (1961), 67-72.

Department of Mathematics and Informatics
Chiba University
Chiba 263-8522, Japan
E-mail: miyamoto@math.s.chiba-u.ac.jp
yoshida@math.s.chiba-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 31B20.
 Key words and phrases: Neumann problem, harmonic functions, cylinder.

