
ANNALES
POLONICI MATHEMATICI

LXXIV (2000)

Set arithmetic and the enclosing problem in dynamics

by Marian Mrozek (Kraków) and Piotr Zgliczyński (Atlanta, GA)

Bogdan Ziemian in memoriam

Abstract. We study the enclosing problem for discrete and continuous dynamical
systems in the context of computer assisted proofs. We review and compare the existing
methods and emphasize the importance of developing a suitable set arithmetic for efficient
algorithms solving the enclosing problem.

1. Introduction. In this paper we discuss the enclosing problem, which
in general may be formulated as follows. Given a set S ⊂ Rn, a natural
number d and a function f : Rn → Rn provide an algorithm constructing a
set S̃ such that

1. it may be proved that fd(S) ⊂ S̃,
2. the difference S̃ \ fd(S) is possibly small,
3. the algorithm is possibly fast.

To ensure rigor of numerical computations needed to fulfill postulate 1,
interval arithmetic (see Sec. 5) is used in computations. Note that in general
it is difficult to fulfill postulates 2 and 3 simultaneously. Hence, depending
on applications, the emphasis is either on postulate 2 or 3. Also note that the
natural strategy in solving the problem for d > 1 is to iterate a well chosen
algorithm for d = 1. Unfortunately, this combined with interval arithmetic
leads to the so-called wrapping effect (see Sec. 8), which causes that the
algorithms are neither fast nor effective.

The enclosing problem is of interest in itself and several classical ap-
proaches to it may be found in the literature (see [3], [6], [13]). In those pa-

2000 Mathematics Subject Classification: 65G40, 65L70.
Key words and phrases: dynamical systems, enclosing problem, interval arithmetic,

rigorous numerical analysis.
Research of M. Mrozek supported by KBN grants 2 P03A 029 12 and 2 P03A 011 18.
Research of P. Zgliczyński supported by KBN grants 2 P03A 029 12, 2 P03A 011 18

and NSF–NATO grant DGE–98–04459.

[237]

238 M. Mrozek and P. Zgliczyński

pers the authors propose to fight the wrapping effect by replacing Cartesian
products of intervals used to approximate sets by some finer sets. Lohner [6]
uses parallelepipeds and Neumaier [13] uses ellipsoids. The right choice of
a countable class of sets used to approximate arbitrary sets seems to be
the key strategy in developing efficient solutions to the enclosing problem.
In other words, a suitable set arithmetic on top of the elementary interval
arithmetic must be developed.

The classical approaches considered the case when S was a very small ball
or even a point and the emphasis was on minimizing S̃ and not on the speed
of the algorithm. Recently the enclosing problem became of vital importance
in computer assisted proofs in dynamics based on topological techniques (see
[4], [7], [8], [9], [11], [12], [16], [17]). In such applications the map f is usually
the generator of a discrete dynamical system, the Poincaré map of a flow
or just the t-translation along the trajectories of an ordinary differential
equation. In order to verify the assumptions of certain topological criteria
for particular dynamical behaviour like the existence of periodic solutions
or chaotic invariant sets it is necessary to verify some inclusions of the form
f(S) ⊂ T , where S and T are given subsets of Rn. However, unlike the
classical case the set S is usually large and often irregular in shape. Thus,
in order to verify the inclusion one covers the set S with a large number of
small sets Si of regular shape and tries to verify that f(Si) ⊂ T for every i.
This reduces the problem to the classical case with the difference that since
the set T is given and large when compared to the Si, the emphasis is on
the speed of the algorithm rather than on minimizing the sets S̃i enclosing
f(Si).

The aim of this paper is to review and compare various techniques used
to solve the enclosing problem in the context of their applicability to com-
puter assisted proofs in dynamics and provide a general framework for future
investigations in this area. In particular we want to emphasize the impor-
tance of developing a suitable set arithmetic for efficient algorithms solving
the enclosing problem.

Special emphasis is given to the method of Lohner [6]. We reformulate
his ideas in a language which is more universal and hopefully simpler to
understand for people who do not work in numerical analysis. As a simple
by-product we obtain a generalization of the Lohner method to discrete
dynamical systems.

2. Preliminaries. Throughout the paper we make the general assump-
tion that f may be approximated by a rational map, i.e. there exists a
rational map g : Rn → Rn and a small continuous map w : Rn → Rn of
known bound such that in a certain domain D ⊂ Rn containing S we have
the decomposition

Set arithmetic and enclosing problem 239

(1) f(x) = g(x) + w(x) for x ∈ D.

In some applications f may be just rational and that case is also within
our interest but in most applications f is not rational.

We want to emphasize that the case when f comes from a differential
equation (t-translation, Poincaré map) may be treated just as a special case
of our problem. Let

(2) x′ = V (x), x ∈ Rn,

be an ordinary differential equation in Rn generating a flow ϕ : Rn×R→ Rn
and let

ϕt : Rn 3 x 7→ ϕ(x, t) ∈ Rn

denote the corresponding t-translation operator for t > 0. Taking a small
h > 0, a natural number n satisfying t/n < h and a numerical method
Φ : Rn × R→ Rn such that

ϕ(x, s) = Φ(x, s) + %(x, s), s ∈ [0, h],

for a small remainder function %, we reduce the problem of enclosing ϕt(S)
to the problem of enclosing fn(S), where f := ϕt/n = Φt/n + %t/n satisfies
(1) . The case of a Poincaré map is similar in spirit though slightly more
complicated, because an extra care is needed to estimate the intersection
with the Poincaré section.

IfX,Y, Z are sets then a function ω : X×Y → Z is called an operation. If
(x, y) ∈ domω, then we say that xωy is defined and we write xωy := ω(x, y).
The three basic arithmetic operations +,−, · are examples of operations in R.

Throughout the paper R and Z denote respectively the set of real num-
bers and the set of integers. We also need the extended set of real numbers

R := R ∪ {∞,−∞,NAN},
which consists of all real numbers, plus and minus infinity and a special
symbol NAN. Here NAN stands for not-a-number . It is assumed that the
result of any division by zero, any undefined operation involving infinity as
well as any arithmetic operation involving NAN is NAN. This convention
enables us to treat all four elementary arithmetic operations +,−,×, / as
defined on R× R.

We treat R as a partially ordered set with R ∪ {∞,−∞} ordered in the
standard way and NAN incomparable with any other element.

3.Arithmetic operations on sets. Below, we frequently deal with sets
enclosing numbers, vectors or matrices. We use bold characters to denote
such sets. We extensively use the standard notation

f(a) := {f(a) | a ∈ a},

240 M. Mrozek and P. Zgliczyński

where f : X → Y is a map and a ⊂ dom f ⊂ X. In particular we use this
notation in the case of operations. Let � : X×Y → Z. For a×b ⊂ dom � ⊂
X × Y we write

a � b := {a � b | a ∈ a, b ∈ b}

and call this operation an extension of � to sets.
This notation is convenient in formal calculations. In particular it is

convenient to remember the following straightforward propositions.

Proposition 3.1. If � : X × X → X is commutative or associative,
then its extension to sets has the same property.

Not every property of operations carries over automatically to its exten-
sion to sets as the following straightforward proposition shows.

Proposition 3.2. Assume + : X × X → X and · : Y × X → X are
operations such that for all y ∈ Y and for all x1, x2 ∈ X,

y · (x1 + x2) = y · x1 + y · x2

whenever both sides make sense. Then for all b ⊂ Y and a1,a2 ⊂ X,

b · (a1 + a2) ⊂ b · a1 + b · a2

whenever both sides make sense. Moreover , the inclusion cannot be replaced
by an equality in general.

4. Finite encoding. We base our considerations concerning computa-
tions on the commonly accepted Turing model. There are three important
assumptions in this model: computations are performed on a finite sequence
of two symbols (0 and 1), there are only a finite number of rules which may
be applied to transform the sequence, and each rule can read or write only
one symbol in the sequence at a time. Obviously, if we want to perform
computations on sequences of more than two symbols but the number of
symbols is still finite, then a suitable encoding of symbols with sequences of
0 and 1 reduces the computations to the Turing model. A similar relaxation
is possible if one wants to let each rule read and write a finite number of
symbols at a time.

To perform computations on a finite family of objects which formally
are not finite sequences of symbols one has to bijectively encode the objects
with such sequences, then perform the computations on the codes and finally
translate the result back to the original objects. For example if one wants to
perform computations on the family of subsets of a finite collection of planes
in R3, one can first enumerate the planes in some way and then represent
a subset with a sequence which has 1 on the ith place if the ith plane is
present in the subset and 0 otherwise.

Set arithmetic and enclosing problem 241

A problem arises when we want to perform computations on a set O of
objects which is uncountable, because then there is obviously no bijective
encoding. In such a situation we usually select a countable subset Ô ⊂ O
for which we establish a bijective encoding (we call the elements of Ô rep-
resentable objects) and we represent arbitrary objects in O via a surjective
map ̂: O → Ô. A drawback of this approach is that we introduce approx-
imations into the computations (an object o ∈ O is approximated by its
representation ô ∈ Ô). Since the approximations may take place a large
number of times in the course of computation, not only is the final result
not exact but usually we do not know how bad the approximation is. Nev-
ertheless we will see that sometimes this approach provides exact bounds
instead of exact solutions.

As an example consider the common solution used in hardware to per-
form computations on real numbers. One first chooses a finite subset R̂ ⊂ R
such that

0,−∞,+∞,NAN ∈ R̂,(3)

x ∈ R̂⇒ −x ∈ R̂(4)

and treats it as the set of symbols. Usually one takes for R̂ a set of binary
fractions to facilitate further encoding into sequences of 0’s and 1’s. Then
one takes a map 〈·〉 : R→ R̂ such that

x ∈ R̂⇒ x = 〈x〉,(5)
x ≤ y ⇒ 〈x〉 ≤ 〈y〉.(6)

Such a map is obviously a surjection. Any real number x which is not in R̂
is replaced in the course of computations by 〈x〉. The process is known as
rounding . We call the number 〈x〉 the representation of x and the pair (R̂, 〈·〉)
the representation of R. One can easily verify that for any x ∈ R\ {NAN},

↓(x) ≤ 〈x〉 ≤ ↑(x),

where

↓(x) := max{y ∈ R̂ | y ≤ x}, ↑(x) := min{y ∈ R̂ | y ≥ x}
are the lower and upper representations of x.

As we already mentioned, the price one pays for such an approach is
that the computations are approximate and there is no way (other than
statistical analysis) to tell how bad the approximation is.

Even if the input of the computation consists of representable numbers,
the result of an arithmetic operation on representable numbers may not be
a representable number and has to be replaced by its representation. This
introduces deviations from the exact results which keep propagating in the
course of computations. Though usually there is no way to obtain exact

242 M. Mrozek and P. Zgliczyński

results, it is possible to get exact lower and upper bounds. This is achieved
by means of interval arithmetic.

5. Interval arithmetic. The concept of interval arithmetic goes back to
the 50’s and has several fathers. Probably the earliest paper on this subject
is the work of M. Warmus [14]. Several other early papers are listed in the
monograph by R. Moore [10].

The idea of interval arithmetic consists in replacing every representation
〈x〉 on input by the interval [↓(x), ↑(x)] and perform calculations on intervals
in such a way that at every stage of calculations the interval contains the
exact result.

To be more precise we define the set of intervals over A ⊂ R by

I(A) := {[a−, a+] | a−, a+ ∈ A, a− ≤ a+}.

In particular we will write I, I, Î respectively for I(R), I(R) and I(R̂). The el-
ements of Î will be called representable intervals. Note that the only interval
in I and Î containing NAN is [NAN,NAN].

The set of real numbers may be viewed as a subset of I(R) via the em-
bedding

R3 x 7→ [x, x] ∈ I(R).

The size of an interval a = [a−, a+] ∈ I is defined as the difference
a+ − a−. We also define the mid point of a by

mid(a) :=
〈
a− + a+

2

〉
.

The reader should notice that by the above definition the mid point of an
interval is always a representable number.

To perform calculations on intervals we use representable intervals. To
encode representable intervals we just store two endpoints of the interval.
If a ∈ I is an arbitrary interval then we represent a as the smallest repre-
sentable interval containing a. Such an interval will be called the representa-
tion of a and denoted by l(a). One can easily verify that for any a−, a+ ∈ R
with a− ≤ a+,

l([a−, a+]) = [↓(a−), ↑(a+)].

Obviously such an encoding is only surjective.
As in the case of the arithmetic of representable numbers, arithmetic

operations on intervals cannot be performed exactly. However in the case of
intervals there is an easy way to guarantee that the computed result encloses
the exact result. To achieve this, given an arithmetic operation �, one defines

Set arithmetic and enclosing problem 243

the operation �̂ by

a �̂ b :=
{
l(a � b) if NAN 6∈ a � b,
[NAN,NAN] otherwise,

for a,b ∈ I. An important remark is that the right hand side of the above
formula is useless from the computational point of view, since we cannot
compute a � b (comp. last paragraph of Section 4). Fortunately, for each
concrete arithmetic operation � ∈ {+,−,×, /} one can easily find a simple
algorithm transforming the code (endpoints) of a,b to the code of the result,
which makes the computation of a �̂ b possible.

Sometimes it is convenient to decompose an interval as a sum of a rep-
resentable number and a representable interval containing zero. To this end
we introduce the notation

Î0 := {a ∈ Î | 0 ∈ a}.
and define the decomposition of an interval a ∈ I as the pair

(mid(a),a −̂mid(a)) ∈ R̂× Î0.
Note the following straightforward proposition.

Proposition 5.1. If (c, c0) ∈ R̂ × Î0 is the decomposition of c then
c ⊂ c+ c0.

The elements of In will be called n-dimensional interval vectors and
elements of In×n n-dimensional interval matrices.

The encoding of interval vectors and matrices is componentwise. We just
represent interval vectors and interval matrices as sequences of representa-
tions of their entries.

We define the size of an interval vector or an interval matrix as the max-
imum of sizes of the components, the mid point of an interval vector or an
interval matrix as the interval vector or matrix consisting of the mid points
of the components. Similarly we define the decomposition of an interval
vector or matrix.

Apart from interval vectors and matrices we also define interval sets. An
interval set is a Cartesian product of intervals. An interval representable
set is a Cartesian product of representable intervals. There is a one-to-one
correspondence between interval vectors and interval sets given by

(a1, . . . ,an)↔ a1 × . . .× an

for a1, . . . ,an ∈ I. Since we can treat matrices as n ×m-vectors, a similar
correspondence applies to matrices. We will freely pass from one interpreta-
tion to the other.

If s ⊂ Rn is a set, then [s] will stand for the minimal representable
interval set which contains a.

244 M. Mrozek and P. Zgliczyński

We define the sum of interval vectors or interval matrices, the product
of an interval and an interval vector or an interval matrix, the product of
interval matrices, the scalar product of interval vectors and the product of
an interval matrix by an interval vector exactly as in the case of real vectors
and matrices.

6. Rational expressions and rational functions. Practically speak-
ing the numerical evaluation of a function at a given argument is somehow
reduced to calculations with the four elementary arithmetical operations
+,−, ·, /. Therefore what is actually computed is a rational function. Since
we will evaluate rational functions with interval arguments where the arith-
metic operations are neither associative nor distributive, we need a slightly
modified definition of a rational function.

We first recall the formalism of arithmetic expressions. For this purpose
we fix a countably infinite set V = {X1, X2, . . .} of symbols, called variables,
and define a word to be an arbitrary finite sequence of symbols in V ∪ R̂ ∪
{(,),+,−, ·, /}. If ω is a word then |ω| will stand for the length of ω, i.e. the
number of elements in ω. The set W of (arithmetic) expressions is defined
as the smallest set of words with the following two properties:

x ∈ V ∪ R̂⇒ x ∈ W,

ω1, ω2 ∈ W ⇒ (ω1 + ω2), (ω1 − ω2), (ω1 · ω2), (ω1/ω2) ∈ W.

The following proposition is an easy exercise.

Proposition 6.1. If ω ∈ W then exactly one of the following possibilities
holds:

(i) ω = Xi for some Xi ∈ V,
(ii) ω = s for some s ∈ R̂,
(iii) there exist ω1, ω2 ∈ W such that ω = (ω1 +ω2) or ω = (ω1−ω2) or

ω = (ω1 · ω2) or ω = (ω1/ω2).

For instance ((X1 + X2) + X3) is an arithmetic expression but + + +,
+(X1X2), X1 +X2 +X3, X1 + (X2 +X3) are not.

We define recursively Var(ω), the set of variables in ω, by

(7) Var(ω) :=

 ∅ if ω = s, where s ∈ R̂,
{Xi} if ω = Xi, where Xi ∈ V,
Var(ω1) ∪Var(ω2) if ω = (ω1 � ω2),

where � ∈ {+,−, ·, /}.
Let ω be an expression. Let n ∈ N be large enough so that Var(ω)

⊂ {X1, . . . , Xn}. Let x1, . . . , xn be real numbers. We define recursively
ω(x1, . . . , xn), the evaluation of ω at (x1, . . . , xn) ∈ Rn, by

Set arithmetic and enclosing problem 245

(8) ω(x1, . . . , xn)

:=

 s if ω = s, where s ∈ R̂,
xi if ω = Xi, where Xi ∈ V,
ω1(x1, . . . , xn) � ω2(x1, . . . , xn) if ω = (ω1 � ω2),

where � ∈ {+,−, ·, /}.
Similarly we define recursively 〈ω〉(x1, . . . ,xn), the interval evaluation of

ω at (x1, . . . ,xn) ∈ În, by

(9) 〈ω〉(x1, . . . ,xn)

:=

 s if ω = s, where s ∈ R̂,
xi if ω = Xi, where Xi ∈ V,
〈ω1〉(x1, . . . ,xn) 〈�〉 〈ω2〉(x1, . . . ,xn) if ω = (ω1 � ω2).

Let ω1 := ((X1 + X2) + X3) and ω2 := (X1 + (X2 + X3)) be arithmetic
expressions. Obviously ω1 6= ω2 (the sequences of symbols are different) but
for any (x1, x2, x3) ∈ R3,

ω1(x1, x2, x3) = ω2(x1, x2, x3),

because of the associativity of the addition operation in R. However, the
interval evaluations 〈ω1〉(x1,x2,x3) and 〈ω2〉(x1,x2,x3) need not be the
same, because 〈+〉 is not associative in general. This explains why we set
up the definition of the arithmetic expression in such a way that there is no
ambiguity in the order of evaluation.

Assume ω = (ωi)mi=1 is a vector of arithmetic expressions such that
Var(ωi) ⊂ {X1, . . . , Xn}. There is then an associated function fω = (fω1 , . . .
. . . , fωm) : Rn → Rm given by

fωi (x1, . . . , xn) = ωi(x1, . . . , xn) for i = 1, . . .m

and an associated interval function 〈f〉ω = (〈f〉ω1 , . . . , 〈f〉ωm) : În → Îm given
by

〈f〉ωi (x1, . . . ,xn) = 〈ωi〉(x1, . . . ,xn) for i = 1, . . . ,m.

We say that the function g : Rn → Rm is a rational function if g = fω

for a vector ω of arithmetic expressions. The function 〈f〉ω is then called
an interval extension of g. Note that for reasons explained earlier there
may be two different arithmetic expressions ω1 and ω2 such that fω1 = fω2 .
Consequently, the interval extension of g need not be unique. Nevertheless
we will write 〈g〉 for any possible interval extension of g.

The following theorem, which may be proved easily by induction, is cru-
cial for interval evaluations of rational functions.

Theorem 6.2. Assume f : Rn → Rm is a rational function. Then for
any x1, . . . ,xn ∈ În we have

(10) f(x1, . . . ,xn) ⊂ 〈f〉(x1, . . . ,xn).

246 M. Mrozek and P. Zgliczyński

Here one important comment is in order. More formally, the left-hand
side of (10) should be written as f(x1 × . . .× xn) and denotes the image of
the set x1 × . . .× xn under f . Therefore it is a pure notation and does not
contribute towards a method of its computation. The right-hand side may
be computed easily from its definition, thus providing a method of enclosing
the left-hand side.

We will say that an operation � : Rm × Rn → Rp is rational if it is a
rational function. Note that matrix product provides a simple example of a
rational operation.

We can rewrite the last theorem in terms of operations as in the following
corollary.

Corollary 6.3. If � : Rm × Rn → Rp is a rational operation and
v ∈ Rm,w ∈ Rn then v �w ⊂ v 〈�〉w.

7.Enclosures via simple representations of sets. The first question
we have to ask when discussing the problem of estimation of fd(S) is how
we should represent sets. Actually an important question is what the family
of representable sets should be, because once the family Ŝ of representable
sets is fixed, it is very natural to define Ŝ, the representation of S, as the
smallest representable set containing S. Since then fd(S)⊂fd(Ŝ), the next
question we have to address is how to construct an estimate of fd(S) when
S is a representable set. Obviously the two questions are strongly intercon-
nected.

The choice of the class of representable sets depends on several factors.
The first factor is the dimension of the space. In dimension one intervals
serve well the purpose of representing compact, connected sets. However in
higher dimensions we should also consider what our sets look like. If they
are as simple as cuboids, balls or parallelepipeds the strategy will be simpler
than in the case when they are relatively big and irregular in shape.

There are a few classes of simple sets which can be easily parametrized
by a few numbers or vectors, which enables easy encoding of such sets when
the parameters are representable.

7.1. Bounds via balls. Assume a norm ‖ · ‖ in Rn is given. Recall that
the ball centred at x ∈ Rn of radius r > 0 is the set B(x, r) := {y ∈ Rn |
‖x− y‖ ≤ r}. We say that the ball B(x, r) is representable if both x and r

are. We encode such a ball as the pair (x, r) ∈ R̂2.
The simplest strategy for finding an enclosure for f(S) requires that f is

Lipschitz with Lipschitz constant L ∈ R̂, S = B(x, r) for some representable
vector x ∈ Rn and some representable number r ∈ R+. It also requires that
an algorithm is known which for a given representable ε > 0 constructs a
vector y ∈ B(f(x), ε). One then easily verifies the following proposition.

Set arithmetic and enclosing problem 247

Proposition 7.1. We have

f(B(x, r)) ⊂ B(y, L ·̂ r +̂ ε).

7.2. Logarithmic norms. The applicability of the last proposition de-
pends crucially on the knowledge of a possibly small Lipschitz constant. If
f = ϕt is the t-translation of the flow generated by the differential equa-
tion (2), a Lipschitz constant for f may be obtained from the classical dif-
ferential inequalities as eKt, where

K := sup{‖dxV ‖ | x ∈ ϕ(S, [0, t])}
and ‖ · ‖ denotes a norm in Rn. Unfortunately this is usually a very bad
Lipschitz constant. In particular it is always greater than one, even if the
flow is contracting.

Much better Lipschitz constants for f may be obtained by means of the
so-called logarithmic norm. If Q is a square matrix, then its logarithmic
norm µ(Q) is defined by

µ(Q) := lim
h→0, h>0

‖I + hQ‖ − 1
h

.

It turns out that the theory of differential inequalities has a counterpart
in which the norm is replaced by the function µ (for a very detailed case
concerning non-autonomous differential equations see Theorem 10.6 in [5]).
For our purposes a very special case of that theorem may be formulated as
follows.

Theorem 7.2. If

Kµ := sup{µ(dxV) | x ∈ ϕ(S, [0, t])}
then eKµt is a Lipschitz constant for f = ϕt.

7.3. Bounds via interval sets. If f is a rational function and S is a
representable interval set, one can use the interval evaluation of f as an
enclosure of f(S):

Proposition 7.3. Assume f is a rational function and S = x ∈ În is
an interval set. Then f(x) ⊂ 〈f〉(x).

If f is not rational, we may still be able to approximate f by a rational
function g and a small function w from the decomposition (1). We assume
that we know an interval set w ∈ În such that w(x) ∈ w for x ∈ D. We do
not assume how big the bound w is, but the bound for f(S) we are looking
for will crucially depend on the size of w.

Proposition 7.4. We have

f(x) ⊂ 〈g〉(x) +̂ w.

248 M. Mrozek and P. Zgliczyński

7.4. Set-valued mean value theorem. If f is C1, then we define the
Jacobian matrix of f at x by

Jxf :=
([

∂fi
∂xj

(x)
])n

i,j=1

.

We first prove the set-valued mean value theorem.

Theorem 7.5. For any h ∈ In0 we have

f(x+ h) ⊂ f(x) + Jx+hf · h.

P r o o f. Take h ∈ h. Using the standard mean value theorem for the
components fi of f we get, for some θi ∈ [0, 1] and i = 1, . . . , n,

fi(x+ h) = fi(x) +
n∑
j=1

∂fi
∂xj

(x+ θih)hj .

Thus it follows that

f(x+ h) ∈ f(x) +
(n∑
j=1

[
∂fi
∂xj

(x+ h)
]
hj

)n
i=1

⊂ f(x) + Jx+h · h ⊂ f(x) + Jx+h · h.

7.5. Improved bounds via interval sets. We again assume that S is an
interval set, i.e. S = x for a certain interval vector x. We rewrite x as the
sum x + r, where (x, r) is the decomposition of x, and take the pair (x, r)
as the representation of S.

Lemma 7.6. Assume (x1,x0
1) is a decomposition of 〈g〉(x) and put

r1 := Jxg ·̂ r +̂ w +̂ x0
1.

Then f(x+ r) ⊂ x1 + r1.

P r o o f. Let u ∈ x+ r. Then u = x+ r for some r ∈ r. Thus we have

f(u) = g(u) + w(u) ∈ g(x) + Jxg · r + w(u)

⊂ 〈g〉(x) + Jxg · r + w ⊂ x1 + Jxg · r + w + x0
1

⊂ x1 + Jxg ·̂ r +̂ w +̂ x0
1 = x1 + r1.

The classes of representable sets we considered in this section as well as
those we will consider in the next section are gathered in the following table.
The table contains the sets, their geometric form and their code.

Set arithmetic and enclosing problem 249

Basic sets

Description Geometric form Code Comments

ball B(c, r) (c, r) c ∈ R̂n, r ∈ R̂, r > 0
geometric form
depends on norm used

interval set c+ r (c, r) c ∈ R̂n, r ∈ În0

parallelepiped c+B · r (c,B, r) c ∈ R̂n, B ∈ În×n, r ∈ În0

cuboid c+Q · r (c,Q, r) c ∈ R̂n, Q ∈ În×n, r ∈ În0 ,
and Q contains
an orthogonal matrix

doubleton c+ C · r0 + s (c, C, r0) followed c ∈ R̂n, C ∈ R̂n×n, r0 ∈ În0 ,

by code of s s another basic set

elliptic set c+ L ·B(0, r) (c, L, r) c ∈ R̂n, L ∈ R̂n×n, r ∈ R̂

8. Shape sensitive enclosures. At first it may seem that the enclosures
presented in the previous section are perfect if our set S is an interval set or
a ball. Actually the choices are usually satisfactory if we need to estimate
only the first iterate of f . However if we try to iterate this process, we often
encounter problems. The reason is that the image of an interval or a ball
need not resemble the shape of the argument. Thus enclosing the image in an
interval or a ball we may introduce a strong overestimation which will keep
propagating under iteration in an exponential way. This process is known
as the wrapping effect .

Lohner (see [6]) proposed a solution to this problem in the case of f
being a translation map along trajectories of a differential equation. We
present a version of his method adapted to the more general discrete case
in Lemmas 8.3–8.5.

A good way to understand the key idea of Lohner’s approach is to con-
sider first the case when f is a linear map. Even in this simple case the
wrapping effect will take place, because linear maps neither transform in-
terval sets to interval sets nor balls to balls. To avoid wrapping in this case
we need a class of representable sets which is closed under linear maps. A
possible choice is the parallelepipeds in Rn. A parallelepiped in Rn may be
written as p := c + B · r, where c ∈ Rn, B ∈ Rn×n and r ∈ In. We will
say that p is representable if c,B and r are. The code of a representable
parallelepiped is obviously (c,B, r).

Using parallelepipeds with linear maps we would compute the images
exactly apart from the rounding errors. But we can expect a very good
upper bound.

250 M. Mrozek and P. Zgliczyński

8.1. Rearrangement. An important problem concerning computations
with a given class of representable sets is enclosing sets which appear during
computations by a representable set. We would like to consider here a
relatively simple problem of enclosing with a parallelepiped the sum of a
parallelepiped and a small interval set. Thus a parallelepiped c+ P · r and
an interval v are given and we want to find a possibly small parallelepiped
c+ P1 · r1 such that

c+ P · r + v ⊂ c+ P1 · r1.

We will consider a slightly more general problem, where P and P1 are re-
placed by interval matrices P and P1. Obviously it is sufficient to find a
matrix P1 and an interval vector r1 such that

P · r + v ⊂ P1 · r1.

The simplest choice is to fix P1 arbitrarily and search only for r1. To do so we
introduce the concept of a weak inverse of an interval matrix. We say that an
interval matrix P∗ ∈ In×n is a weak inverse of an interval matrix P ∈ In×n
if there exists a non-singular matrix P ∈ P such that P−1 ∈ P∗. Obviously
the weak inverse is not unique. Note that to find a weak inverse of a given
interval matrix P it is enough to find an enclosure of the inverse matrix of a
non-singular selector of P. In particular, if P contains an orthogonal matrix
then PT is its weak inverse.

For P,P1 ∈ In×n and r,v ∈ In put

(11) Rearr1(P,P1, r,v) := (P∗1 ·̂P) ·̂ r +̂ P∗1 ·̂ v.

We have the following lemma.

Lemma 8.1. Assume P1 is an interval matrix and P∗1 is its weak inverse.
Then for r1 := Rearr1(P,P1, r,v) we have the inclusion

P · r + v ⊂ P1 · r1.

P r o o f. We have
P · r + v ⊂ P1 ·P∗1 · (P · r + v) ⊂ P1 · (P∗1 ·P · r + P∗1 · v)

⊂ P1 · (P∗1 ·̂P ·̂ r +̂ P∗1 ·̂ v) ⊂ P1 · r1.

Obviously in practice we try to choose P1 in such a way that P1 ·r1 is as
small as possible. Note that we put explicit parentheses around the matrix
P∗1 ·̂ P in the formula (11) requiring that the computation of the product
precedes the multiplication by r. The reason is as follows. Matrices in the
product P∗1 ·̂P in general are of relatively small size compared to the size of r,
therefore the potential wrapping effect in this computation is also relatively
small. The biggest wrapping will be introduced in the multiplication by r.
Hence it is worth to put maximum effort to minimize this wrapping. There

Set arithmetic and enclosing problem 251

is no wrapping in the multiplication by a matrix when the off-diagonal el-
ements of the matrix are non-negative (see Anguelov [2], [1]), in particular
when the matrix is the identity matrix. Thus one can expect small wrapping
when the matrix is close to the identity. When P1 is a selector of P, the
matrix P∗1 ·̂ P contains the identity. Thus, since the size of this matrix is
usually small, it is close to the identity and one can expect small wrapping.

A well known fact in numerical analysis is that inverting a matrix nu-
merically is not a good procedure if the goal is to solve a linear equation.
It turns out that finding numerically an inverse of P1 may be replaced in
the rearrangenent problem by solving a suitable interval linear equation. To
explain this assume that P ∈ In×n, P1 ∈ Rn×n is an invertible selector of P,
R := P −̂P1 and r,v ∈ In. Let t be an interval vector obtained by applying
Gauss elimination to the linear interval equation

P1 ·̂ x = R ·̂ r +̂ v.

Note that t in particular encloses the set of solutions of all linear equations

P1 · x = b, where x ∈ Rn and b ∈ R ·̂ r +̂ v.

Put

(12) Rearr2(P, P1, r,v) := r +̂ t.

We have the following lemma.

Lemma 8.2. Assume P1 is an invertible selector of P. Then for r1 :=
Rearr2(P,P1, r,v) we have the inclusion

P · r + v ⊂ P1 · r1.

P r o o f. Take u ∈ P · r + v. Then u = P · r + v for some P ∈ P, r ∈ r
and v ∈ v. Let R := P − P1. We have

u = P1 · P−1
1 · (P · r + v) = P1 · (P−1

1 · (P1 +R) · r + P−1
1 · v)

= P1 · (r + P−1
1 ·R · r + P−1

1 · v)

= P1 · (r + P−1
1 · (R · r + v)) ∈ P1 · (r + t) ⊂ P1 · r1.

8.2. Parallelepipeds. We now turn to the Lohner method of parallelepi-
peds in enclosing f(S). We recall that we consider a function f : Rn → Rn
such that for a certain rational map g : Rn → Rn and a small continuous
map w : Rn → Rn the decomposition (1) holds.

Let x := x+ B · r ⊂ D be a fuzzy parallelepiped.

Lemma 8.3. Assume B1 is an interval matrix , B∗1 is a weak inverse of
B1, (x1,x0

1) is a decomposition of 〈g〉(x) and

r1 := Rearr1(Jxg ·̂B,B1, r,w +̂ x0
1).

Then f(x+ B · r) ⊂ x1 + B1 · r1.

252 M. Mrozek and P. Zgliczyński

P r o o f. Let u ∈ x+B · r. Then u = x+B · r for some B ∈ B and r ∈ r.
Thus we have

f(u) = g(u) + w(u) ∈ g(x) + Jxg ·B · r + w(u)

⊂ 〈g〉(x) + Jxg ·B · r + w ⊂ x1 + Jxg ·B · r + w + x0
1

⊂ x1 + (Jxg ·̂B) · r + (w +̂ x0
1)

and the conclusion follows from Lemma 8.1.

Note that an analogous lemma may be formulated in terms of Rearr2.
The above lemma guarantees the correctness of the enclosure for any

choice of B1 but obviously we still try to choose B1 in such a way that
the resulting enclosure is possibly small. Unless there is a special reason to
do otherwise we take B1 as a singleton B1. Also, as we explained in the
preceding section a good idea is to take B1 as a selector of Jxg ·̂B.

However there is a problem with the described method. It requires con-
structing a weak inverse of B1. This may lead to very large interval matrices
if B1 is ill-conditioned.

8.3. Cuboids. To avoid the problem with ill-conditioned matrices we can
take cuboids instead of parallepipeds as our representable sets. A cuboid is
a special case of a parallelepiped: q := c+ Q · r, where c ∈ Rn, r ∈ In and
Q is an interval matrix which contains an orthogonal matrix.

Let x := x+ Q · r ⊂ D be a cuboid. We have the following lemma.

Lemma 8.4. If Q1 is an interval matrix such that Q1 contains an or-
thogonal matrix , (x1,x0

1) is a decomposition of 〈g〉(x) and

r1 := Rearr1(Jxg ·̂Q,Q1, r,w +̂ x0
1),

then f(x+ Q · r) ⊂ x1 + Q1 · r1.

P r o o f. Let Q1 be an orthogonal selector of Q1. Then id = Q1 · QT1 ∈
Q1 ·QT

1 , therefore QT
1 is a weak inverse of Q1 and the result follows from

the preceding lemma.

To keep wrapping small Lohner proposes to take as Q1 the orthogonal
factor in the orthogonal-triangular decomposition of a selector of Jxg ·̂B.

8.4. Doubletons. The need for inverting matrices in the Lohner method
arises from the fact that in the course of computation there appear some ex-
tra interval vectors (for instance nonlinear terms in the function w), which
have to be incorporated into a parallelepiped enclosure as in Lemma 8.1.
However, if these interval vectors are small with respect to the size of the
set S, then it is worth keeping the extra terms separately, so that the matrix
inversion problem will be solved only with respect to small terms. In other
words we use sets of the form x+C ·r0+s, where x is a vector, C is a matrix,

Set arithmetic and enclosing problem 253

r0 is an interval vector and s is a small set from a certain class of repre-
sentable sets. We call such sets doubletons (Lohner calls the corresponding
method an inner enclosure). The code of a representable doubleton consists
of (x,C, r0) and the code of s. Formally a doubleton is the algebraic sum of
a parallelepiped and a representable set s and we want to keep them sepa-
rated in this way. The parallelepiped x + C · r0 is used to store the main
part of the image of the set S as if there were no additional terms present in
the course of computation. Here we avoid multiplying inverted matrices by
a relatively large interval set r0. The set s collects all the remainders which
appear during the computation. In practice we may take s in the form of
an interval set, another parallelepiped, a cuboid or any other representable
set in a class for which we have an algorithm encl which for a given set s in
this class and given A ∈ In×n,v ∈ In constructs a set encl(A,v, s) in this
class such that

A · s + v ⊂ encl(A,v, s).

Thus let x := x+ C · r0 + s ⊂ D be a doubleton.

Lemma 8.5. Assume B1 is an interval matrix , B∗1 is a weak inverse of
B1, C1,C0

1 is a decomposition of Jxg ·̂ C, and (x1,x0
1) is a decomposition

of 〈g〉(x). Then

f(x+ C · r0 + s) ⊂ x1 + C1 · r0 + encl(Jxg,w +̂ x0
1 +̂ C0

1 ·̂ r0, s).

P r o o f. Let u ∈ x+C · r0 + s. Then u = x+C · r0 + s for some r0 ∈ r0

and s ∈ s. Thus we have

f(u) = g(u) + w(u) ∈ g(x) + Jxg · C · r0 + Jxg · s+ w(u)
⊂ 〈g〉(x) + Jxg · C · r0 + Jxg · s+ w

⊂ x1 + C1 · r0 + Jxg · s+ (w + x0
1 + C0

1 · r0)

⊂ x1 + C1 · r0 + Jxg · s+ (w +̂ x0
1 +̂ C0

1 ·̂ r0)

⊂ x1 + C1 · r0 + encl(Jxg,w +̂ x0
1 +̂ C0

1 ·̂ r0, s).

8.5. Elliptic sets. An elliptic set (an ellipsoid) in Rn may be written
as e := c + L · b, where c ∈ Rn, L ∈ Rn×n and b is a Euclidean ball. The
elliptic set e is representable if c, L and b are representable.

Elliptic sets as a tool in the enclosing problem were introduced by A.
Neumaier [13] and we refer the reader there for a very clear presentation of
an enclosing problem algorithm based on elliptic sets.

8.6. Large or irregular sets. When the set S is very large or has an
irregular shape, a covering strategy may be used to obtain a good upper
bound. We start with a certain family C of representable sets which forms

254 M. Mrozek and P. Zgliczyński

a locally finite minimal covering of Rn. We call the sets in C elementary
representable sets. Possible choices of elementary representable sets are for
example: a family of small representable intervals in Rn forming a grid in Rn
or a collection of balls in Rn of fixed representable radius and centres at a
grid of representable vectors in Rn. We then define representable sets as sets
which are finite unions of elements in C. The code for such sets is just the
list in a certain fixed order of the elements of the union. If S is represented
by the union of s1, . . . , sn then f(S) ⊂ f(s1) ∪ . . . ∪ f(sn) and the problem
of enclosing f(S) is reduced to enclosing the sets f(si) for i = 1, . . . , n.

9. Numerical examples. We tested the methods discussed in this
paper on dynamical systems obtained from:

1. the classical Rössler equations,
2. the classical Lorenz equations,
3. a three-dimensional ODE derived form the Kuramoto–Sivashinsky

equations,
4. the Hénon map.

In the first three cases we took for f the h-translation along the trajec-
tories of the flow, and for its rational approximation g the 5th order Taylor
method. In the case of the Hénon map we took the Hénon map itself as both
f and g.

We performed two kinds of tests: blowUp and Poincaré map.

BlowUp test. We iterated the process of enclosing a small initial set until
the ratio of the size of the enclosure to the size of the initial set was above
a prescribed value (later called the blowUp limit).

Poincaré map test . We compute the Poincaré map P for a flow induced
by an ODE on some section Θ, which was relevant for the computer assisted
proofs [4], [7], [16]. We are interested in two quantities. The first one is L,
the ratio of the size of enclosure of P (x) to the size of the initial set x. We
call L a computed Lipschitz constant .

Another quantity is a local computation cost for a given method denoted
by Cl. We define Cl as follows: Let c be the time (cost) of the computation
of x. We set

(13) Cl = Lc.

We justify the above definition as follows. Our goal is to compute P (S)
for some set S with a prescribed error ε > 0. Let S ⊂

⋃k
i=1 xi. Then C, the

Set arithmetic and enclosing problem 255

total cost of computation of P (S), is given by

C = kc.

Observe that the size of xi is given by the error equation

(14)
diam(xi)L

2
< ε.

From this we see that

(15) k ≈ diam(S)d

diam(x)d
≥ Ld

(
diam(S)

2ε

)d
where d is the dimension of S. Hence we find that

(16) C ∼ Ldc.

In our test examples we have d = 1.
Observe that in (14) we tacitly assumed that the only source of error in

the computation of P (S) is related to space discretization. In real computa-
tions we also have round-off errors and errors related to time discretization.
For discussion of these errors and their dependence upon various numerical
methods the reader is referred to [18].

9.1. Rössler equations. The Rössler equations are given by

(17)
x′ = − y − z,
y′ = x+ by,

z′ = b+ y(x− a),

where a = 5.7 and b = 0.2.
Let P be the Poincaré map for the section Θ = {x = 0, y < 0,

−y − z > 0}. This map was studied in [17]. The observed Poincaré return
time belongs to (4.5, 6.5).

Tests are performed with time step h = 0.0025 for the interval sets
v1 = (0,−10.2, 0) + {0} × [−5 · 10−6, 5 · 10−6]2, v2 = (0,−3.8, 0) + {0} ×
[−0.001, 0.001]2. For the blowUp test we set blowUpLimit = 100 for v1 and
blowUpLimit = 10 for v2.

The results of tests are contained in Tables 1 and 2. The symbol ∞ in
Table 2 means that due to blow up of the size of the set during computations,
we were unable to compute the Poincaré map.

The results of blowUp tests show that we have a significant wrapping
effect. No blow up was observed for interval and cuboid doubletons. The
failure of performance for a parallelepiped doubleton is related to problems
with inversion of ill-conditioned matrices.

256 M. Mrozek and P. Zgliczyński

Table 1. BlowUp times for the Rössler system

Sets v1 v2
Logarithmic balls:

euclidean 1.67 7.77
max 1.404 1.153
sum 1.449 1.92

Balls:

euclidean 1.359 0.47
max 1.313 0.48
sum 1.215 0.39

Single sets:

interval 1.725 1.98
parallelepiped 4.595 3.73
cuboid 1.842 8.125
ellipsoid 4.36 3.39

Doubletons:

interval > 10 > 10
parallelepiped 4.595 3.73
cuboid > 10 > 10

Table 2. Results of the Poincaré map test for the Rössler system

Sets L(v1) Cl(v1) L(v2) Cl(v2)

Logarithmic balls:

euclidean 1.33 · 104 1 3.53 1
max ∞ ∞ ∞ ∞
sum ∞ ∞ ∞ ∞
Balls:

euclidean ∞ ∞ ∞ ∞
max ∞ ∞ ∞ ∞
sum ∞ ∞ ∞ ∞
Single sets:

interval 4440 0.71 1530 950
parallelepiped ∞ ∞ ∞ ∞
cuboid 435.7 0.073 3.23 2.04
ellipsoid ∞ ∞ ∞ ∞
Doubletons:

interval 4.99 8.1 · 10−4 2.26 1.39
parallelepiped ∞ ∞ ∞ ∞
cuboid 4.96 8.4 · 10−4 2.21 1.41

In the Poincaré map test we get qualitatively different results for v1

and v2.

Set arithmetic and enclosing problem 257

From the point of view of rigorous numerics these sets differ significantly.
v2 represents an example of an easy set , whereas v1 is a difficult set . This
distinction is justified as follows: the wrapping effect during the computation
of P (v2) is small, whereas for P (v1) it is very big. As a result we see that
for v2 the winner (minimal Cl) are euclidean logarithmic balls, but interval
and parallelepiped doubletons perform almost as good.

But for the difficult set v1 the doubletons, cuboid and interval, are nearly
103 times better than euclidean logarithmic balls.

In [17], the Poincaré map was computed using euclidean logarithmic
balls and the total computation time was around 50 hours. From Table 2 it
follows that using doubletons we can redo these computations in just a few
minutes.

9.2. Tests for the Lorenz equation, Kuramoto–Sivashinsky equations and
Hénon map. The Lorenz equations are given by

(18)
x′ = s(y − x),
y′ = (r − z)x− y,
z′ = xy − qz,

where s = 10, r = 28 and q = 8/3. We set Θ = {z = r− 1}. We made tests
for the set x = (0.137, 0.378, 27)+ [−0.0005, 0.0005]2×{0}. The time step h
was equal to 0.003. This is an example of a difficult point for computations
from [4]. For the blowUp test we set blowUpLimit equal to 100.

Table 3. BlowUp test results

Set Lorenz K-S Hénon

interval 0.59 2.28 13
parallelepiped 0.42 2.71 7
cuboid 1.14 2.63 13
ellipsoid 0.44 2.84 8

Doubletons:

interval 1.23 2.87 13
parallelepiped 0.42 2.71 7
cuboid 2.54 2.86 13

Balls:

euclidean 0.28 1.71 8
max 0.23 1.56 5
sum 0.25 1.68 8

Logarithmic balls:

euclidean 0.61 2.14
max 0.41 1.56
sum 0.45 1.68

258 M. Mrozek and P. Zgliczyński

We also tested the following three-dimensional ODE derived from the
Kuramoto–Sivashinsky equations (see [12]):

(19)

x′ = y,

y′ = z,

z′ = −d2ly − x2/2 + d6,

where d = 1 and l = 1.
The Hénon map is given by

(20) H(x, y) = (1− ax2 + y, bx)

where a = 1.4 and b = 0.3. We test x = (1, 1) + [−0.5 ·10−5, 0.5 ·10−5]2. For
the blowUp test we set blowUpLimit equal to 100.

Table 3 collects the results of the blowUp test.

Table 4. Results for Poincaré map tests, local computation cost comparison

Set Lorenz K-S

Logarithmic balls:

euclidean 1.00 1.00
max ∞ 2.14
sum ∞ 3.39

Sets:

interval 62.9 5.08
parallelepiped ∞ 2.86
cuboid 0.59 3.66
ellipsoid ∞ 2.42

Doubletons:

interval 0.39 2.82
parallelepiped ∞ 2.90
cuboid 0.31 2.93

Balls:

euclidean ∞ 2.46
max ∞ 2.17
sum ∞ 3.47

From Tables 3 and 4 one can see that the winner for the Lorenz equa-
tion is a doubleton cuboid, but it is only three times better than euclidean
logarithmic balls, which were used in [4].

References

[1] R. Angue lov, Wrapping function of the initial value problem for ODE : Applica-
tions, Reliab. Comput. 5 (1999), 143–164.

Set arithmetic and enclosing problem 259

[2] R. Angue lov and S. Markov, Wrapping effect and wrapping function, ibid. 4
(1998), 311–330.

[3] G. F. Cor l i s s and R. Rihm, Validating an a priori enclosure using high-order
Taylor series, in: Scientific Computing and Validated Numerics (Wuppertal, 1995),
Math. Res. 90, Akademie-Verlag, Berlin, 1996, 228–238.

[4] Z. Gal ias and P. Zg l i czy ń sk i, Computer assisted proof of chaos in the Lorenz
system, Phys. D 115 (1998) 165–188.

[5] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equa-
tions I , Nonstiff Problems, Springer, Berlin, 1987.

[6] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary
initial and boundary value problems, in: Computational Ordinary Differential Equa-
tions, J. R. Cash and I. Gladwell (eds.), Clarendon Press, Oxford, 1992.

[7] K. Mischa ikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted
proof , Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66–72.

[8] —, —, Chaos in the Lorenz equations: a computer assisted proof. Part II : details,
Math. Comput. 67 (1998), 1023–1046.

[9] K. Mischa ikow, M. Mrozek and A. Szymczak, Chaos in the Lorenz equations:
a computer assisted proof. Part III : the classical parameter values, submitted.

[10] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[11] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs,

Computers Math. 32 (1996), 83–104.
[12] M. Mrozek and M. Że lawsk i, Heteroclinic connections in the Kuramoto–Sivashin-

sky equation, Reliab. Comput. 3 (1997), 277–285.
[13] A. Neumaier, The wrapping effect , ellipsoid arithmetic, stability and confidence

regions, Computing Suppl. 9 (1993), 175–190.
[14] M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci. 4 (1956),

253–259.
[15] —, Approximation and inequalities in the calculus of approximations. Classification

of approximate numbers, ibid. 9 (1961), 241–245.
[16] P. Zg l i czy ń sk i, Rigorous verification of chaos in the Rössler equations, in: Sci-

entific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang
(eds.), Akademie-Verlag, Berlin, 1996, 287–292.

[17] —, Computer assisted proof of chaos in the Hénon map and in the Rössler equations,
Nonlinearity 10 (1997), 243–252.

[18] —, Remarks on computer assisted proof of chaotic behavior in ODE’s, in prepara-
tion.

Institute of Computer Science
Jagiellonian University
30-072 Kraków, Poland
E-mail: mrozek@ii.uj.edu.pl

School of Mathematics
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.
E-mail: piotrz@math.gatech.edu

Reçu par la Rédaction le 30.4.1999

