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Mellin analysis of partial differential equations

in papers of B. Ziemian

by Henryk Ko lakowski (Warszawa)

Abstract. Existence and regularity theorems for Fuchsian type differential operators
and the theory of second microlocalization are presented.

1. Introduction. The study of solutions to singular elliptic partial dif-
ferential equations is quite different from that of solutions to elliptic equa-
tions. In the latter case solutions are completely controlled by the behaviour
of their Fourier transforms at infinity (first wave front set). In the case of
corner equations the Fourier transform is replaced by the multidimensional
Mellin transform. Using special spaces of distributions (subspaces of Mellin
transformable distributions) one can measure local regularity of solutions to
such equations.

Let a, b ∈ R
n, a = (a1, . . . , an), b = (b1, . . . , bn). Then a < b denotes

aj < bj for j = 1, . . . , n. Let R
n
+ = {x ∈ R

n : x > 0}, I = (0, r] = {x ∈ R
n
+ :

x ≤ r}, r = (r, . . . , r) ∈ R
n
+, r < 1, 1 = (1, . . . , 1). We write

∂

∂x
=

(
∂

∂x1
, . . . ,

∂

∂xn

)
= (D1, . . . ,Dn), x

∂

∂x
=

(
x1

∂

∂x1
, . . . , xn

∂

∂xn

)
.

For y ∈ R
n we define µ(y) = (e−y1 , . . . , e−yn).

Let a ∈ R
n. We denote by Ma = Ma(I) the complex vector space of

functions ϕ ∈ C∞(I) such that for ν ∈ N
n
0 ,

̺a,ν(ϕ) = sup
x∈I

|xa+ν+1Dνϕ(x)| <∞

with the topology given by the seminorms ̺a,ν . The space M(ω) = M(ω)(I)
for ω ∈ (R ∪ {∞})n is the inductive limit

M(ω) = lim−→
a<ω

Ma

2000 Mathematics Subject Classification: 35A07, 35A20, 35A27.
Key words and phrases: Mellin transformation, singular elliptic operators, propaga-

tion of singularities.

[27]



28 H. Ko lakowski

and M ′
(ω) is the dual of M(ω). The space M ′ =

⋃
ωM

′
(ω) ⊂ D′(Rn

+) is called

the space of Mellin (transformable) distributions on I. If u ∈M ′
(ω) then the

Mellin transform of u is defined by

Mu(z) = u[x−z−1] for z ∈ C
n, Re z < ω.

Since M(x ∂
∂x
u)(z) = zMu(z) the Mellin transformation is well suited for

studying Fuchsian type differential operators of the form R = R(x, x∂/∂x)
where R(x, z) is a polynomial of degree m in z ∈ C

n. The space of Mellin

distributions on R
n
+ for every α ∈ R

n is defined as the dual M
′
α of the space

Mα = Mα(Rn
+) = {σ ∈ C∞(Rn

+) : (xα+1σ) ◦ µ ∈ S(Rn)}

with the topology induced from the space S(Rn). The Fourier–Mellin trans-

form of u ∈ M
′
α is the distribution

Mαu = F−1(eαs(u ◦ µ)) ∈ S′(Rn)

where the inverse Fourier transform F−1 is defined as

F−1ψ(ξ) =
\

Rn

eisξψ(s) ds for ψ ∈ S(Rn).

2. Local existence and regularity theorems. Let R be a second
order partial differential operator on an open set 0 ∈ U ⊂ R

2,

R =
∑

|ν|≤2

aν(x)

(
x1

∂

∂x1

)ν1
(
x2

∂

∂x2

)ν2

where aν are smooth functions on U and

1) R has a regular singularity at zero: a20(0) · a02(0) 6= 0, aν(0) = 0
otherwise,

2) R is degenerate elliptic in U : a20(x) · a02(x) > 0 for x ∈ U .

Theorem 1 (Z. Szmydt and B. Ziemian [2]). Let w ∈ D′(U) be of order

(s1, s2) about zero (i.e. w = Ds1

1 D
s2

2 f , f continuous on U). Then for every

proper subcone Γ ⊂ R2
+ and α = (α1, α2) ∈ R2 such that α1 + α2 < −s1 −

s2 there exists a neighbourhood V of zero in R
2 and a Mellin distribution

u ∈ M
′
α such that

Ru = w on Γ ∩ V.

In [3], the cone Γ is replaced by a set Γ̺ ⊂ R
2
+, ̺ = (̺1, ̺2) ∈ R

2
+,

̺1 < 1 < ̺2, which is tangent to {x1 = 0} of order 1/̺1 −1 and to {x2 = 0}
of order ̺2 − 1 (explicitly Γ̺ = {(x1, x2) : x1 > 0, x̺2

1 < x2 < x̺1

1 }, and R
is a differential operator as in Theorem 1.

Theorem 2 (Z. Szmydt and B. Ziemian [3]). Let w ∈ D′(U) be of order

(s1, s2) about zero. Then for every Γ̺ ⊂ R
2
+ and α = (α1, α2) ∈ R

2 such
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that

α1 + ̺2α2 < −s1 − ̺1s2, α1 + ̺2α2 < −s1 − ̺2s2

there exists a neighbourhood V of zero in R
2 and a Mellin distribution

u ∈ M
′
α such that

Ru = w on Γ̺ ∩ V.

A continuation of [2] and [3] is [5].

Denote by M ′s
(ω) the subspace of u ∈ M ′

(ω) such that Mu(z) is

O(
∏n

j=1(1+ |Im zj |)
s) as |Im z| → +∞ locally uniformly in {Re z = x < ω}.

Let Ω ⊂ R
n−1
+ be an arbitrary open bounded set and ΓK (K = Ω ) be the

“curved cone”: ΓK = ψ(R1
+ ×K) where

ψ : R
1
+ ×K ∋ (t, ̺) 7→ x = (t, t̺1 , . . . , t̺n−1) ∈ R

n
+.

Let u ∈M ′. We say that u ∈M ′s
(ω) ΓK-locally at zero if there exists a cut-

off function κ subordinate to ΓK such that κu ∈M ′s
(ω). Let R = R(x, x∂/∂x)

where R(x, z) is a polynomial of degree m in z with smooth coefficients on
U , P (z) = R(0, z) (the principal Mellin symbol of R at zero). By assumption

R = P

(
x
∂

∂x

)
−Q

(
x, x

∂

∂x

)
,

Q

(
x, x

∂

∂x

)
= x1Q1

(
x, x

∂

∂x

)
+ . . .+ xnQn

(
x, x

∂

∂x

)
,

where Q1, . . . , Qn are differential operators of order m and for every α ∈ R
n

there exist A and c0 such that (ellipticity condition)

|P (α + iβ)| > c0

n∏

j=1

(1 + |βj |)
m for |β| ≥ A.

For α ∈ R
n define l(α, ̺) = α1 + ̺1α2 + . . . + ̺n−1αn for ̺ ∈ K.

Theorem 3 (Z. Szmydt and B. Ziemian [4], [5]). Suppose w ∈ M ′s
(ω),

where ω ∈ R
n, s ∈ R and max̺∈K l(α − ω, ̺) < 0. Then there exist

u ∈ M ′s−m
(α) ΓK-locally and an open neighbourhood W of zero in R

n such

that

Ru = w on ΓΩ ∩W.

Regularity of solutions to degenerate elliptic operators is also studied
in [6] and [7]. Such operators were studied e.g. by M. Kashiwara and R.
Melrose. These operators are 2-microelliptic in direction δx ∈ R

n
+ (cf. [8]).

Let Ω1 be an open subset of C such that together with every ζ ∈ Ω1 it
also contains the half-line ζ+R− (Ω1 is an R−-connected open subset of C)
such that for every ζ ∈ Ω1 the set of points not in Ω1 whose real part is less



30 H. Ko lakowski

than Re ζ is compact. In applications Ω1 = C\
⋃k

j=1Lj where Lj = ξj +R+

for some ξ1, . . . , ξk. Let ζ = Az, where

ζ1 = z1 + . . .+ zn, ζj = zj for j = 2, . . . , n.

Set Ω = A−1(Ω1 × C
n−1) and let s ∈ R. We say that a Mellin distribution

u with support in a proper cone Γ ⊂ R
n
+ belongs to M(Ω; s) if Mu is

holomorphic in Ω and for any open neighbourhood W of C \Ω1,

|(M◦ A−1)(α+ iβ)| ≤ C(1 + |β|)s for α+ iβ ∈ Λ = (C \W ) × C
n−1

where C = C(W,α) is locally bounded in α ∈ ReΛ. Let P be a polynomial
in C

n, and α̃ ∈ R
n. Set ã = Aα̃ and P(ζ) = P ◦A−1(ζ), and let (1/P)ã be a

regularization to a distribution in S′(Rn) of the function b 7→ (1/P)(ã+ ib),
ζ = (ζ1, ζ

′), ζ ′ ∈ C
n−1. Let Ω1 ⊂ C be the largest subset such that the

function

ζ 7→ C̃(ζ)=(2π)−n(1/P)ã[F (a+iγ)K(ζ− ã−iγ)] for Re ζ1<ã1, ζ
′∈C

n−1

extends to a holomorphic function on (Ω1 ∩ Ω̃1) × C
n−1; here F is a holo-

morphic function on Ω̃1 such that for any open neighbourhood W of C \ Ω̃1

there exist constants C and M such that

|F (a+ ib)| ≤ C(1 + |b|)M on (C \W ) × C
n−1

locally uniformly in a ∈ Re Ω̃1 × R
n−1, and Ω̃1 is an open subset of C

with the same properties as Ω1, K(ζ) = (Mκ) ◦ A−1(ζ), κ = ϕ · κ̃ is a
conical cut-off function, i.e. ϕ is a test function, ϕ ≡ 1 near the origin and
κ̃ ∈ C∞(Rn

+) is homogeneous of order 0, supported by a proper subcone
of R

n
+. The radial characteristic set Charα̃ P is defined by

Charα̃ P = C
n \ A−1(Ω1 × C

n−1).

This set depends on the geometry of the zero set {P (z) = 0}. If P is a
polynomial in one variable z ∈ C, then for α ∈ R, Charα P = {z ∈ C :
P (z) = 0,Re z ≥ α}.

Let δx0 ∈ R
n
+ and u ∈ M

′
ω for some ω. We say that u ∈M(Ω; ̺) 2-locally

at (0, δx0) if there exists a conical cut-off function κ with κ̃(δx0) 6= 0 and
κu ∈M(Ω; ̺). As in [4], R = P −Q, P (z) = R(0, z), where R is a singular
elliptic operator of order m.

Theorem 4 (B. Ziemian). Let w ∈ M(Ω; s) 2-locally at (0; δx0). If

u ∈ M
′
α satisfies

Pu = Q(κu) + κw in R
n
+

then κu ∈M(Ω \
⋃∞

j=0{Charα̃ P + j}; s −m), where j = (j, 0, . . . , 0) ∈ N
n
0 .

It is worth mentioning that usually solutions to the equation Ru = w
have continuous radial asymptotics even though the right-hand side has a
discrete asymptotic expansion.



Mellin analysis of PDEs 31

As we see the notion of the radial characteristic set plays an important
role in regularity theory of solutions to corner elliptic equations. Below we
describe this set for a class of polynomials in C

2.

Let P (z) =
∑

|ν|=m bνz
ν be a polynomial of order m in two complex

variables with constant coefficients and let

P(ζ1, ζ2) = P (ζ1 − ζ2, ζ2) = am

m∏

j=1

(ζ2 − cj(ζ1)).

By assumption P is non-characteristic in (−1, 1) and P has no multiple
polynomial factors. Define the discriminant of P by

∆ =
∏

j<k

(cj(ζ1) − ck(ζ1)).

Fix α̃ ∈ R
2 and let ã = Aα̃. Let θν (ν = 1, . . . , N) be all points in C such

that ∆(θν) = 0. Denote by Bµ (µ = 1, . . . ,M) all points in R such that for
some j, Re cj(ã1 + iBµ) = ã2. Define

Lµ = R + iBµ, L̃ν = R+ + θν , Z = {ζ1 : ∆(ζ1) = 0},

L =

M⋃

µ=1

Lµ ∪

N⋃

ν=1

L̃ν ∪ Z, Lã = L ∩ {Re ζ1 ≥ ã1}.

In this situation we can write Charα̃ P = A−1(Lã ×C), and a refinement of
the regularity theorem can be proved.

3. Second microlocalization. It is well known that non-linear singular-
ities do not have to propagate along bicharacteristic curves. In other words
different non-linear waves may interact producing new singular waves. The
most fundamental example here is the case of a semilinear wave operator
in two space variables �u = f(x, u), x ∈ R

3. To study such waves we need
more information on the way the solution approaches the singular set. This
is achieved by a further localization of solution called the second microlo-
calization. It was studied by M. Kashiwara, J. M. Bony and others. In the
case when the singular set reduces to the origin, second microlocalization
consists (roughly speaking) in localizing u (in addition to microlocalizing
it) to a conical neighbourhood in the x space of a vector δx̃. The effect is
then measured in terms of the scale of suitable weighted Sobolev spaces. For
instance one may use the space SP (s, s′).

Let u ∈ D′(Rn \ 0), u ≡ 0 in the unit ball. Let s + s′ be a non-negative
integer. We say that u ∈ SP (s, s′) if

‖x‖−s+|λ|Dλu ∈ L2(Rn) for 0 ≤ |λ| ≤ s+ s′, λ ∈ R
n, |λ| = λ1 + . . .+λn.
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For remaining (s, s′) the spaces SP (s, s′) are defined by duality and inter-

polation. Fix δx̃ ∈ R
n
+, ξ̃ ∈ R

n and let:

1◦ ̺ ∈ C∞(i(Rn \{0})) be a homogeneous function of order zero defined

in a conical neighbourhood of iβ̃ = iδx̃ξ̃, ̺(iβ̃) 6= 0. The function ̺ is
extended to R

n + i(Rn \ {0}) by putting ̺(z) = ̺(Im z).
2◦ κ=ϕ·κ′ where ϕ is a C∞

0 bump function at zero and κ′∈C∞(Rn \ {0})
is a cut-off function in a conical neighbourhood of δx̃, i.e., suppκ′ ⊂ R

n
+, κ′

is homogeneous of order zero and κ′(δx̃) 6= 0.
3◦ χ ∈ C∞(i(Rn \ {0})) be a function with suppχ ⊂ {iτ : 1/4 ≤ ‖τ‖}

and χ(iτ) ≡ 1 for ‖τ‖ ≥ 1/2. The function χ is extended to R
n + i(Rn \{0})

by putting χ(z) = χ(Im z).

Definition 1 (J. M. Bony [1]). Let (0, ξ) ∈ T ∗
0 (Rn), δx̃ ∈ R

n
+, δξ̃ = 0.

Let u ∈ SP (s,−∞) =
⋃

σ SP (s, σ). We say that u belongs to SP (s, s′)

2-microlocally at (x̃, ξ̃, δx̃, δξ̃) = (0, ξ̃, δx̃, 0) if there exist functions ̺, κ, χ
satisfying conditions 1◦, 2◦, 3◦ respectively such that

P̃ (x,D)u = χ(xD)̺(xD)κ(x)u ∈ SP (s, s′) (xD = (x1D1, . . . , xnDn)).

If u ∈ SP (s,−∞) we define its SP (s, s′)-second wave front set (denoted
by 2WFSP (s,s′)) as a closed subset of the space

(T ∗
R

n \ T ∗
0 (Rn)) ∪NT ∗

0
(Rn)T (T ∗

R
n)

consisting of the points (x, ξ) 6∈ T ∗
0 (Rn) such that u 6∈ SP (s + s′, 0) mi-

crolocally at (x, ξ) (observe that outside of zero, SP (s, s′) = SP (s + s′, 0)
coincides with the usual Sobolev space) and of the points (0, ξ, δx, 0) such
that u 6∈ SP (s, s′) 2-microlocally.

This definition however is not practical and one would like to have a def-
inition in terms of growth of a suitable transformation. Clearly the Fourier
transformation is not convenient here since the spaces SP (s, s′) are not
isotropic. Instead one can use the approach based on the Mellin transforma-
tion (Bony uses in this situation complicated techniques of Paley–Littlewood
decompositions).

Let Γ ⊂R
n
+ be a proper cone. If u∈SP (s, s′), s+ s′∈N0 and suppu⊂Γ

then

(i) Mu ∈ O(
∑n

j=1 Re zj < s− n/2).

(ii) Mu(α + i·) ∈ L2,s+s′

(Rn) = L2(Rn, (1 + ‖β‖)s+s′

) for α such that∑
αj ≤ −n/2.

This leads to the following equivalent definition of the second wave front
set.

Definition 2 ([8]). Let (0, ξ̃) ∈ T ∗
0 (Rn), δx̃ ∈ R

n
+, u ∈ SP (s,−∞).

Then u ∈ SP (s, s′) 2-microlocally at (0, ξ̃, δx̃, 0) if there exist functions
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̺, κ, χ satisfying 1◦, 2◦, 3◦ such that

χ(z)̺(z)M(κu)(z)|z=α+i· ∈ L2,s+s′

(Rn) for α1 + . . .+ αn ≤ s− n/2.

Now we can formulate the main result of [8].

Theorem 5 (Propagation of singularities along outgoing bicharacter-

istics). Let δx̃ = (1, 0), ξ̃ = (0, ξ̃′) and let v ∈ SP (s,−∞) be such that

v ∈ SP (s, σ) 2-microlocally at the points (0, ξ̃, δx, 0) where δx ∈ R
n
+. Sup-

pose w = ∂
∂x1

v and w ∈ SP (s − 1, σ + 1) 2-microlocally at (0, ξ̃, δx̃, 0). If

σ < −1/2 then v ∈ SP (s, σ) 2-microlocally at (0, ξ̃, δx̃, 0).

A similar theorem is true for incoming and second bicharacteristics.
These theorems together give the well known Bony theorem on the propa-
gation of 2-microlocal singularities (see [1]).
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