ANNALES POLONICI MATHEMATICI LXXIV (2000)

Non-solvability of the tangential $\overline{\partial}$ -system in manifolds with constant Levi rank

by GIUSEPPE ZAMPIERI (Vicenza)

Bogdan Ziemian in memoriam

Abstract. Let M be a real-analytic submanifold of \mathbb{C}^n whose "microlocal" Levi form has constant rank $s_M^+ + s_M^-$ in a neighborhood of a prescribed conormal. Then local non-solvability of the tangential $\overline{\partial}$ -system is proved for forms of degrees s_M^- , s_M^+ (and 0).

This phenomenon is known in the literature as "absence of the Poincaré Lemma" and was already proved in case the Levi form is non-degenerate (i.e. $s_M^- + s_M^+ = n - \operatorname{codim} M$). We owe its proof to [2] and [1] in the case of a hypersurface and of a higher-codimensional submanifold respectively. The idea of our proof, which relies on the microlocal theory of sheaves of [3], is new.

1. Main statement. Let M be a real-analytic generic submanifold of $X = \mathbb{C}^n$ of codimension l, and denote by $\overline{\partial}_M$ the antiholomorphic tangential differential on M. Let \mathcal{B}_M be the Sato hyperfunctions on M, denote by \mathcal{B}_M^j the forms of type (0, j) with coefficients in \mathcal{B}_M , and consider the tangential $\overline{\partial}$ -complex:

(1)
$$0 \to \mathcal{B}_M^0 \xrightarrow{\overline{\partial}_M} \mathcal{B}_M^1 \xrightarrow{\overline{\partial}_M} \dots \xrightarrow{\overline{\partial}} \mathcal{B}_M^n \to 0.$$

We shall denote by $\mathrm{H}^{j}_{\overline{\partial}_{M}}$ the *j*th cohomology of (1) (which is denoted by $\mathrm{H}^{j}(\mathbb{R}\mathcal{H}\mathrm{om}(\overline{\partial}_{M},\mathcal{B}_{M}))$ in the language of *D*-modules). In particular $(\mathrm{H}^{j}_{\overline{\partial}_{M}})_{z}$ (*z* a point of *M*) are the germs at *z* of $\overline{\partial}_{M}$ -closed (0, *j*)-forms modulo $\overline{\partial}_{M}$ -exact ones.

It is crucial for our approach to note that the cohomology of (1) is the same as that of $\mathbb{R}\Gamma_M(\mathcal{O}_X)[l]$ (\mathcal{O}_X denoting the holomorphic functions on X); this point of view will always be adopted in our proofs. For an open set $U \subset M$, we shall also consider the analogue of (1) with the sheaves \mathcal{B}_M^j replaced by the spaces $\mathcal{B}_M^j(U)$ of their sections on U. We shall denote by

²⁰⁰⁰ Mathematics Subject Classification: 32C16, 32F10, 32F20.

Key words and phrases: CR manifolds, $\overline{\partial}$ and $\overline{\partial}^b$ problems, tangential CR complex.

^[291]

G. Zampieri

 $\mathrm{H}^{j}_{\overline{\partial}_{M}}(U)$ the cohomology of this complex. Note that $(\mathrm{H}^{j}_{\overline{\partial}_{M}})_{z} = \varinjlim_{U} \mathrm{H}^{j}_{\overline{\partial}_{M}}(U)$ for U ranging through the family of open neighborhoods of z.

Let $T_M^*X \xrightarrow{\pi} M$ be the conormal bundle to M in X, fix $p \in T_M^*X$ $(=T_M^*X \setminus \{0\})$ with $\pi(p) = z$, and choose a real function r which vanishes identically on M and such that dr(z) = p. If $T^{\mathbb{C}}M$ is the complex tangent bundle to M (i.e. $T^{\mathbb{C}}M = TM \cap \sqrt{-1}TM$), we set $L_M(p) = \partial \overline{\partial}r(z)|_{T_z^{\mathbb{C}}M}$ and call it the *Levi form* of M at p. Let $s_M^+(p), s_M^-(p)$ denote the numbers of respectively positive and negative eigenvalues of $L_M(p)$.

THEOREM 1. Let M be a generic real-analytic submanifold of X. Assume there exists a neighborhood V of p such that

(2)
$$s_M^{\pm}(p') \equiv s_M^{\pm}(p) \quad \text{for any } p' \in V.$$

Then

(3)
$$(\mathrm{H}_{\overline{\partial}_{M}}^{j})_{z} \neq 0 \quad \text{for } j = s_{M}^{-}(p), s_{M}^{+}(p), 0.$$

2. Proof of Theorem 1. Let T^*X denote the cotangent bundle to X endowed with the symplectic 2-form $\sigma = \sigma^{\mathbb{R}} + \sigma^{\mathbb{I}}$. Let M be a generic submanifold of X and denote by $\mu_M(\mathcal{O}_X)$ the microlocalization of \mathcal{O}_X along M in the sense of [3]. We shall use the following result by Kashiwara and Schapira:

THEOREM 2 [3, Ch. 11]. Let $p \in \dot{T}_M^* X$ and assume $s_M^-(p') \equiv s_M^-(p)$ for any p' in a neighborhood of p. We can then find a symplectic complex transformation χ from a neighborhood of p to a neighborhood of $\tilde{p} = \chi(p)$ which interchanges $T_M^* X$ and $T_{\widetilde{M}}^* X$ where \widetilde{M} is a hypersurface. Denote by \widetilde{M}^{\pm} the closed half-spaces with boundary \widetilde{M} and outward conormals $\pm \tilde{p}$; we can arrange that \widetilde{M}^- is pseudoconvex. Moreover such a transformation can be quantized so that it gives a correspondence

(4)
$$\mu_M(\mathcal{O}_X)_p[l+s_M^-] \xrightarrow{\sim} \mathbb{R}\Gamma_{\widetilde{M}^+}(\mathcal{O}_X)_{\widetilde{z}}[1].$$

We note that

(5)
$$\mathrm{H}^{j}(\mathbb{R}\Gamma_{\widetilde{M}^{+}}(\mathcal{O}_{X})_{\widetilde{z}}) = \begin{cases} \varinjlim_{B} \mathcal{O}_{X}((\widetilde{M}^{+}) \cap B) / \mathcal{O}_{X}(B) & \text{for } j = 1, \\ 0 & \text{for } j > 1. \end{cases}$$

We also note that the pseudoconvexity of $\widetilde{\widetilde{M}}^-$ implies that the cohomology of degree 1 is $\neq 0$.

(In the preceding theorem M need not be real-analytic or satisfy rank $L_M(p') \equiv \text{const}$; only $s_M(p') \equiv \text{const}$ is required.)

THEOREM 3 ([6]). Let M be generic real-analytic and assume rank $L_M \equiv$ const at p (i.e. (2) of §1 holds). Then we may find a complex homogeneous

symplectic transformation $\chi : T^*X \xrightarrow{\sim} T^*X' \times T^*Y$ (dim $X' = \operatorname{rank} L_M$) such that

$$T_M^* X \xrightarrow{\sim} T_{M'}^* X' \times Y,$$

where M' is the boundary of a strictly pseudoconvex domain of X'.

Proof. By a complex symplectic homogeneous transformation, we can interchange T_M^*X with the conormal bundle to a hypersurface. Hence we may assume from the beginning that M is a hypersurface. Since rank $L_M \equiv$ const, M is foliated by complex leaves tangent to Ker L_M (cf. [4]). These leaves can be represented as fibers of a real-analytic projection $M \to M_1 =$ M/\sim where \sim identifies all points on the same leaf. Due to the constant rank assumption, it is easy to check that this complex foliation is induced by another foliation $\Lambda \stackrel{\varrho_1}{\to} \Lambda_1$ where $\Lambda = T_M^*X$ and $\Lambda_1 = \Lambda/\sim$. Note that Ker $\varrho_1 = T\Lambda \cap \sqrt{-1}T\Lambda = \text{Ker }\sigma|_{T\Lambda}$, and therefore $\sigma^{\mathbb{I}}$ induces naturally on Λ_1 a non-degenerate form $\sigma_1^{\mathbb{I}}$. On the other hand, since Λ is a real-analytic CR submanifold of T^*X (due again to the constant rank assumption), there is a complex submanifold $\tilde{\Lambda}$ of T^*X which contains Λ as a generic submanifold. It is easy to see that $\tilde{\Lambda}$ is an involutive submanifold of T^*X and that ϱ (which

is CR and real-analytic) can be complexified to $\widetilde{\Lambda} \xrightarrow{\varrho_1^{\mathbb{C}}} \Lambda_1^{\mathbb{C}}$, the projection along the bicharacteristic leaves of $\widetilde{\Lambda}$.

We can now conclude the proof. First we make a transformation of T^*X which puts $\widetilde{\Lambda}$ in the canonical form $\widetilde{\Lambda} = T^*X' \times Y$. Then we make a transformation in T^*X' so that Λ' is interchanged with $T^*_{M'}X'$ where the closed half-space M'^+ with boundary M' and inward conormal $\chi(\varrho(p))$ is the complement of a pseudoconvex domain.

Let $V = V' \times Y$ be an open conic neighborhood of p in $\dot{T}^*_M X$ where the conclusions of Theorems 2 and 3 hold. Let $Z = Z' \times Y$ be a relatively closed (in V) conic neighborhood of p such that $Z' \subset V'$. Define $\mathcal{F} := \mu_M(\mathcal{O}_X)[l+s_M^-]$, and let $f \in \Gamma(V, \mathrm{H}^0(\mathcal{F}))$.

THEOREM 4. For any open neighborhood W of p with $W \subset \subset \operatorname{int} Z$ we may find $\tilde{f} \in \Gamma_Z(V, \mathrm{H}^0(\mathcal{F}))$ with $\tilde{f}|_W = f|_W$.

Proof. It is not restrictive to assume W has the form $W = W' \times Y_1$ with $W' \subset \subset$ int Z' and $Y_1 \subset \subset Y$. If $H^0(\mathcal{F})$ were soft (e.g. if rank $L_M \equiv n - l$ in which case it is even flabby), then the theorem would be immediate. In fact given $f \in \Gamma(V, H^0(\mathcal{F}))$ one would define \tilde{f} to be an extension to V of the section which takes the value f in a neighborhood of \overline{W} and 0 in a neighborhood of $V \setminus \mathring{Z}$. This section exists because $\overline{W} \cap (V \setminus \mathring{Z}) = \emptyset$ and extends by softness.

In general, let $f \in \Gamma(V, \mathrm{H}^0(\mathcal{F})) = \Gamma(\pi(V), \mathcal{H}^1_{M'^+ \times Y}(\mathcal{O}_X))$. Also write $\pi(V) = \omega' \times Y$ and take Y_2 with $Y_1 \subset \subset Y_2, Y_2 \subset \subset Y$. We remark that f is

G. Zampieri

the boundary value b(F) of $F \in \Gamma(\Omega'^- \times Y_2, \mathcal{O}_X)$ where $\Omega'^- = \Omega' \cap M'^$ for a neighborhood Ω' of ω' in X'.

Let ω'_1 be an open neighborhood of $\pi(\overline{W'}) \cup \pi(V' \setminus \mathring{Z'})$ in X', let Ω'_1 be a neighborhood of ω'_1 in X', and write $\Omega'_1{}^- = \Omega'_1 \cap M'{}^-$. We suppose that Ω'_1 is the union $\Omega'_1 = \Omega'_2 \cup \Omega'_3$ with Ω'_2 and Ω'_3 disjoint neighborhoods of $\omega'_2 := \pi(\overline{W'})$ and $\omega'_3 := \pi(V' \setminus \mathring{Z'})$ respectively. We define \widetilde{F} on $\Omega'_1{}^- \times Y_2$ to be F on $\Omega'_2{}^- \times Y_2$ and 0 on $\Omega'_3{}^- \times Y_2$ (the meaning of the superscript "-" being now clear). Note that we may choose Ω'_1 in such a way that

$$\Omega'_4 := \Omega'_1 \cup M'^-$$
 is still strictly pseudoconvex

Since $\mathrm{H}^1(\Omega'_4 \times Y_2, \mathcal{O}_X) = 0$, by the Mayer–Vietoris long exact sequence \widetilde{F} decomposes as

$$\widetilde{F} = I + J, \quad I \in \Gamma(\Omega'_1 \times Y_2, \mathcal{O}_X), \ J \in \Gamma(M'^- \times Y_2, \mathcal{O}_X).$$

The following equalities then hold in $\mathrm{H}^1(\mathbb{R}\Gamma_{M'^+\times Y_2}(\mathcal{O}_X))$:

$$b(J)|_{\omega'_2 \times Y_2} = f, \quad b(J)|_{\omega'_3 \times Y_2} = 0.$$

In particular b(J) has support in $Z' \times Y_2$ and coincides with f in $W' \times Y_2$. Thus $\tilde{f} := b(J)$ meets all requirements in the statement of Theorem 4.

End of proof of Theorem 1. By a choice of a system of equations $r_h = 0$, $h = 1, \ldots, l$, for M, we identify

$$M \times \mathbb{R}^l \xrightarrow{\sim} T^*_M X, \quad (z; \lambda) \xrightarrow{\sim} (z; \lambda \cdot \partial(r_h)(z)).$$

We fix $p = (z; \lambda) \in M \times \mathbb{R}^l$ (where $\mathbb{R}^l = \mathbb{R}^l \setminus \{0\}$), and consider a neighborhood V of p where the conclusions of Theorems 2–4 hold. In the coordinates of Theorem 3 we assume $V = V' \times Y$ and take $Z = Z' \times Y$. We recall that the projection ρ along the complex leaves $\{p'\} \times Y$ is transversal to π . Therefore for a suitable neighborhood U_0 of $z, \pi^{-1}(U_0) \cap Z$ is closed in $\pi^{-1}(U_0)$. Let A be a closed cone of \mathbb{R}^l such that $U_0 \times A \supset \pi^{-1}(U_0) \cap Z$. Then we have a natural morphism

$$\Gamma_Z(V, \mathrm{H}^0(\mathcal{F})) \xrightarrow{\alpha} \Gamma_{U_0 \times A}(U_0 \times \dot{\mathbb{R}}^l, \mathrm{H}^0(\mathcal{F})).$$

We also have an isomorphism

$$\mathrm{H}^{0}(\mathbb{R}\Gamma_{U_{0}\times A}(U_{0}\times\dot{\mathbb{R}}^{l},\mathcal{F})) \xrightarrow{\sim} \Gamma_{U_{0}\times A}(U_{0}\times\dot{\mathbb{R}}^{l},\mathrm{H}^{0}(\mathcal{F})).$$

Let $\{U_{\nu}\}$ be a system of neighborhoods of z with $U_{\nu} \subset U_0$, let B be an open cone with $B \subset \subset$ int A, and define $W_{\nu} := U_{\nu} \times B$. We have a commutative diagram

where β is induced by the morphism $\mathbb{R}\Gamma_{U_0 \times A}(U_0 \times \dot{\mathbb{R}}^l, \cdot) \to \mathbb{R}\Gamma(U_\nu \times \dot{\mathbb{R}}^l, \cdot)$, and γ (resp. δ) by the restriction from $U_0 \times \dot{\mathbb{R}}^l$ (resp. V) to W_ν .

Let $f \in \mathrm{H}^0(\mathcal{F})_p$, $f \neq 0$. According to Theorem 4, we may modify f to a section $\tilde{f} \in \Gamma_Z(V, \mathrm{H}^0(\mathcal{F}))$ such that $\delta(\tilde{f}) \neq 0$ for any W_{ν} . Thus

$$\beta \circ \alpha(\tilde{f}) \neq 0 \quad \text{in } \mathrm{H}^{0}(\mathbb{R}\Gamma(U_{\nu} \times \dot{\mathbb{R}}^{l}, \mathcal{F})) = \mathrm{H}^{s_{M}}(\mathbb{R}\Gamma(U_{\nu} \times \dot{\mathbb{R}}^{l}, \mu_{M}(\mathcal{O}_{X}))[l])$$

Observe now that since $\varinjlim_{U_{\nu}} \mathrm{H}^{j}_{\overline{\partial}_{X}}(U_{\nu}) = 0$ for all j > 0, we have

$$\begin{split} \lim_{U_{\nu}} \mathrm{H}^{j}(\mathbb{R}\Gamma(U_{\nu} \times \dot{\mathbb{R}}^{l}, \mu_{M}(\mathcal{O}_{X}))[l]) &\simeq \lim_{U_{\nu}} \mathrm{H}^{j}(\mathbb{R}\Gamma(U_{\nu}, \mathbb{R}\Gamma_{M}(\mathcal{O}_{X}))[l]) \\ &\simeq \lim_{U_{\nu}} \mathrm{H}^{j}_{\overline{\partial}_{M}}(U_{\nu}) = (\mathrm{H}^{j}_{\overline{\partial}_{M}})_{z}. \end{split}$$

In conclusion $\beta \circ \alpha(\tilde{f}) \neq 0$ in $(\mathrm{H}^{\bar{s}_{M}}_{\bar{\partial}_{M}})_{z}$.

To prove the non-vanishing of the cohomology of (1) in degree $s_M^+(p)$, one just applies the above argument with p replaced by -p, and remarks that $s_M^+(p) = s_M^-(-p)$.

References

- A. Andreotti, G. Fredricks and M. Nacinovich, On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa 8 (1981), 365-404.
- L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math. 27 (1974), 585–639.
- [3] M. Kashiwara and P. Schapira, Microlocal theory of sheaves, Astérisque 128 (1985).
- C. Rea, Levi-flat submanifolds and holomorphic extension of foliations, Ann. Scuola Norm. Sup. Pisa 26 (1972), 664–681.
- [5] M. Sato, M. Kashiwara and T. Kawai, Hyperfunctions and Pseudodifferential Operators, Lecture Notes in Math. 287, Springer, 1973, 265–529.

G. Zampieri

 [6] G. Zampieri, Microlocal complex foliation of ℝ-Lagrangian CR submanifolds, Tsukuba J. Math. 21 (1997), 361-366.

v. Miglioranza 20, Vicenza, Italy E-mail: Zampieri@math.unipd.it

Reçu par la Rédaction le 1.9.1999