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Generalized analytic functions of Bogdan Ziemian

by Grzegorz  Lysik (Warszawa)

Abstract. Definitions, properties, examples and applications of generalized analytic
functions introduced by B. Ziemian are presented.

1. Introduction. In Fourier analysis there arises the problem of describ-
ing analyticity of a function or distribution in terms of its Fourier transform.
The difficulty of the problem is caused by the lack of analytic functions with
compact support, or equivalently, the lack of entire functions of exponential
growth on C

n which decrease exponentially on R
n.

The problem was solved by Bross and Iagolnitzer in [BI] by modifying
the Fourier kernel by a quadratic term, which leads to the so-called FBI
transformation. On the other hand, Hörmander solved this problem in [H]
by approximating an analytic function by a sequence of smooth functions
with a good control of their Fourier transforms. Also Sato solved it in the
language of the theory of hyperfunctions ([SKK]).

The approach of Bogdan Ziemian to this problem is based on the Mellin
transformation. His idea is quite simple and led him to the definition of a
generalized analytic function (GAF). The theory of GAFs was systemati-
cally developed in [Z] (written in 1992) in the broad context of functional
and complex analysis and its relations to the theory of resurgent functions.
It appears that many important special functions as well as solutions to
some classes of linear singular ordinary and partial differential equations
are GAFs.

2. The Mellin transformation and generalized analytic func-

tions. Let us recall the definition of the Mellin transformation. Let u be a
measurable function on R+. We define
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(1) Mu(z) =

∞\
0

u(x)x−z−1 dx.

To make this integral convergent we assume that supp u is contained in
I = (0, t] with some t < ∞, and u is of polynomial growth at zero, i.e.
|u(x)| ≤ Cxω for x > 0 with some ω ∈ R, C < ∞. Then Mu defined by (1)
is holomorphic on {Re z < ω}; we also denote by Mu its holomorphic exten-
sion. The Mellin transformation can be extended to a class of Mellin distri-
butions M ′

(ω)(I) supported by I (cf. [SZ]). Since M(xdu/dx)(z) = zMu(z)

(where du/dx is the distributional derivative of u) the Mellin transformation
is well adapted to the study of differential equations with a regular singular
point at zero.

Let u be a smooth function on I = [0, t]. Then we can write the Taylor
formula of any order N ∈ N,

u(x) =
N∑

j=0

u(j)(0)

j!
xj + xN+1RN (x) for x ∈ I

with RN bounded on I. Since

M(χtx
j)(z) =

tj−z

j − z
for z 6= j

where χt denotes the characteristic function of (0, t], we derive that M(χtu)
is holomorphic on C \ N0 with simple poles in N0.

Now assume that u is analytic at zero with radius of convergence greater
than t. Then the series

∞∑

j=0

u(j)(0)

j!

tj−z

j − z

defines a function G = M(χtu) holomorphic on C \N0 with simple poles in
N0 which satisfies, for any 0 < ε ≤ 1,

(2) |G(z)| ≤
C

ε
·

t−Re z

1 + |Im z|
for dist(z, N0) ≥ ε.

B. Ziemian observed that the above properties of G completely characterize
the Mellin transform of a function u analytic at zero. Namely, if G=M(χtũ)
for some ũ continuous on (0, t] of polynomial growth at zero, and G is holo-
morphic on C \ N0 and satisfies (2) with C independent of 0 < ε ≤ 1
then ũ coincides on (0, t) with a function u(x) =

∑∞
j=0 ajx

j analytic on
|x| < t. The coefficients aj , j ∈ N0, are given by the residues of G at
j ∈ N0.

The above observation led B. Ziemian to a generalization of the notion
of an analytic function.
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Definition 1 ([SZ], Def. 13.2, [Z], Sec. 11). Let Z be a closed subset
of ω + R+ for some ω ∈ R. A function u continuous on (0, ̺), ̺ > 0, and of
polynomial growth at zero is called a generalized analytic function of type

Z and with radius of convergence ≥ ̺ if for any 0 < t < ̺,

(i) M(χtu) extends to a holomorphic function on C \ Z,

(ii) there exists s ∈ R such that for any ε > 0 and κ > 0,

|M(χtu)(z)| ≤

{
C(1 + |Im z|)s(teκ)−Re z for Re z < 0, z 6∈ Zε,
C(1 + |Im z|)s(te−κ)−Re z for Re z ≥ 0, z 6∈ Zε,

where Zε := {z ∈ C : dist(z, Z) ≤ ε},

(iii) for some ε > 0 and any κ > 0 there exists p = p(κ) ∈ N such that

|M(χtu)(z)| ≤ C|Im z|−p(te−κ)−Re z for z ∈ Zε, Im z 6= 0.

In fact, generalized analytic functions of type N0 for which (iii) holds
with p = 1 independent of κ > 0 are exactly analytic functions.

Generalized analytic functions can be defined equivalently by means of
the space of Laplace distributions L′

(log ̺)(ω + R+), ω ∈ R (cf. [Z], Sec. 4).

Definition 1′ ([Z], Def. 9.1, [SZ], Th. 13.4). A function u on (0, ̺) is
called a generalized analytic function of type Z with radius of convergence ̺
if there exists a Laplace distribution S ∈ L′

(log ̺)(ω + R+) with suppS ⊂ Z

such that u extends to a function ũ holomorphic on the universal covering
space B̃(̺) of the punctured disc B(̺) \ {0} given by

(3) ũ(x) = S[x·] for x ∈ B̃(̺).

The Laplace distribution S satisfying (3) is called the Borel transform of u.

Let S ∈ L′
(log ̺)(ω+R+). Then for any κ > 0, S = Pκ(d/dα)Sκ where Pκ

is a polynomial and Sκ ∈ C0(R) with suppSκ ⊂ ω + R+ satisfies |Sκ(α)| ≤
Ceκα̺−α for α ∈ ω + R+. Thus, (3) can be written in the form

ũ(x) = Pκ(− log x)

∞\
ω

xαSκ(α)dα for 0 < |x| < e−κ̺.

Generalized analytic functions can also be characterized as follows.

Theorem 1 ([ L]). A function u analytic on (0, ̺) is a GAF of type ω+R+

with radius of convergence ̺ if and only if u extends holomorphically to a

function ũ ∈ O(B̃(̺)) satisfying : for any κ > 0 there exist C < ∞ and

mκ ∈ N0 such that

|ũ(x)| ≤ C(1 + |log x|)mκ |x|ω for 0 < |x| ≤ e−κ̺.

The GAFs need not be analytic nor defined at zero, but they have the
following quasi-analyticity property.
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Property A ([SZ], §13, [Z], Sec. 9). If u defined on (0, ̺), ̺ > 0, is flat at
zero of arbitrary order m ∈ N (i.e. u ∈ O(xm) for any m ∈ N) then u ≡ 0.

The GAFs behave well under basic algebraic and differential operations.

Multiplication. If uj(x) = Sj [xα] for j = 1, 2 then u1(x) · u2(x) =
(S1 ∗S2)[xα] (the convolution is well defined since the support of each Sj is
contained in a half line). The above property enables one to define nonlinear
operations on GAFs.

Differentiation. Let u(x) = S[xα] with some S ∈ L′
(log ̺)(ω + R+). Then

(d/dx)u, x(d/dx)u are GAFs and

d

dx
u(x) = (α(S ∗ δ(−1)))[x

α], x
d

dx
u(x) = αS[xα].

More generally, for any polynomial P ,

P

(
x

d

dx

)
u(x) = P (α)S[xα].

Analytic change of variables. Let g be a function analytic in a neigh-
bourhood of zero such that g(0) = 0, g′(0) 6= 0 and let u be continuous on
(0, ̺). Then u is a GAF iff u◦g is a GAF. The formula expressing the Borel
transform of u ◦ g in terms of that of u and the derivatives of g−1 at zero is
more involved and can be found in [Z], Sec. 13.5.

The class of resurgent functions of J. Ecalle ([E]) constitutes an impor-
tant subspace of GAFs ([Z], Sec. 14). The class consists of those GAFs
whose Borel transforms continue analytically to multivalued functions on
C \ Σ with a discrete set Σ of branching points. The operations of taking
jumps at the branching points lead to a definition of alien derivatives of
resurgent functions which turned out to be a powerful tool in many analyt-
ical problems.

3. Examples

1. If S = δ
(m)
(v) with v ∈ R, m ∈ N0 then

u(x) := S[xα] = (−1)mδ(v)[D
m
α (xα)] = (− log x)mxv.

Thus, a polyhomogeneous function
∑m

k=0

∑∞
j=0 akjx

v+j
+ logk x+ is a GAF

(if the series are convergent).

2. If S = (1/Γ (a))αa−1
+ with a > 0 (Γ being the Euler function) then

u(x) := S[xα] =
1

Γ (a)

∞\
0

αa−1xα dα =
1

(− log x)a
for 0 < |x| < 1.
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3. If S = (−1/α)χ[1,∞) then

u(x) := S[xα] = −

∞\
1

xα

α
dα =

x\
0

dt

log t
= Li(x) for 0 < |x| < 1

is the logarithmic integral. Also other special functions can be considered
(after a suitable change of variable) as generalized analytic functions (cf.
[Z], Sec. 15).

4. For the hypergeometric function 1F1 we have

1F1(a, c;− log x) =
Γ (c)

Γ (c − a)Γ (a)

0\
−1

xα(−α)a−1(α+ 1)c−a−1 dα for x ∈ C̃

where a > 0, c − a > 0.

5. The space of resurgent functions with the set of branching points
Σ = N0 for which all alien derivatives vanish consists of functions u of the
form

u(x) =
m∑

k=0

ck(log x)k +
∞∑

j=0

aj

(− log x)j+1
for x ∈ B̃(e−ω), ω > 0,

where the series
∑∞

j=0 ajζ
j has radius of convergence ≥ 1/ω ([Z], Lemma

14.1).

4.Applications. Generalized analytic functions play an important role
in the study of differential equations, especially with irregular singular point.
To show this observe that the operator R(x, x2d/dx) under the change of
variable s = e−1/x is transformed into R(−1/log s, sd/ds). Thus, we have
obtained an operator with a regular singular point at zero but with gener-
alized analytic coefficients. B. Ziemian initiated the study of such operators
in Section 16 of [Z]. To formulate the main theorem of that section consider
an operator P of the form

R

(
x, x

d

dx

)
= P

(
x

d

dx

)
+ Q

(
x, x

d

dx

)

where P is a polynomial of degree m ∈ N and

Q

(
x, x

d

dx

)
=

m∑

ν=0

aν(x)

(
x

d

dx

)ν

where aν are GAFs of convergence radius ̺ > 0 of the form

aν(x) =
\

R+

xααkqν(α) dα
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with some k ∈ N0 and qν holomorphic in a tubular neighbourhood V of R+

and satisfying, for any κ > 0,

|qν(α)| ≤ Cκeκα̺−α for α ∈ V.

For a closed subset Z of R+ set

ZP = (Z ∪ Char P ) + R+ where Char P = {z ∈ C : P (z) = 0}.

Theorem 2 ([Z], Theorem 16.2). Under the above notation suppose that

the maximal multiplicity of the roots of P is not greater than k + 1 and f
is a generalized analytic function of type Z. Then there exists r > 0 such

that any solution of Ru = f on (0, ̺) is a GAF of type ZP and convergence

radius not less than r.

The definition of GAFs extends to the n-dimensional case by taking for S
a Laplace distribution supported by the n-dimensional positive “octant” R

n
+

or more generally its image under a holomorphic mapping (cf. [Z], Sec. 18).
Finally, let us quote Theorem 19.1 from [Z], which shows an application

of GAFs in PDEs.

Theorem 3. Let R(x, x∂/∂x) = P (x∂/∂x)+Q(x, x∂/∂x) be a Fuchsian

type partial differential operator , where P is an elliptic operator of order m
and Q(x, x∂/∂x) =

∑
|ν|≤m aν(x)(x∂/∂x)ν is a linear operator with coeffi-

cients aν , |ν| ≤ m, of the form

aν(x) =
\

R
n

+

xααkqν(α) dα

with some k = (k, . . . , k) ∈ N
n
0 and qν for |ν| ≤ m holomorphically extend-

able to functions of exponential growth on a polytubular neighbourhood of

R
n
+. Assume that P satisfies the cone condition with respect to convex open

cones Γ ⊂ Im C
n and −Γ , i.e. ‖Im z‖p/|P (z)| is bounded for Im z ∈ ±Γ ,

Im z small , with some p ∈ N. If k + 1 ≥ p then for any generalized analytic

function f (in n variables) there exists r > 0 and a generalized analytic

function u which solves the equation

R(x, x∂/∂x)u = f

in the polyinterval {0 < x < (r, . . . , r)}.
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