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Integrable system of the heat kernel
associated with logarithmic potentials

by KAzuHIKO AoMOTO (Nagoya)

Bogdan Ziemian in memoriam

Abstract. The heat kernel of a Sturm—Liouville operator with logarithmic potential
can be described by using the Wiener integral associated with a real hyperplane arrange-
ment. The heat kernel satisfies an infinite-dimensional analog of the Gauss—Manin con-
nection (integrable system), generalizing a variational formula of Schlifli for the volume
of a simplex in the space of constant curvature.

1. Statement of the result. The classical variational formula for a
geodesic simplex due to L. Schlafli plays an important role in geometry
and analysis of spaces of constant curvature. The author has extended this
formula to general analytic integrals of type (2.5) (theory of Gauss—Manin
connection of irregular singularity). It has an invariant expression under the
group of rotations SO(n). This fact enables us to go straightforward to the
analysis of infinite—dimensional function spaces in the framework of P. Lévy’s
book [11], for example (see [1] about its history since V. Volterra). Several
approaches have been investigated in this direction, for example, Gauss en-
sembles of random matrices, white noise analysis etc. (see [5], [7], [11], [12]).

In this note, by the use of the Feynman—Kac formula ([10]), we show that
the variational formula for Gauss type integrals associated with real hyper-
plane arrangements gives an integrable system for a system of functionals
Fo(71,...,7p; 1) including the heat kernel with logarithmic potentials, by
taking suitable infinite-dimensional limits.

We consider the heat equation on the real line
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for the logarithmic potential

(1.2) V(z)=—=>_ Xloglz — y;|
j=1
of a finite number of sources y1,...,y, € C with weights Aq,..., A,.

We assume \; are all positive.
The heat kernel K (¢, z,0) satisfying (1.1) with the condition (§(z) means
the Dirac delta function)

(1.3) ltifélK(t’x’O) =d(z)

is given by the Feynman—Kac formula:
) 1
1N N-1
X S exp [— 5A VZl(x,, — 1z, 1) — At Z V(x,,)] drei A... Ndxn_1

RN-1 v=1

for At =t/N, where zg, xn denote 0,z respectively.
By the change of variables Z,, = x,,/v/t, K(t,,0) can be written as

(1.5)  K(t,x,0)
N

. 1
—&@mmge"p[‘

<[5

N N-1
Z(ZE\I/ - 33\1/—1)2 — At Z V(\/Z_fi‘\y):|

X (5(‘%]\] —a;/x/i)dfl /\.../\di,1 /\di

where the limit on the RHS is the average defined by the Wiener integral

over the set of continuous paths Z(7) = 2-z(t7),0 < 7 < 1.

Vit
Let us consider a finite-dimensional approximation to the integral (1.5).

We denote by log, u the logarithmic functions

log,, u = {logu for u > 0,

0 for u < 0.
~ Jlog(—u) foru <0,
logu_{o for u > 0.
First we define the positive function @,,(§), p > —1, for £ = (&1,...,&N)
e RY as
1 L+ ...+ &N *>
1.6) log® = — = + plo -
(16) Tog,(©) = — 5Q(6) +nlos, (L
m N m
t £1+"'+£I/ "
+N2Aj21 N —|——tlogt-Z)\j
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for z* = x/V/t, Yi =yj /\/t respectively, where Q(¢) denotes the quadratic
form

QE) =& +... + &
Similarly we define the functions ®,(&;¢e1,...,em) by

(L7)  log®u(&ers.-rem) = —%Q(i) + plog, <% _ x)

m N m
t G446 )1
+ % ]§:1Aj Ellogq <T - yj> + 5tlogt- ]E:l%'

where €4, ...,€,, denote +.

By the change of variables z,, — z,_1 = &,/V' N, (1.5) can be rewritten
by using the average E concerning Wiener integrals as

m 1
(1.8) K(t,z,0) = iig%)uE<exp [Z )\jtSlog\ZE(T) —yjldr

j=1 0
+ (u—1)log (2(1) —x*)+%tlogtz/\]}>
j=1
= lim _ lim (p+1) S D,(8)déi N NdEn

N=oe 2mNA e

because the function lim, g ,ua:i_l tends to the ¢ function (a procedure a
la S. Watanabe (see [8], [16])).
(1.8) can also be represented as

. 1 . ~
where
~ 1
(110)  Togd,6) = - 3010 + nlog, (SFEER o)

m N
t G+...+& —VNy;
—l——Z)\jZlog J‘
Nj:l v=1 \/;
1 m
+ §(tlogt—t)Z;A]
]:

In fact,
N

log®, (&) = logégu(@ + <Z)\j) {%logt—k %(—Nlogl\f + Zlogj)}.
j=1 j=2
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m

The last term on the RHS tends to 3(tlogt —¢)(3°72, A;) as N — oo.

j=1
D, (& €1, ..., 6m) are similarly defined from @, (& e1,...,6m).
For given 7,...,7, such that 0 <7 < ... <7, <1, and a continuous
function ¢(z1,...,2z,) on RP, we denote the average of p(Z(m1),...,Z(7p))

over the set of continuous paths by

(L11) - {e(@(11), ..., 2(7p)))

_ E@@(Tl),...,fvp))

m 1 m
~ * ~ * 1
X exp [Z)\jtSIOg\x(T) —y;ldr+plog, (z(1) — )—i—itloth)\j})
j=1 0 j=1

and its average with the restriction (1) = z* by

(OF(1)s - ()0 = nmﬂ< pE(n), .., 2(1)) >

110 (1) — x*

We are interested in finding a complete system of differential relations
with respect to the parameters x*,yy,...,y,,, when t is fized.

DEFINITION 1. For 7q,...,7, € (0,1) such that 0 <7y < ... <7, < 1,
and indices I = {i1,...,ip} C {1,...,m}, which may not be distinct, we
define a system of functions depending not only on 7,...,7, but also on
YTy Ym bY

1
LTy ) = < — » — " >,
i (x(Tl)_yil)---(x(Tp)_yip)

(1.13) FO(Tl,...,Tp;I):<(A L >0.

) =) - @) — o)

(1.12) F(m,..

In particular, for p = 0 we have
Fy(¢) = (1)o = VE K(t,,0).

It is convenient to define these functions to be zero if one of 73, is negative
or greater than 1.

REMARK 1. More precisely, the functions F(ry,...,7,;I) and Fy(ry,. ..
..., Tp;I) are generalized functions with respect to 71,...,7,. Integration
and differentiation can be done formally by the Malliavin calculus. For de-
tails see [8], [16].

THEOREM 1. The total differentials of F(71,...,7p; 1) with respect to the
parameters x*,y5, ...,y are given by
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(1.14)  6F(¢)

=S nt{-ay; {dr F(rsg) + 6(a") §ar 7R (73 ) } s (") F (),
j=1 0 0
OF (6 ‘ .
(1.15) a;j) = —)\jt(S)dTF(T;j),
(1.16) 8535(?) = ;Ajtédr TF(T; ) — uF(9),

and for p > 1, we have
(1.17) OF(T1, .., Tpsin,...yip) = A1+ Arr + Aqpg
where Ar, Arr, Arrr denote the differentials with respect to dz*,0y7, . .., 0y,

p
N 1 N Th+l — Th—
A= S {0t ) = ol ) S

(Ths1 — ™) (Th — Th=1)

1

7}F(7’1,...,Th_1,7'h+1, oy Tpy ORI,
Th+1 — Th

+0(Yi, )

Th+1 Th+1

m p
* Th+1 — T *
Air= ) Mty {5(%,) | T+7_T dr—6(yp) | dr
k=1,k¢gI  h=0 rn hFLT TR ™
Th+1

+o(yr,.) |

Th

+ pf=0(27) +0(y;, )} Fo(m, - - 7pi D),

p
* * Th+1 — Th—1
Arrr =4 — E yE Oy
III { h:1ylh (ylh) (Th _ Thfl)(Th+1 _ Th)

T—Th
7d’7’}F(7’,T1,...,7’p;k‘,I)
Th+1 — Th

p—1 1

+> 0wy

h=1

}F(Tl,...,Tp;I),

Th+1 — Th
where we put 719 = 0, Tp41 = +00, and y; = ypr =0.

THEOREM 2. The total differentials of Fy(71,...,7p;1) with respect to

the parameters z*,y7, ...,y are given by
m 1 1

(L18)  6Fy(¢) =Y Ajt{—ay; Vdr Fo(r: ) + 6(a") dr TFO(T;j)}
j=1 0 0

—x70(x") Fo(9),



56 K. Aomoto

1.e.,
OFy (o) 0 ,
(1.19) oy = — /\jt(S)dTFo(T;j),
OF, N o,
(1.20) a‘;(f) = Y MtV drTEy(r3 ) — 2" Fo(9),
j=1 0
and for p > 1, we have
(1.21) SFo(T1,...,Tpyi1,--.+4p) = Br + Brr + By

where By, Brr, Brrr denote the differentials with respect to dz*,0y7, ..., 0y,

P
N 1 N T — Th—
Br=>Y_ {5(%“)7 —0(y;,) e

P (Th+1 — Th)(Th — Th—1)

. 1
+5(yih+1)m}FO(le...,Th—l,Th—i—l,--.,Tp;ahI),
B _ iﬂ:)\ . p St T}L§—1 That — T ; S Ths+1d
1= k Z (vi,) pppet U (Wr) T
k=1 h=0 7 LT TR ™
Th+1
T — Th
T8y dr SFo(romys . ik, D),
(Y5 in) TS} P T} o(T, 71 T )
PR B S MR = ik = WO PO M
I b1 th th (Th_Th—l)(Th—i-l_Th) 1—’7'p
p—1
1 1
oy, yr  )—— + 0y «* F coy i I
+hz:1 (yZ}LyZ}L+1)Th+1—Th + (ysz )1_Tp} 0(T17 7Tp7 )7

where we put o = 0, Tp41 =1 and y;, =0, y; ="
THEOREM 3. The deriwative of Fy(r1,...,7p;1) with respect to t is ex-
pressed as

0
—Fo(r1,..., 13 1)

(122) o

1

1" . .
= —V(x)Fo(11,...,7p; 1) — 3 E Ajy; SdTFg(T,Tl,...,Tp;j,I).
j=1 0

Theorems 1-3 show that {Fo(71,...,7; 1)}, satisfy an integrable sys-
tem with respect to the variables ¢, z*, 47, ..., y:, on the space of continuous
paths 7 : [0, 1] — R, while {F'(71,...,7,;I)} 5 satisfy an integrable system
with respect to the variables x*,y7, ...,y only.
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2. Arrangement of hyperplanes and a generalized Schlafli for-
mula. In the n-dimensional Euclidean space R™ we consider an arrangement
A of m real hyperplanes H; (1 < j < m) defined by the inhomogeneous lin-
ear equations

(2.1) Hj:  fi(z)=0
for fj(x) = Z?Zl uj T, + ujo. The functions f;(x) are assumed to be
normalized by >"'_, uiy =1.

The configuration matriz A associated with the arrangement is defined
as the symmetric matrix A = (aj,x)7"_, of order m + 1, where a;  denotes
the inner product between the coefficients of f;, fi:

n
(2.2) Qi =Y Ui gy, m>j k>1,
v=1
(23) aj.0 = aog,; = Uj,0, m > j >1 and ap,0 = 1.

Note that a;; = 1.

For I = {i1,...,ip}, 0<i; <...<ip, <m,and J ={j1,...,J5p}, 0<
J1 < ...<jp <m,wedenote by A(LI]) the subdeterminant det((a; ;)icr,je.),
in particular we write A(I) in the case where I = J. The arrangement
A is uniquely determined by the matrix A up to isomorphism of the n-
dimensional orthogonal group O(n).

Let A1,..., A\ be real numbers and @(z) be the analytic function
(2.4) ®(z) = exp(—3 (:E))fl(:n))‘l o fm(@)M
for Q(z) = >.0'_, #2_,. We consider the integral
(2.5) F = S O(z)dry A ... Ndx,
A

over a twisted cycle A associated with the function @(z).
We also consider the system of integrals

(2.6) F(I) = | () EL Ao N f'A a ]Ae Gn
A i - iy
It has been proved in [3] that the functions {F(¢) and F(I), 1 <p <n}
form a complete system of integrals in the n-dimensional twisted de Rham
cohomology which has dimension > 77, (T)
Moreover the following variational formula holds (see Proposition 1.3 in
[3], Part I).

PROPOSITION 1 (Generalized Schlifli formula).

m ‘ 1 m ‘
(27 6F(@) =D NdaoF() g D AwdagkF(.k)
Jj=1 j7k::17j7£k5
where & denote differentials of variation.
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This formula is just a generalization of the classical Schlafli formula which
is a variational formula for the volume of a geodesic simplex in a space
of positive constant curvature (see [2], [11], [15] etc.). In fact, to obtain
Schléfli’s formula from (2.7), we take as A the simplicial cone defined by
f1>0,..., f, >0 and we take the limit A; — 0, for all j.

We can also get the variational formulae for the function F'(I). However
these are rather complicated and we do not reproduce them here.

Later on we only need the formulae in the cases where a; 5 (1 < j,k < m)
are constants. They are described as follows (see [3], Proposition 3 in Part II,
or [5], Lemma 2).

The symbols {k, I} and 0,1 will denote the sets of indices {k,i1,...,7,}
(addition of the index k to I) and {i1,...,ip—1,%p+1,...,0p} (deletion of the
hth index from I) respectively.

PROPOSITION 2. Assume that a;, (1 < j,k < m) are constants. Then

(2:8) OF(9) = 3 Aidajo - F(j),
and for p > 1, we have
p N I
(29) A()-0F(I) = =) (1) 5A<0 5 1) - F(9,1)
h=1 ’
> AMA( > PR D) + %5/1(0,[) F(D).
k&I k>1

Similarly we have the recurrence relations.

PROPOSITION 3. Let T,j[ denote the shift operators corresponding to the
shift Ay — A £ 1. Then

(2.10) F(I)=F(kI), k¢l
(2.11) (N, = DA) - (

T
- Sy s
- M <k ol >'F(k,I)—A<07g1[> - F(I).

kgl

3. Application of the generalized Schlafli formula. We denote the
normalized inhomogeneous functions appearing in (1.6) as follows:

G+...+& —VNy;
fj7y(£): . \/; ]7 V:17"'>N>
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and
L4+ —VNa*
Vi i
When j = m+1, v takes only the value N. In the sequel y;,, 1 and Ay, 41
are identified with z* and p respectively.
The inner product of the coefficients of f;, and f; , is given by

o _Jv/\Jvo forv <o,
k—(f;,mfko)—{a/\/ﬁ for v > o.

By abuse of notation, we may denote it by a; , without ambiguity, since
below only one function f; , corresponds to each index j. We may also denote

aj70 = CLOJ‘ == —\/Ny]*/\/;

fm+1,N(§) =

corresponding to f; ..
The function @,,(£) can be represented as

(3.1)  @,(8)

m N
= exp| - 5Q() + 5 (tlogt —1) ZA} ATLIL £ @M } i @)

j=1lv=1

Then the following lemmas can be proved by a direct computation. It is a
remarkable fact that every subdeterminant is non-negative.

LEMMA 1. Let p pairs of indices I = {(i1,v1), ..., (ip,vp)}, {i1,...,ip} C
{1,....om+1} and 0 < 1 < ... < v, < N+ 1, be given (we assume
vp=N+1if i, =m+1). Then

AL = (va—v1)...(Vp —Vp_1)

9

Vg ... I/p
and for 1 <k, h <p,
( 0’ |h - k| > 17
VI A
Vph41 — Vp
A<8k1> JAD) =4 o
ah[ - h¥Yh—1 , _ h . 17
Vh —Vh-1
UnlVht =Vho1) g
(Vht1 — vn)(Vh — Vh—1)
LEMMA 2.
P - L\
(3'3) (0 I /A _ Z yzh Vh+1 Vh— 1) +2Z yzhyz;H_l'

I/ —V l/ — Vp_— v —V
= (Wnir —vn)(Wh — Vh-1) b1 Vht1 — Vn
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LEMMA 3. For 1 < h < p,

4 A<0,ghl> JAD = (=1

F(=1) g VNV, (Vht1 — Vh—1)
" (Whe1 — vn)(Wh — Vh—1)
\/NVh

_1h+1*
+(=D""y —

Thil
where vy and v,41 are set to be 0 and +o00 respectively.

LEMMA 4. Assume that the index k corresponds to the function fi ..
Then

k.1 o \/N(Vh+1_0')
B3 Ay p)/Am =
YL N
VT e e — )
ifvn <o < Vpt1.
We can now apply the formulae (2.8), (2.9) to (1.8). We denote by ¢(I)
(I c{1,2,...,m+ 1}) the following integrals:
~ 1
3.6 I)=\ 9o
R R L GT A B 3

RN
From Lemmas 1-4 and (2.8), (2.9), we deduce the following formulae.

déL A ... A dEn.

PROPOSITION 4.

(37) 5(,0([):X]+XII+X[I]
where
p
NI/h
3.8 X; = o(y?r —_—
9 x= 3 {0 )
Nuvy, (v, — Up_ Nv
oty =) ) o),
(Vh+1 - Vh)(Vh - Vh—l) Vh41 — Vh

(3.9) Xuz% > MY {5@;)%

agl\V, — U
kgl 1<k<m+1 h=0 vp<o<vni1 Vo (hi n)

- 6<y;;>\/§ + 5(yfh+l>%}w<k, 1)

1 - * *
DN Y Slog(yh, — ) (e(]) — ek, 0u1)),
k=1 h=1,in#k
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p
N(Vh+1 - Vhfl)
3.10 Xir= = vi, 00y
( ) III th (yh)(yh+1—Vh)(yh_yh*l)

+) oy, ) ————e(l)

Vh4+1 — Vh

where we put vy = 0, vy = +o00.

Proof of Theorems 1 and 2. Let us take the limit N — oo of (3.7). When
v/N tends to the value 7, the function (& +...+&,)/VN tends almost
surely to the value Z(7) at 7 of a continuous path Z.

This implies that if 11 /N — 7y,...,v,/N — 7,, then @(1)%
in Proposition 4 (I C {1,...,m}) tends to F(7y,...,7,;I) defined in Defi-
nition 1, i.e.,

) NP/2
(3.11) ngnoo o(I) LN F(ry,...,mp ).
In the same way, we have
lim 1 I, e/ I
3.12 1 = F Ty D).
( ) gnoo,ulin(p( m + )(27T)N/2\/V17V10 0(T17 ) Tps )
We multiply both sides of (3.7) by Wﬁ and take the limit

N —o0. Then thesum >, _ vy, tends to the integral | T+ dr, whence
(3.7) for ¢(I) and (I, m+1) tend to the equations (1.13), (1. 16) and (1.17),
(1.20) respectively.

On the other hand the last term on the RHS of (3.9) tends to zero.
Theorems 1 and 2 have thus been proved. m

Proof of Theorem 3. First note the following equality. Since z(t7) =
VEEZ(T), y; = Vity; we have
: 1
log |2(t) — y;| = {log [3(7) — yj|dr + 5 (1+1logt) +
0

dr

Y Em g

N —

O ey =

In fact as generalized Wiener functionals (Malliavin calculus), we have

gt
log |z(t) — y,| = pr Slog\x —y;lds
0
_ 4 t§10g|:1: —£|d7'+1tlogt
e Vi 2 ’

which gives the above equality by the Leibniz rule. See Remark 1.
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This implies

Z Slog]az y]\dT—F (logt+1 Z)‘J
j=1

—iA log |z(t) — yj| 5\ y§ ar

=2 N Yl = 5AY N sy
— 2 5 z(1) — y;

We use the identity V(z) = — 27:1 Ajlog |z(t) — y,| and get the equality
(1.22). =

Assume now that the indices in I are all distinct. One can prove that
the formulae in Theorems 1, 2 are still valid when we consider the functions

?D,(&€1,...,6m) in place of P 4 (&) (the latter is equal to the sum over all
€1y-+-sEm- )

Let us use the same notations F(ry,...,7;1), Fo(m,...,7p;1) as in
Theorems 1 and 2 in the case of @?M(g; ElyeveyEm)-

Let T\, , denote the shift operators corresponding to the shifts Ayt —
At — 1. Relations between the partial differentiation 0/0y; and the shift
operators T , (contiguous relations) are given as follows.

When k ¢ I,

0
oy;

1
F(ri,...,mp;1) = —)\ktSdTF(T,Tl,...,Tp;k,I)
0
= —Ek)\ktS’/QT/\_ktF(Tl,...,Tp;I),

(3.13)

while if k € I, then

0
3.14 (11, 1 L
314 P i)
1
= — (N, t—1)( = — .
O )<x(7-h Y;, )T (11 —y;) - x(Tp_yip)>
1
—)\ihtSF(T,Tl,...,Tp;ih,[)
0
1
-~ - 1( )
" ‘T(Th yzh) ( 1 _yzl)”'x(Tp_yip)
—Eih)\ihtg/2T)\_ihtF(T1,...,Tp;[).
The same relations are also valid for Fy(7y,...,7p;1).

REMARK 2. The formulae of Gauss-Manin connections for (2.5) including
(2.7) which have been obtained in [3] seem to have another application.



System of the heat kernel with logarithmic potentials 63

It may be possible to extend the arguments discussed in this note to the
Schrodinger operators of the one-dimensional many body system

82
j=1 9%
where V(xy,...,z,) denotes the potential
V(zy,...,zn) = — Z Ajilogla; —ak| — Z Z ik log |z — yil.
1<j<k<n 1<j<n 1<k<m

More generally in the complex domain C, one can consider the operators
(each zj; = x; + iy;, w; € C)

0?2 82
“Z( >+V(zl,..., )
Oy;
where

V(ziy.ooy2n) = — Z Nk log|z; — 2| — Z Z ik log |2 — wil.

1<j<k<n 1<j<n 1<k<m

One may possibly obtain similar results to Theorems 1-3, although the
formulae would be more complicated (see [4] for a similar argument).
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