ANNALES POLONICI MATHEMATICI LXXIV (2000)

Singular holomorphic functions for which all fibre-integrals are smooth

by D. BARLET (Vandœuvre-lès-Nancy) and H.-M. MAIRE (Genève)

Bogdan Ziemian in memoriam

Abstract. For a germ (X, 0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ $f : (X, 0) \to (\mathbb{C}, 0)$ of holomorphic function with $df(x) \neq 0$ for $x \neq 0$, the fibre-integrals

$$s \mapsto \int_{f=s} \varrho \omega' \wedge \overline{\omega''}, \quad \varrho \in C^{\infty}_{c}(X), \ \omega', \omega'' \in \Omega^{n}_{X},$$

are C^{∞} on \mathbb{C}^* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are C^{∞} . We study such maps and build a family of examples where also fibre-integrals for $\omega', \omega'' \in \underline{\omega}_X$, the Grothendieck sheaf, are C^{∞} .

0. Introduction. Let (X, 0) be a germ of normal complex space of dimension n + 1 with an isolated singularity at 0 and let $f : (X, 0) \to (\mathbb{C}, 0)$ be a germ of holomorphic function such that $df(x) \neq 0$ for $x \neq 0$.

In a previous paper [B-M 99], we have explained how eigenvalues of the monodromy M of f acting on $H^n(F)$, where F is the Milnor fibre of f, contribute to create poles of the meromorphic extension of the current $\lambda \mapsto \Gamma(\lambda)^{-1} \int_X |f|^{2\lambda} \square$. For eigenvalues different from 1, our results generalize those of the first author [B 84] for smooth X. But for the eigenvalue 1 of M, poles of the above current appear at negative integers if, and only if, 1 is also an eigenvalue of the monodromy of f acting in the quotient $H^n(F)/J$, where J is the image of the map $H^n(X \setminus \{0\}) \to H^n(F)$ induced by restriction. (See Example 3 for explicit computation of the image.) When this restriction is surjective (which implies M = 1 and is therefore a very strong hypothesis), it follows that $\lambda \mapsto \int_X |f|^{2\lambda} \square$ has only simple poles on the negative integers.

²⁰⁰⁰ Mathematics Subject Classification: 32C30, 32S30, 32S50, 58K15.

Key words and phrases: currents, fibre-integrals, Mellin transform, singularities.

The authors acknowledge the support of the Swiss National Science Foundation.

^[65]

Using inverse Mellin transform, we deduce that, for all $\varphi \in C_{c}^{\infty}(X)^{n,n}$, the fibre-integrals

(1)
$$s \mapsto \int_{f=s} \varphi$$

are of class C^{∞} (because

$$\int_{X} |f|^{2\lambda} \varphi \wedge \frac{df}{f} \wedge \frac{df}{\overline{f}} = \int_{\mathbb{C}} |s|^{2\lambda} \int_{f=s} \varphi \frac{ds}{s} \wedge \frac{d\overline{s}}{\overline{s}}$$

by Fubini's theorem). In this situation, fibre-integrals of C^{∞} forms of type (n,n) do not detect the singularity of the map $f: X \to \mathbb{C}$, that is, X not smooth or df(0) = 0.

In a more general context, asymptotic expansions at 0 of functions (1) give rise to a finitely generated $\mathbb{C}[[s, \overline{s}]]$ -module \mathcal{M} (see Theorem 1 below). Because X and f have an isolated singularity at 0, this module is generated by 1 and the asymptotic expansions of the following functions:

(2)
$$s \mapsto \int_{f=s} \varrho \omega' \wedge \overline{\omega''}, \quad \omega', \omega'' \in \Omega^n_X,$$

where $\rho \in C_c^{\infty}(X)$ is equal to 1 near 0. Indeed, for any integer N > 0, there exist $\omega'_l, \omega''_l \in \Omega^n_X$ and $L(N) \in \mathbb{N}$ such that

$$\varphi - \sum_{l=1}^{L(N)} \varrho \omega'_l \wedge \overline{\omega''_l}$$

is flat of order N at 0; because the coefficients of the non- C^{∞} terms of the asymptotic expansion are currents carried by 0 and because \mathcal{M} is of finite type (cf. Theorem 1 below), the assertion follows.

When $f: X \to \mathbb{C}$ satisfies $J = H^n(F)$ the considerations above may be written briefly as

$$\mathcal{M} = \mathbb{C}[[s, \overline{s}]].$$

In order to detect the singularity of the map $f:X\to \mathbb{C}$ with fibre-integrals, we then consider

(3)
$$s \mapsto \int_{f=s} \varrho \omega' \wedge \overline{\omega''}, \quad \omega', \omega'' \in \underline{\omega}_X^n,$$

where $\underline{\omega}_X^n$ is the direct image sheaf on X of holomorphic *n*-forms on the nonsingular part $X^* = X \setminus \{0\}$. The germs at 0 of these new fibre-integrals, to which we add the function 1, have the structure of a $\mathbb{C}\{s, \overline{s}\}$ -module; this module tensored by $\mathbb{C}[[s, \overline{s}]]$ gives a $\mathbb{C}[[s, \overline{s}]]$ -module \mathcal{N} containing \mathcal{M} . When X is smooth, we have $\mathcal{N} = \mathcal{M}$ because, by Hartogs, $\underline{\omega}_X^n = \Omega_X^n$. In general we know that there exists an integer ν such that $|s|^{2\nu}\mathcal{N} \subseteq \mathcal{M}$, because $f^{\nu}\underline{\omega}_X^n \subseteq \Omega_X^n$ (see Remark 1.2 of [B-M 99]). The trivial inclusion $\mathcal{M} \subseteq \mathcal{N}$ is strict in general as shown in Example 2.

Proposition 6 below shows that we may have $\mathcal{N} = \mathcal{M} = \mathbb{C}[[s, \overline{s}]]$ for a small but nonempty class of singular maps $f: X \to \mathbb{C}$. The invariant \mathcal{N} is therefore not fine enough to detect the singularity of $f: X \to \mathbb{C}$. It is then natural to widen the class of fibre-integrals under consideration. To this end, if ω' and ω'' belong to $\underline{\omega}_X^{n+1}$ we look at

(4)
$$s \mapsto \left(\int_{f=s} \varrho \, \frac{\omega'}{df} \wedge \frac{\overline{\omega''}}{d\overline{f}} \right) ds \wedge d\overline{s}$$

The (1,1)-form above is nothing but the direct image $f_*(\varrho\omega' \wedge \overline{\omega''})$. The asymptotic expansions of forms (4) generate a module $\mathcal{N}^{1,1}$ on $\mathbb{C}[[s,\overline{s}]]$. In case X is smooth, this new module can be deduced from $\mathcal{N} = \mathcal{M}$ by means of the following relation:

(5)
$$f_*(\varrho \omega_X^{n+1} \wedge \overline{\Omega_X^n}) \subseteq d' f_*(\varrho \Omega_X^n \wedge \overline{\Omega_X^n}).$$

Indeed, for $\omega' \in \Omega_X^{n+1}$ and $\omega'' \in \Omega_X^n$, we may write, using the holomorphic de Rham lemma,

$$\omega' = d'\omega_1 \quad \text{with } \omega_1 \in \Omega^n_X.$$

Hence

$$f_*(\varrho\omega'\wedge\overline{\omega''})=d'f_*(\varrho\omega_1\wedge\overline{\omega''})-f_*(d'\varrho\wedge\omega_1\wedge\overline{\omega''}).$$

But because ϱ is identically 1 near 0, the direct image $f_*(\underline{d'} \varrho \wedge \omega_1 \wedge \overline{\omega''})$ belongs to $C_c^{\infty}(\mathbb{C}^*)^{1,0} \subseteq \underline{d'}C^{\infty}(\mathbb{C})^{0,0}$ and hence $f_*(\varrho\omega_1 \wedge \overline{\omega''})$ belongs to $\underline{d'}(f_*(\varrho\Omega_X^n \wedge \overline{\Omega_X^n}))$. Relation (5) implies that for X smooth we have $\mathcal{N}^{1,1} = \underline{d'}\underline{d''}\mathcal{N}(=\underline{d'}\underline{d''}\mathcal{M})$. This equality does not hold in the example of $X = \{x^2 + y^3 = z^6\}$ and f = z (see (18) and Proposition 6) where $\mathcal{M} = \mathcal{N} = \mathbb{C}[[s,\overline{s}]]$ and $\mathcal{N}^{1,1}$ contains $(\underline{ds} \wedge d\overline{s})/s\overline{s}$! When X is singular, the holomorphic de Rham lemma is not valid and in fact relation (5) is no longer true.

It turns out that there exist very few maps for which $\mathcal{M} = \mathcal{N} = \mathbb{C}[[s, \overline{s}]]$ and $\mathcal{N}^{1,1} = \mathbb{C}[[s, \overline{s}]]ds \wedge d\overline{s}$. We describe the construction of a class of examples presenting that feature in Section 3 and conclude with very explicit singularities.

1. Asymptotic expansion of fibre-integrals. Let us start with a version of the asymptotic expansion theorem for fibre-integrals of forms of type (2), (3) or (4). We do not assume that X and f have an isolated singularity here.

THEOREM 1. Let X be a reduced analytic space of pure dimension $n + 1 \ge 2$ and let $f: X \to \mathbb{C}$ be a holomorphic function satisfying

- (i) $\operatorname{Sing}(X) \subseteq f^{-1}(0);$
- (ii) $df(x) = 0 \Rightarrow f(x) = 0$ for $x \in X \setminus \text{Sing}(X)$.

Then, for any $\varrho \in C_c^{\infty}(X)$ and $(\omega', \omega'') \in \underline{\omega}_X^{n+p} \times \underline{\omega}_X^{n+q}$, where $p, q \in \{0, 1\}$, the direct image $f_*(\varrho \, \omega' \wedge \overline{\omega''})$ is a (p, q)-current of class C^{∞} on \mathbb{C}^* , admitting, as $s \to 0$, an asymptotic expansion that belongs to

$$\bigoplus_{r \in R, \ k \in [0,n]} \mathbb{C}[[s,\overline{s}]] |s|^{2(r-\nu)} \log^k |s| \left(\frac{ds}{s}\right)^p \wedge \left(\frac{d\overline{s}}{\overline{s}}\right)^q \quad if \ p+q > 0,$$
$$\bigoplus_{r \in R, \ k \in [0,n]} \mathbb{C}[[s,\overline{s}]] |s|^{2(r-\nu)} \log^k |s| + \mathbb{C}[[s,\overline{s}]] |s|^{-2\nu} \quad if \ p+q = 0,$$

where ν is an integer, R is a finite subset of $[0,1] \cap \mathbb{Q}$ that only depends on X, f and supp ϱ . This asymptotic expansion may be differentiated termwise.

REMARK. In the second expression, terms of type $|s|^{-2\nu} \log^k |s|$ are not permitted if k > 0.

Proof. By [B 78] the sheaf $\underline{\omega}_X^{n+p}$ is coherent and $\operatorname{supp} \underline{\omega}_X^{n+p}/\Omega_X^{n+p}$ is contained in $\operatorname{Sing}(X)$ for any p; the Nullstellensatz gives locally an integer ν such that $f^{\nu}\underline{\omega}_X^{n+p} \subseteq \Omega_X^{n+p}/\operatorname{torsion}$, using (i). There exist therefore two forms $\zeta' \in \Omega_X^{n+p}$ and $\zeta'' \in \Omega_X^{n+q}$ such that

$$\omega' = \zeta'/f^{\nu}$$
 and $\omega'' = \zeta''/f^{\nu}$.

Because

$$f_*(\varrho\omega'\wedge\overline{\omega''})(s) = f_*(\varrho\zeta'/f^\nu\wedge\overline{\zeta''}/\overline{f}^\nu)(s) = \frac{1}{|s|^{2\nu}}f_*(\varrho\zeta'\wedge\overline{\zeta''})(s),$$

it is enough to prove that the asymptotic expansion of $f_*(\varrho\zeta'\wedge\overline{\zeta''})$ belongs to

$$\bigoplus_{r \in R, \ k \in [0,n]} \mathbb{C}[[s,\overline{s}]] \ |s|^{2r} \log^k |s| \left(\frac{ds}{s}\right)^p \wedge \left(\frac{d\overline{s}}{\overline{s}}\right)^q \quad \text{if } p+q > 0,$$
$$\bigoplus_{r \in R, \ k \in [0,n]} \mathbb{C}[[s,\overline{s}]] \ |s|^{2r} \log^k |s| + \mathbb{C}[[s,\overline{s}]] \quad \text{if } p+q = 0.$$

Let us desingularize X. We are reduced to proving the result when X is nonsingular and ω', ω'' are holomorphic; therefore $\phi := \varrho \omega' \wedge \overline{\omega''}$ belongs to $C_c^{\infty}(X)^{n+p,n+q}$. Using a partition of unity, we may even assume X to be an open subset of \mathbb{C}^{n+1} .

Consider the case p = q = 1. From the definition of direct images, when $\phi \in C_c^{\infty}(X')^{n+1,n+1}$, where $X' = X \setminus f^{-1}(0)$, we have

(6)
$$\int_{X'} |f|^{2\lambda} \phi = \int_{\mathbb{C}^*} |s|^{2\lambda} f_* \phi(s).$$

Indeed, set $\psi(s) = |s|^{2\lambda}$ in the relation $\langle f_*\phi, \psi \rangle = \langle \phi, f^*\psi \rangle$. It follows that for $\phi \in C_c^{\infty}(X)^{n+1,n+1}$, the form $f_*\phi|_{\mathbb{C}^*}$ is equal to $\mathfrak{M}^{-1}(\lambda \mapsto \int_X |f|^{2\lambda}\phi)$ where \mathfrak{M} is the complex Mellin transform defined by $\mathfrak{M}\alpha(\lambda) = \int_{\mathbb{C}} |s|^{2\lambda}\alpha(s)$ for $\alpha \in C_c^{\infty}(\mathbb{C}^*)^{1,1}$. It is well known that $\lambda \mapsto \int_X |f|^{2\lambda}\phi$ admits a meromorphic extension to \mathbb{C} with poles at strictly negative rationals contained in $-R - \mathbb{N}$ with some finite $R \subset [0, 1]$. Moreover $\lambda \mapsto \int_X |f|^{2\lambda}\phi$ is rapidly decreasing on {Re } \lambda = \text{const}. Considering also the meromorphic extension of $\lambda \mapsto \int_X |f|^{2\lambda} \overline{f}^m \phi$ for $m \in \mathbb{Z}$ and taking the inverse Mellin transform we get the desired asymptotic expansion (see [B-M 89]).

In case p = q = 0 instead of (6) we write

(7)
$$\int_{X'} |f|^{2\lambda} \varphi \wedge \frac{df}{f} \wedge \frac{df}{\overline{f}} = \int_{\mathbb{C}^*} |s|^{2\lambda} f_* \varphi(s) \frac{ds}{s} \wedge \frac{d\overline{s}}{\overline{s}}, \quad \varphi \in C^\infty_{\mathrm{c}}(X)^{n,n}$$

When f has only normal crossings we may write in an appropriate coordinate system

$$f(z) = z_0^{\alpha_0} \dots z_n^{\alpha_r}$$

and so

$$\frac{df}{f} \wedge \frac{d\overline{f}}{\overline{f}} = \left(\alpha_0 \frac{dz_0}{z_0} + \ldots + \alpha_n \frac{dz_n}{z_n}\right) \wedge \left(\alpha_0 \frac{d\overline{z}_0}{\overline{z}_0} + \ldots + \alpha_n \frac{d\overline{z}_n}{\overline{z}_n}\right)$$
$$= \sum \alpha_j \alpha_k \frac{dz}{z_j} \wedge \frac{d\overline{z}_k}{\overline{z}_k}.$$

When $j \neq k$, the form

$$z \mapsto |z_0^{\alpha_0} \dots z_n^{\alpha_n}|^{2\lambda} \varphi(z) \wedge \frac{dz_j}{z_j} \wedge \frac{d\overline{z}_k}{\overline{z}_k}$$

is integrable for $\operatorname{Re} \lambda \geq 0$; the pole at $\lambda = 0$ of

$$\lambda \mapsto \int |f|^{2\lambda} \varphi \wedge \frac{df}{f} \wedge \frac{d\overline{f}}{\overline{f}}$$

is therefore created by terms of the type

$$\int |z_0^{\alpha_0} \dots z_n^{\alpha_n}|^{2\lambda} \varphi(z) \wedge \frac{dz_j}{z_j} \wedge \frac{d\overline{z}_j}{\overline{z}_j}$$

and it is simple. The result follows by taking the Mellin transform and (7).

The case p = 1, q = 0 is similar.

EXAMPLE 2. Computation of \mathcal{M} and \mathcal{N} for

$$X = \{(x, y, z) \in \mathbb{C}^3 \mid xy = z^2\}$$
 and $f(x, y, z) = z$.

Using a Taylor expansion, we see that for $\varphi \in C_{c}^{\infty}(\mathbb{C}^{3})^{1,1}$,

$$\int\limits_{X,z=s} \varphi = \int\limits_{xy=s^2} \varphi(x,y,s) = \sum\limits_{p+q \leq N-1} s^p \overline{s}^q \int\limits_{xy=s^2} \psi_{pq} + O(|s|^N)$$

where $\psi_{pq} \in C_c^{\infty}(\mathbb{C}^2)^{1,1}$. The asymptotic expansion of $\int_{xy=\sigma} \psi_{pq}$ belongs to the module $\mathbb{C}[[\sigma,\overline{\sigma}]] \oplus \mathbb{C}[[\sigma,\overline{\sigma}]] |\sigma|^2 \log |\sigma|$ because the monodromy of the map $(x, y) \mapsto xy$ is the identity (see [B 85]). Therefore

$$\mathcal{M} = \mathbb{C}[[s,\overline{s}]] \oplus \mathbb{C}[[s,\overline{s}]] |s|^4 \log |s|^4$$

Take $\omega = (xdy - ydx)/z$. Then ω belongs to $\underline{\omega}_X^1$ because $x\omega$ and $y\omega$ are holomorphic. Standard computations give

$$\int\limits_{X,z=s}\varrho\omega\wedge\overline{\omega}\sim |s|^2\log|s|$$

and so

$$\mathcal{N} = \mathbb{C}[[s,\overline{s}]] \oplus \mathbb{C}[[s,\overline{s}]] |s|^2 \log |s|.$$

2. Occurrence of logarithmic terms. Let us recall the following consequence of Theorem 6.4 of [B-M 99] that guarantees the occurrence of a term $s^m \overline{s}^{m+j} \log |s|$ in the asymptotic expansion of fibre-integrals for (n, n)-forms. We assume that (X, 0) is a germ of normal complex space of dimension n+1 with an isolated singularity at 0 and denote by $f: (X, 0) \to (\mathbb{C}, 0)$ a germ of holomorphic function such that $df(x) \neq 0$ for $x \neq 0$.

Let J be the image of the restriction map $H^n(X \setminus \{0\}) \to H^n(F)$, where F is the Milnor fibre of f.

THEOREM. Suppose ω is a holomorphic n-form on X that satisfies

$$d\omega = m \frac{df}{f} \wedge \omega \quad \text{with some } m \in \mathbb{N}.$$

Then the following two properties are equivalent:

(i) there exist j ∈ Z and ω'' ∈ H⁰₀(X, Ωⁿ_X) such that the asymptotic expansion of the function s → ∫_{f=s} ωω∧ω'' contains the term s^m s^{m+j} log |s|;
(ii) the class of ω/f^m in Hⁿ(F)^M does not belong to J.

REMARK. Using the decomposition of ω'' in a Jordan basis of the Gauss– Manin system of f, it is possible to choose ω'' so as to have

$$\int_{f=s} \rho \omega \wedge \overline{\omega''} \equiv s^m \overline{s}^{m+j} \log |s| \pmod{\mathbb{C}[[s,\overline{s}]]},$$

after increasing j if necessary.

In the next example, we compute J and $H^n(F)^M$.

EXAMPLE 3. For the singularity $X = \{x^2 + y^3 + z^6 = 0\} \subset \mathbb{C}^3$ and $f: X \to \mathbb{C}$ given by f(x, y, z) = x we have

$$0 \subsetneq J \subsetneq H^1(F)^M = H^1(F)_1.$$

Proof. Here, n = 1 and the Milnor fibre of f is $F = \{(1, y, z) \in \mathbb{C}^3 \mid y^3 + z^6 = -1\}$; it is therefore also the Milnor fibre of $g : \mathbb{C}^2 \to \mathbb{C}$ given by

 $g(y,z) = y^3 + z^6$. By Milnor, dim $H^1(F) = 10$. The corresponding monodromy M_g is diagonal with eigenvalues $e^{2i\pi 1/2}$ (2), $e^{2i\pi 2/3}$, $e^{2i\pi 5/6}$ (2), $e^{2i\pi}$ (2), $e^{2i\pi 7/6}$ (2), $e^{2i\pi 4/3}$ (the number in parentheses indicates multiplicity).

The commutative diagram

$$\begin{array}{cccc} X & \xrightarrow{f} & \mathbb{C} \\ \pi \downarrow & & \downarrow \tau \\ \mathbb{C}^2 & \xrightarrow{g} & \mathbb{C} \end{array}$$

where $\pi(x, y, z) = (y, z)$ and $\tau(x) = x^2$ shows that $M_f = M_g^2$ and its eigenvalues are $e^{2i\pi}$ (4), $e^{2i\pi 2/3}$ (3), $e^{2i\pi 4/3}$ (3). Here $H^1(F)^{M_f} = H^1(F)_1$ has dimension 4 and dim $H^1(X^* \setminus X_0^*) = 5$, where $X_0 = \{x = 0, y^3 + z^6 = 0\}$. To check this last equality, remember that $H^1(X^* \setminus X_0^*) \cong H^1(F)_1 \oplus \mathbb{C}\frac{df}{f}$.

Let

$$\omega_1 = \frac{zdy - 2ydz}{x}$$
 and $\omega_2 = \frac{yz^5dy - 2y^2z^4dz}{x^3} = \frac{yz^4}{x^2}\omega_1.$

Then ω_1 and ω_2 give classes in $H^1(X \setminus X_0)$ which extend to X^* . The other three generators of $H^1(X \setminus X_0)$,

$$\omega_3 = \frac{yz}{x}\omega_1, \quad \omega_4 = \frac{y^3}{x}\omega_1 \quad \text{and} \quad \omega_5 = \frac{dx}{x},$$

do not "extend" to X^* .

REMARK. For the same singularity but with f(x, y, z) = y, it is easy to see that fibre-integrals of C^{∞} forms are not always C^{∞} . As a consequence the wave front set of the integration current on $X \subset \mathbb{C}^3$ contains $\{0\} \times \mathbb{C}^3$ because it contains a cotangent vector (0, 0, 0; 0, 1, 0) that does not belong to the closure of the conormal space to X^* .

3. A class of singularities with smooth fibre-integrals. In this section, we consider the following situation. Let $g \in \mathcal{O}_{\mathbb{C}^{n+1}}$ have an isolated singularity at 0, g(0) = 0. Denote by M_g the monodromy of g at 0 and suppose M_g does not have the eigenvalue 1, that is,

(8)
$$M_q - 1$$
 is invertible,

or, equivalently, the intersection form on $H^n(G)$, where G is the Milnor fibre of g, is nondegenerate (see [A-G-Z-V], p. 410).

Assume also the existence of an integer N > 0 such that

$$(9) M_g^N = 1.$$

This last hypothesis implies that M_q diagonalizes.

Let $\sigma(g)$ denotes the Arnold exponent of g and $R(g) \subset [0, 1]$ its spectrum modulo 1. Hypothesis (9) yields

(10)
$$N \cdot R(g) \subset \mathbb{N}^*.$$

By classical results (cf. [B 85]), fibre-integrals with respect to g have asymptotic expansions at 0 of the following type, for $\rho \in C_c^{\infty}(\mathbb{C}^{n+1})$ equal to 1 in a neighbourhood of $0 \in \mathbb{C}^{n+1}$:

(11)

$$\eta', \eta'' \in \Omega^{n}_{\mathbb{C}^{n+1}} \Rightarrow \int_{g=t} \varrho \eta' \wedge \overline{\eta''} \in \sum_{r \in R(g)} \mathbb{C}[[t,\overline{t}]] |t|^{2r},$$

$$\zeta', \zeta'' \in \Omega^{n+1}_{\mathbb{C}^{n+1}} \Rightarrow \int_{g=t} \varrho \frac{\zeta'}{dg} \wedge \frac{\overline{\zeta''}}{d\overline{g}} \in \sum_{r \in R(g)} \mathbb{C}[[t,\overline{t}]] |t|^{2r-2}.$$

There are no logarithmic terms because $1 \notin \operatorname{spec} M_g$ and all Jordan blocks of M_g have size 1.

Let us now define the analytic space X and the holomorphic function f we will study in this section:

(H)
$$X = \{(x, s) \in \mathbb{C}^{n+2} \mid g(x) = s^N\},$$
 where g satisfies (8) and (9), $f(x, s) = s.$

Observe that the hypersurface X has an isolated singularity at 0 because $df \wedge (dg - Ns^{N-1}ds) = 0$ implies $ds \wedge dg = 0$.

The commutative diagram

$$\begin{array}{ccc} X & \stackrel{f}{\to} & \mathbb{C} \\ \pi \downarrow & & \downarrow \tau \\ \mathbb{C}^{n+1} & \stackrel{g}{\to} & \mathbb{C} \end{array}$$

where $\pi(x,s) = x$ and $\tau(s) = s^N$, shows that the fibres of f and g are isomorphic because $f^{-1}(s) = g^{-1}(s^N) \times \{s\}$; it also explains why $M_f = M_g^N = 1$. On $X' := X \setminus \{s = 0\}$, we have

(12)
$$N\frac{ds}{s} = \frac{dg}{g}.$$

As a consequence, for any $\eta \in \Omega^n_{\mathbb{C}^{n+1}}$ such that $d\eta = r \frac{dg}{g} \wedge \eta$, the following formula holds:

(13)
$$d\left(\frac{\pi^*\eta}{s^m}\right) = (rN-m)\frac{ds}{s} \wedge \frac{\pi^*\eta}{s^m}, \quad m \in \mathbb{N}$$

For holomorphic forms on X we use the obvious decomposition

(14)
$$\Omega_X^n = \mathcal{O}_X \pi^* \Omega_{\mathbb{C}^{n+1}}^n + \mathcal{O}_X \pi^* \Omega_{\mathbb{C}^{n+1}}^{n-1} \wedge ds,$$
$$\Omega_X^{n+1} = \mathcal{O}_X \pi^* \Omega_{\mathbb{C}^{n+1}}^{n+1} + \mathcal{O}_X \pi^* \Omega_{\mathbb{C}^{n+1}}^n \wedge ds.$$

For the sheaves $\underline{\omega}_X^n$ and $\underline{\omega}_X^{n+1}$ we need a lemma.

LEMMA 4. Under hypothesis (H), we have

$$\underline{\omega}_X^n \subseteq \frac{1}{s^{N-1}} \mathcal{O}_X \pi^* \Omega_{\mathbb{C}^{n+1}}^n, \quad \underline{\omega}_X^{n+1} \subseteq \frac{1}{s^{N-1}} \mathcal{O}_X \pi^* dx_0 \wedge \ldots \wedge dx_n$$

Proof. Let j = n or n + 1. Any section of $\underline{\omega}_X^j$ near the origin belongs to $\Omega_X^j[s^{-1}]$ because there exists $\nu \in \mathbb{N}$ such that $s^{\nu}\underline{\omega}_X^j$ is contained in Ω_X^j modulo torsion. On the other hand, on X' we have

$$ds = \frac{1}{Ns^{N-1}}dg,$$

by (12). So any section of $\underline{\omega}_X^j$ is a finite sum of elements of the type $\pi^* \alpha/s^k$ where $\alpha \in \Omega_{\mathbb{C}^{n+1}}^j$ and $k \in \mathbb{Z}$. Suppose $k \ge N$; because the sections of $\underline{\omega}_X^j$ have the trace property (see [B 78]), we get

$$\operatorname{trace}_{\pi}\left(\frac{\pi^*\alpha}{s^N}\right) = N\frac{\alpha}{g} \in \Omega^j_{\mathbb{C}^{n+1}}$$

Hence $\alpha = g\beta$ with $\beta \in \Omega^j_{\mathbb{C}^{n+1}}$ and so $\pi^* \alpha/s^k = \pi^* \beta/s^{k-N}$. Iterating this process we are reduced to $k \leq N-1$, proving the inclusions.

REMARK. The second inclusion is in fact an equality.

PROPOSITION 5. Assume (H). Then for $(p,q) \in \{0,1\}$ we have

$$\mathcal{M}^{p,q} = \mathbb{C}[[s,\overline{s}]] \, ds^p \wedge d\overline{s}^q.$$

Proof. CASE 1: p = q = 0. Thanks to (14) we only need to show that fibre-integrals for $\pi^* \eta' \wedge \pi^* \overline{\eta''}$ are C^{∞} for $\eta', \eta'' \in \Omega^n_{\mathbb{C}^{n+1}}$. Indeed, the second term in (14) does not contribute and $\mathcal{O}_X \subseteq \mathbb{C}[[s]]\pi^*\mathcal{O}_{\mathbb{C}^{n+1}}$ explains how \mathcal{O}_X coefficients are treated. But

$$\int_{f^{-1}(s)\cap X} \varrho \pi^* \eta' \wedge \pi^* \overline{\eta''} = \int_{g=s^N} \varrho \eta' \wedge \overline{\eta''} \in \sum_{r \in R(g)} \mathbb{C}[[s^N, \overline{s}^N]] \, |s|^{2rN} \subseteq \mathbb{C}[[s, \overline{s}]]$$

by (11) and (10).

CASE 2: p = q = 1. The term containing ds in formula (14) produces a C^{∞} term after fibre-integration, from the first part of the proof. Now for $\zeta \in \Omega_{\mathbb{C}^{n+1}}^{n+1}$, we have

$$\frac{\pi^*\zeta}{ds} = \frac{1}{s}\pi^*\left(\frac{Ng\zeta}{dg}\right) = Ns^{N-1}\pi^*\left(\frac{\zeta}{dg}\right)$$

from (13) and hence

$$\int_{f^{-1}(s)} \varrho \, \frac{\pi^* \zeta'}{ds} \wedge \frac{\pi^* \zeta''}{d\overline{s}} = N^2 |s|^{2N-2} \int_{g=s^N} \varrho \, \frac{\zeta'}{dg} \wedge \frac{\zeta''}{d\overline{g}}$$
$$\in \sum_{r \in R(g)} \mathbb{C}[[s^N, \overline{s}^N]] |s|^{2rN-2};$$

this fibre-integral is C^{∞} because $N\sigma(g) - 1 \ge 0$ from $N\sigma(g) \in \mathbb{N}^*$.

Other cases are left to the reader. \blacksquare

REMARKS. 1) The cutoff function ρ need not be compactly supported in s, that is why it only depends on x in the above calculations. In fact the f-proper forms and the compactly supported ones give the same asymptotic expansions modulo $\mathbb{C}[[s, \overline{s}]]$.

2) Proposition 5 and Corollary 6.5 of [B-M 99] show that dim $H^n(X^*) =$ $\dim H^n(F)$. In our situation (H), this dimension is easily computable because F is isomorphic to the Milnor fibre of g.

PROPOSITION 6. Under hypothesis (H), the following implications hold:

- (a) $N\sigma(g) \ge N 1 \Rightarrow \mathcal{N}_f = \mathbb{C}[[s, \overline{s}]];$ (b) $\sigma(g) > 1 \Leftrightarrow \mathcal{N}_f^{1,1} = \mathbb{C}[[s, \overline{s}]] ds \wedge d\overline{s}.$

The converse of (a) is true for quasi-homogeneous g.

REMARK. Because $\sigma(g)$ is not an integer, $\sigma(g) > 1$ is equivalent to $\sigma(g)$ ≥ 1 . On the other hand, because $N\sigma(g)$ is an integer, $\sigma(g) \geq 1$ is equivalent to $\sigma(g) > (N-1)/N$.

Proof of Proposition 6. (a)(\Rightarrow) Let $\eta', \eta'' \in \underline{\omega}_X^n$. By Lemma 4, there exist $\eta'_i, \eta''_k \in \Omega^n_{\mathbb{C}^{n+1}}$ such that

$$\eta' = \frac{1}{s^{N-1}} \sum_{j=0}^{\infty} s^j \pi^* \eta'_j, \qquad \eta'' = \frac{1}{s^{N-1}} \sum_{k=0}^{\infty} s^k \pi^* \eta''_k.$$

Therefore

$$\int_{f^{-1}(s)\cap X} \varrho \pi^* \eta' \wedge \pi^* \overline{\eta''} = \sum_{j,k \ge 0} \int_{g=s^N} \varrho s^{j-N+1} \overline{s}^{k-N+1} \eta'_j \wedge \overline{\eta''_k}$$
$$\in \mathbb{C}[[s,\overline{s}]] \, |s|^{2N\sigma(g)-2N+2} \subseteq \mathbb{C}[[s,\overline{s}]].$$

(a)(\Leftarrow) When g is quasi-homogeneous, from [L] we get the existence of $\omega \in \Omega^n_{\mathbb{C}^{n+1}}$ such that

(15)
$$\int_{g=t} \varrho \omega \wedge \overline{\omega} = |t|^{2\sigma(g)} + o(|t|^{2\sigma(g)}).$$

It is possible to choose ω such that

(16)
$$d\omega = \sigma(g)\frac{dg}{g} \wedge \omega.$$

Consider $\eta = (1/s^{N-1})\pi^*\omega$; we check η belongs to $\underline{\omega}_X^n$. By [B 78], it is enough to see that for all $j \in [0, N-1]$,

$$\operatorname{trace}_{\pi}\left(\frac{s^{j}}{s^{N-1}}\pi^{*}\omega\right)\in\Omega_{\mathbb{C}^{n+1}}^{n}\quad\text{and}\quad\operatorname{trace}_{\pi}\left(\frac{s^{j}}{s^{N-1}}ds\wedge\pi^{*}\omega\right)\in\Omega_{\mathbb{C}^{n+1}}^{n+1}.$$

The first trace vanishes for j < N-1, and it is equal to $N\omega$ when j = N-1. The second trace is nonzero only for j = N - 2 and then it is equal to $\frac{dg}{q} \wedge \omega$. Relation (16) implies $\eta \in \underline{\omega}_X^n$.

f

Integrating along fibres, we get, from (15),

$$\int_{-1} \varrho \eta \wedge \overline{\eta} = |s|^{2N\sigma(g) - 2N + 2} (1 + o(1)).$$

In order that this integral be C^{∞} , we must have $N\sigma(g) \ge N-1$. (b)(\Rightarrow) For $\zeta \in \Omega^{n+1}_{\mathbb{C}^{n+1}}$, we have by (12),

$$\frac{1}{s^{N-1}}\frac{\pi^*\zeta}{ds} = \frac{1}{s^N}\pi^*\left(\frac{Ng\zeta}{dg}\right) = N\pi^*\left(\frac{\zeta}{dg}\right).$$

Taking fibre-integrals gives

$$\int_{f^{-1}(s)} \rho \, \frac{\pi^* \zeta'}{ds} \wedge \frac{\pi^* \overline{\zeta''}}{d\overline{s}} = N^2 \int_{g=s^N} \rho \, \frac{\zeta'}{dg} \wedge \frac{\overline{\zeta''}}{d\overline{g}} \in \sum_{r \in R(g)} \mathbb{C}[[s^N, \overline{s}^N]] \, |s|^{2N(r-1)};$$

this fibre-integral is C^{∞} . It remains to use $\mathbb{C}[[s, \overline{s}]]$ -linearity and Lemma 4.

(b)(\Leftarrow) Following [L], take a holomorphic $(n+1)\text{-form } \varOmega$ on \mathbb{C}^{n+1} such that

$$\int_{g=t} \varrho \, \frac{\Omega}{dg} \wedge \frac{\overline{\Omega}}{d\overline{g}} = |t|^{2\sigma(g)-2} + o(|t|^{2\sigma(g)-2}).$$

With $\zeta := \frac{1}{Ns^{N-1}} \pi^* \Omega \in \underline{\omega}_X^{n+1}$ we have

$$\int_{f^{-1}(s)\cap X} \varrho \, \frac{\zeta}{ds} \wedge \frac{\overline{\zeta}}{d\overline{s}} = |s|^{2N(\sigma(g)-1)} (1+o(1)).$$

If this integral is C^{∞} then $\sigma(g) \ge 1$.

4. Explicit examples. We present here explicit examples of singularities X and functions f for which all fibre-integrals are C^{∞} ; integration of forms in $\underline{\omega}_X^{n+1}$ is allowed.

To fulfill conditions (8) and (9), we look for Fermat's singularities

$$g(x) = x_0^{p_0} + \ldots + x_n^{p_n}$$

where p_0, \ldots, p_n are integers ≥ 2 that satisfy

(17)
$$\frac{a_0}{p_0} + \ldots + \frac{a_n}{p_n} \notin \mathbb{N}$$

for all $a_j \in \mathbb{N}$ with $0 < a_j < p_j$. We take $N = \operatorname{lcm}(p_0, \ldots, p_n)$ in (9). A sufficient condition for (17) is

$$\exists j \in [0, n]$$
 such that $(p_j, p_k) = 1, \forall k \neq j.$

For n even, the following condition is also sufficient:

$$\forall j, \forall k: (p_j, p_k) = 2 \text{ if } j \neq k.$$

CASE n = 1. Condition (17) is equivalent to $(p_0, p_1) = 1$ and so $N = p_0 p_1$. The smallest values of $p_0 \le p_1$ are 2, 3, so that

$$\frac{1}{p_0} \le \frac{1}{2}, \quad \frac{1}{p_1} \le \frac{1}{3}, \quad \frac{1}{N} \le \frac{1}{6}.$$

Hence

$$\frac{1}{p_0} + \frac{1}{p_1} + \frac{1}{N} \le 1 \quad \text{or} \quad \frac{1}{p_0} + \frac{1}{p_1} \le \frac{N-1}{N}$$

and the inequalities are strict if $p_0 > 2$ or $p_1 > 3$. Hence the only X for which Proposition 6 applies is

(18)
$$X = \{x_0^2 + x_1^3 = s^6\}.$$

CASE n = 2. We take $p_0 \le p_1 \le p_2$ and notice that

$$\frac{1}{p_0} + \frac{1}{p_1} + \frac{1}{p_2} \ge \frac{N-1}{N}$$

with $N = \operatorname{lcm}(p_0, p_1, p_2)$ may be satisfied, because $N \ge p_2$, only if

$$p_2 \le \frac{2p_0 p_1}{p_0 p_1 - p_0 - p_1}.$$

This remark enables us to easily eliminate many values of p_0 , p_1 , p_2 satisfying (17).

p_0	p_1	p_2	N	$\sigma(g)$		$\frac{N-1}{N}$
2	2	2k	2k	$\frac{2k+1}{2k}$	>	$\frac{2k-1}{2k}$
2	2	2k+1	2k+1	$\frac{2k+2}{2k+1}$	>	$\frac{2k}{2k+1}$
2	3	3	6	$\frac{5}{6}$	=	$\frac{5}{6}$
2	3	4	12	$\frac{13}{12}$	>	$\frac{11}{12}$
2	3	5	30	$\frac{31}{30}$	>	$\frac{29}{30}$
2	3	7	42	$\frac{41}{42}$	=	$\frac{41}{42}$
2	3	8	24	$\frac{23}{24}$	=	$\frac{23}{24}$
2	3	9	18	$\frac{17}{18}$	=	$\frac{17}{18}$
2	4	5	20	$\frac{19}{20}$	=	$\frac{19}{20}$
2	5	5	10	$\frac{9}{10}$	=	$\frac{9}{10}$
3	3	4	12	$\frac{11}{12}$	=	$\frac{11}{12}$

In the table above, we give all triples p_0 , p_1 , p_2 for which Proposition 6 applies, that is, (17) and $\sigma(g) \geq (N-1)/N$ hold. So there are only few examples where $\sigma(g) > 1$, i.e., examples for which all fibre-integrals are smooth.

REMARK. Using the Thom–Sebastiani result, it is easy to see that if g and N satisfy conditions (8) and (9), then the function G defined by $G(x, y, z_0, \ldots, z_n) = x^2 + y^2 + g(z_0, \ldots, z_n)$ gives also an example with the same N. So the first two series of examples in the table come from trivial examples in dimension 1 (n = 0).

Application. The wave front set of the integration current on the quadratic cone $X = \{x_0^2 + \ldots + x_n^2 = s^2\}$, for *n* even, is equal to the closure of the conormal space to X^{*}. For n odd this wave front set contains $\{0\} \times \mathbb{C}^{n+2}$. This follows, for n even, from the fact that fibre-integrals with respect to $\xi_0 x_0 + \ldots + \xi_n x_n + \eta s$ are C^{∞} if $\xi_0^2 + \ldots + \xi_n^2 \neq \eta^2$ because a linear change of coordinates leaving the cone fixed reduces to our situation. Same argument for n odd.

References

- [A-G-Z-V] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps II, Birkhäuser, 1988.
 - [B 78] D. Barlet, Le faisceau ω_X sur un espace analytique X de dimension pure, in: Lecture Notes in Math. 670, Springer, 1978, 187-204.
 - [B 84] -, Contribution effective de la monodromie aux développements asymptotiques, Ann. Sci. Ecole Norm. Sup. 17 (1984), 293–315.
 - [B 85] -, Forme hermitienne canonique sur la cohomologie de la fibre de Milnor d'une hypersurface à singularité isolée, Invent. Math. 81 (1985), 115-153.
 - D. Barlet and H.-M. Maire, Asymptotic expansion of complex integrals via [B-M 89] Mellin transform, J. Funct. Anal. 83 (1989), 233–257. —, —, Poles of the current $|f|^{2\lambda}$ over an isolated singularity, Internat. J.
 - [B-M 99] Math. (2000) (to appear).
 - F. Loeser, Quelques conséquences locales de la théorie de Hodge, Ann. Inst. [L]Fourier (Grenoble) 35 (1985), no. 1, 75-92.

Université H. Poincaré (Nancy I) et	Section de Mathématiques
Institut Universitaire de France	Université de Genève
Institut E. Cartan UHP/CNRS/INRIA, UMR 7502	Case postale 240
Boîte postale 239	CH-1211 Genève 24, Switzerland
F-54506 Vandœuvre-lès-Nancy, France	E-mail: henri.maire@math.unige.ch
E-mail: barlet@iecn.u-nancy.fr	

Reçu par la Rédaction le 20.7.1999