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Singular holomorphic functions for

which all fibre-integrals are smooth

by D. Barlet (Vandœuvre-lès-Nancy) and H.-M. Maire (Genève)

Bogdan Ziemian in memoriam

Abstract. For a germ (X, 0) of normal complex space of dimension n + 1 with an
isolated singularity at 0 and a germ f : (X, 0) → (C, 0) of holomorphic function with
df(x) 6= 0 for x 6= 0, the fibre-integrals

s 7→
\
f=s

̺ω
′ ∧ ω′′, ̺ ∈ C∞c (X), ω

′
, ω
′′ ∈ ΩnX ,

are C∞ on C∗ and have an asymptotic expansion at 0. Even when f is singular, it may
happen that all these fibre-integrals are C∞. We study such maps and build a family of
examples where also fibre-integrals for ω′, ω′′ ∈ ωX , the Grothendieck sheaf, are C

∞.

0. Introduction. Let (X, 0) be a germ of normal complex space of
dimension n+ 1 with an isolated singularity at 0 and let f : (X, 0) → (C, 0)
be a germ of holomorphic function such that df(x) 6= 0 for x 6= 0.

In a previous paper [B-M 99], we have explained how eigenvalues of the
monodromy M of f acting on Hn(F ), where F is the Milnor fibre of f ,
contribute to create poles of the meromorphic extension of the current λ 7→
Γ (λ)−1

T
X
|f |2λ

�. For eigenvalues different from 1, our results generalize
those of the first author [B 84] for smooth X. But for the eigenvalue 1 of M ,
poles of the above current appear at negative integers if, and only if, 1 is also
an eigenvalue of the monodromy of f acting in the quotient Hn(F )/J , where
J is the image of the mapHn(X\{0}) → Hn(F ) induced by restriction. (See
Example 3 for explicit computation of the image.) When this restriction is
surjective (which implies M = 1 and is therefore a very strong hypothesis),
it follows that λ 7→

T
X
|f |2λ

� has only simple poles on the negative integers.
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Using inverse Mellin transform, we deduce that, for all ϕ ∈ C∞
c (X)n,n, the

fibre-integrals

(1) s 7→
\

f=s

ϕ

are of class C∞ (because\
X

|f |2λϕ ∧
df

f
∧
df

f
=
\
C

|s|2λ
\

f=s

ϕ
ds

s
∧
ds

s

by Fubini’s theorem). In this situation, fibre-integrals of C∞ forms of type
(n, n) do not detect the singularity of the map f : X → C, that is, X not
smooth or df(0) = 0.

In a more general context, asymptotic expansions at 0 of functions (1)
give rise to a finitely generated C[[s, s]]-module M (see Theorem 1 below).
Because X and f have an isolated singularity at 0, this module is generated
by 1 and the asymptotic expansions of the following functions:

(2) s 7→
\

f=s

̺ω′ ∧ ω′′, ω′, ω′′ ∈ Ωn
X ,

where ̺ ∈ C∞
c (X) is equal to 1 near 0. Indeed, for any integer N > 0, there

exist ω′
l, ω

′′
l ∈ Ωn

X and L(N) ∈ N such that

ϕ−

L(N)
∑

l=1

̺ω′
l ∧ ω

′′
l

is flat of order N at 0; because the coefficients of the non-C∞ terms of the
asymptotic expansion are currents carried by 0 and because M is of finite
type (cf. Theorem 1 below), the assertion follows.

When f : X → C satisfies J = Hn(F ) the considerations above may be
written briefly as

M = C[[s, s]].

In order to detect the singularity of the map f : X → C with fibre-integrals,
we then consider

(3) s 7→
\

f=s

̺ω′ ∧ ω′′, ω′, ω′′ ∈ ωn
X ,

where ωn
X is the direct image sheaf on X of holomorphic n-forms on the

nonsingular part X∗ = X \{0}. The germs at 0 of these new fibre-integrals,
to which we add the function 1, have the structure of a C{s, s}-module; this
module tensored by C[[s, s]] gives a C[[s, s]]-module N containing M. When
X is smooth, we have N = M because, by Hartogs, ωn

X = Ωn
X . In general

we know that there exists an integer ν such that |s|2νN ⊆ M, because
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fνωn
X ⊆ Ωn

X (see Remark 1.2 of [B-M 99]). The trivial inclusion M ⊆ N is
strict in general as shown in Example 2.

Proposition 6 below shows that we may have N = M = C[[s, s]] for a
small but nonempty class of singular maps f : X→C. The invariant N is
therefore not fine enough to detect the singularity of f : X→C. It is then
natural to widen the class of fibre-integrals under consideration. To this end,
if ω′ and ω′′ belong to ωn+1

X we look at

(4) s 7→

( \
f=s

̺
ω′

df
∧
ω′′

df

)

ds ∧ ds.

The (1, 1)-form above is nothing but the direct image f∗(̺ω
′ ∧ ω′′). The

asymptotic expansions of forms (4) generate a module N 1,1 on C[[s, s]]. In
case X is smooth, this new module can be deduced from N = M by means
of the following relation:

(5) f∗(̺ω
n+1
X ∧Ωn

X) ⊆ d′f∗(̺Ω
n
X ∧Ωn

X).

Indeed, for ω′ ∈ Ωn+1
X and ω′′ ∈ Ωn

X , we may write, using the holomorphic
de Rham lemma,

ω′ = d′ω1 with ω1 ∈ Ωn
X .

Hence

f∗(̺ω
′ ∧ ω′′) = d′f∗(̺ω1 ∧ ω′′) − f∗(d

′̺ ∧ ω1 ∧ ω′′).

But because ̺ is identically 1 near 0, the direct image f∗(d
′̺ ∧ ω1 ∧ ω′′)

belongs to C∞
c (C∗)1,0 ⊆ d′C∞(C)0,0 and hence f∗(̺ω1 ∧ ω′′) belongs to

d′(f∗(̺Ω
n
X ∧Ωn

X)). Relation (5) implies that for X smooth we have N 1,1 =
d′d′′N (= d′d′′M). This equality does not hold in the example of X =
{x2 + y3 = z6} and f = z (see (18) and Proposition 6) where M = N =
C[[s, s]] and N 1,1 contains (ds ∧ ds)/ss ! When X is singular, the holo-
morphic de Rham lemma is not valid and in fact relation (5) is no longer
true.

It turns out that there exist very few maps for which M = N = C[[s, s]]
and N 1,1 = C[[s, s]]ds ∧ ds. We describe the construction of a class of ex-
amples presenting that feature in Section 3 and conclude with very explicit
singularities.

1. Asymptotic expansion of fibre-integrals. Let us start with a
version of the asymptotic expansion theorem for fibre-integrals of forms of
type (2), (3) or (4). We do not assume that X and f have an isolated
singularity here.

Theorem 1. Let X be a reduced analytic space of pure dimension n+ 1
≥ 2 and let f : X → C be a holomorphic function satisfying
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(i) Sing(X) ⊆ f−1(0);

(ii) df(x) = 0 ⇒ f(x) = 0 for x ∈ X \ Sing(X).

Then, for any ̺ ∈ C∞
c (X) and (ω′, ω′′) ∈ ωn+p

X × ωn+q
X , where p, q ∈ {0, 1},

the direct image f∗(̺ω
′ ∧ ω′′) is a (p, q)-current of class C∞ on C∗, admit-

ting , as s→ 0, an asymptotic expansion that belongs to

⊕

r∈R, k∈[0,n]

C[[s, s]] |s|2(r−ν) logk |s|

(

ds

s

)p

∧

(

ds

s

)q

if p+ q > 0,

⊕

r∈R, k∈[0,n]

C[[s, s]] |s|2(r−ν) logk |s| + C[[s, s]] |s|−2ν if p+ q = 0,

where ν is an integer , R is a finite subset of ]0, 1] ∩Q that only depends on

X, f and supp̺. This asymptotic expansion may be differentiated termwise.

Remark. In the second expression, terms of type |s|−2ν logk |s| are not
permitted if k > 0.

P r o o f. By [B 78] the sheaf ωn+p
X is coherent and suppωn+p

X /Ωn+p
X is

contained in Sing(X) for any p; the Nullstellensatz gives locally an integer
ν such that fνωn+p

X ⊆ Ωn+p
X /torsion, using (i). There exist therefore two

forms ζ ′ ∈ Ωn+p
X and ζ ′′ ∈ Ωn+q

X such that

ω′ = ζ ′/fν and ω′′ = ζ ′′/fν .

Because

f∗(̺ω
′ ∧ ω′′)(s) = f∗(̺ζ

′/fν ∧ ζ ′′/fν)(s) =
1

|s|2ν
f∗(̺ζ

′ ∧ ζ ′′)(s),

it is enough to prove that the asymptotic expansion of f∗(̺ζ
′ ∧ ζ ′′) belongs

to
⊕

r∈R, k∈[0,n]

C[[s, s]] |s|2r logk |s|

(

ds

s

)p

∧

(

ds

s

)q

if p+ q > 0,

⊕

r∈R, k∈[0,n]

C[[s, s]] |s|2r logk |s| + C[[s, s]] if p+ q = 0.

Let us desingularize X. We are reduced to proving the result when X is
nonsingular and ω′, ω′′ are holomorphic; therefore φ := ̺ω′ ∧ ω′′ belongs to
C∞

c (X)n+p,n+q . Using a partition of unity, we may even assume X to be an
open subset of Cn+1.

Consider the case p = q = 1. From the definition of direct images, when
φ ∈ C∞

c (X ′)n+1,n+1, where X ′ = X \ f−1(0), we have

(6)
\

X′

|f |2λφ =
\

C∗

|s|2λf∗φ(s).
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Indeed, set ψ(s)= |s|2λ in the relation 〈f∗φ,ψ〉 = 〈φ, f∗ψ〉. It follows that for
φ ∈ C∞

c (X)n+1,n+1, the form f∗φ|C∗ is equal to M
−1(λ 7→

T
X
|f |2λφ) where

M is the complex Mellin transform defined by Mα(λ) =
T
C
|s|2λα(s) for

α ∈ C∞
c (C∗)1,1. It is well known that λ 7→

T
X
|f |2λφ admits a meromorphic

extension to C with poles at strictly negative rationals contained in −R−N
with some finite R ⊂ ]0, 1]. Moreover λ 7→

T
X
|f |2λφ is rapidly decreasing

on {Reλ = const}. Considering also the meromorphic extension of λ 7→T
X
|f |2λfmφ for m ∈ Z and taking the inverse Mellin transform we get the

desired asymptotic expansion (see [B-M 89]).
In case p = q = 0 instead of (6) we write

(7)
\

X′

|f |2λϕ ∧
df

f
∧
df

f
=
\

C∗

|s|2λf∗ϕ(s)
ds

s
∧
ds

s
, ϕ ∈ C∞

c (X)n,n.

When f has only normal crossings we may write in an appropriate coordinate
system

f(z) = zα0

0 . . . zαn
n

and so

df

f
∧
df

f
=

(

α0
dz0
z0

+ . . .+ αn
dzn

zn

)

∧

(

α0
dz0

z0
+ . . . + αn

dzn

zn

)

=
∑

αjαk
dz

z j
∧
dzk

zk
.

When j 6= k, the form

z 7→ |zα0

0 . . . zαn
n |2λϕ(z) ∧

dzj

zj
∧
dzk

zk

is integrable for Reλ ≥ 0; the pole at λ = 0 of

λ 7→
\
|f |2λϕ ∧

df

f
∧
df

f

is therefore created by terms of the type\
|zα0

0 . . . zαn
n |2λϕ(z) ∧

dzj

zj
∧
dzj

zj

and it is simple. The result follows by taking the Mellin transform and (7).
The case p = 1, q = 0 is similar.

Example 2. Computation of M and N for

X = {(x, y, z) ∈ C3 | xy = z2} and f(x, y, z) = z.

Using a Taylor expansion, we see that for ϕ ∈ C∞
c (C3)1,1,\

X,z=s

ϕ =
\

xy=s2

ϕ(x, y, s) =
∑

p+q≤N−1

spsq
\

xy=s2

ψpq +O(|s|N )
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where ψpq ∈ C∞
c (C2)1,1. The asymptotic expansion of

T
xy=σ

ψpq belongs

to the module C[[σ, σ]] ⊕C[[σ, σ]] |σ|2 log |σ| because the monodromy of the
map (x, y) 7→ xy is the identity (see [B 85]). Therefore

M = C[[s, s]] ⊕ C[[s, s]] |s|4 log |s|.

Take ω = (xdy − ydx)/z. Then ω belongs to ω1
X because xω and yω are

holomorphic. Standard computations give\
X,z=s

̺ω ∧ ω ∼ |s|2 log |s|

and so
N = C[[s, s]] ⊕ C[[s, s]] |s|2 log |s|.

2. Occurrence of logarithmic terms. Let us recall the following con-
sequence of Theorem 6.4 of [B-M 99] that guarantees the occurrence of a
term smsm+j log |s| in the asymptotic expansion of fibre-integrals for (n, n)-
forms. We assume that (X, 0) is a germ of normal complex space of dimen-
sion n+1 with an isolated singularity at 0 and denote by f : (X, 0) → (C, 0)
a germ of holomorphic function such that df(x) 6= 0 for x 6= 0.

Let J be the image of the restriction map Hn(X \{0}) → Hn(F ), where
F is the Milnor fibre of f .

Theorem. Suppose ω is a holomorphic n-form on X that satisfies

dω = m
df

f
∧ ω with some m ∈ N.

Then the following two properties are equivalent :

(i) there exist j ∈ Z and ω′′ ∈ H0(X,Ωn
X ) such that the asymptotic

expansion of the function s 7→
T
f=s

̺ω∧ω′′ contains the term smsm+j log |s|;

(ii) the class of ω/fm in Hn(F )M does not belong to J .

Remark. Using the decomposition of ω′′ in a Jordan basis of the Gauss–
Manin system of f , it is possible to choose ω′′ so as to have\

f=s

̺ω ∧ ω′′ ≡ smsm+j log |s| (mod C[[s, s]]),

after increasing j if necessary.

In the next example, we compute J and Hn(F )M .

Example 3. For the singularity X = {x2 + y3 + z6 = 0} ⊂ C3 and

f : X → C given by f(x, y, z) = x we have

0  J  H1(F )M = H1(F )1.

P r o o f. Here, n = 1 and the Milnor fibre of f is F = {(1, y, z) ∈ C3 |
y3 + z6 = −1}; it is therefore also the Milnor fibre of g : C2 → C given by
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g(y, z) = y3 + z6. By Milnor, dimH1(F ) = 10. The corresponding mon-
odromy Mg is diagonal with eigenvalues e2iπ1/2 (2), e2iπ2/3, e2iπ5/6 (2), e2iπ

(2), e2iπ7/6 (2), e2iπ4/3 (the number in parentheses indicates multiplicity).
The commutative diagram

X
f
→ C

π↓ ↓τ

C2 g
→ C

where π(x, y, z) = (y, z) and τ(x) = x2 shows that Mf = M2
g and its

eigenvalues are e2iπ (4), e2iπ2/3 (3), e2iπ4/3 (3). Here H1(F )Mf = H1(F )1
has dimension 4 and dimH1(X∗\X∗

0 ) = 5, where X0 = {x = 0, y3+z6 = 0}.
To check this last equality, remember that H1(X∗ \X∗

0 ) ∼= H1(F )1 ⊕ C
df
f

.
Let

ω1 =
zdy − 2ydz

x
and ω2 =

yz5dy − 2y2z4dz

x3
=
yz4

x2
ω1.

Then ω1 and ω2 give classes in H1(X \X0) which extend to X∗. The other
three generators of H1(X \X0),

ω3 =
yz

x
ω1, ω4 =

y3

x
ω1 and ω5 =

dx

x
,

do not “extend” to X∗.

Remark. For the same singularity but with f(x, y, z) = y, it is easy to
see that fibre-integrals of C∞ forms are not always C∞. As a consequence
the wave front set of the integration current on X ⊂ C3 contains {0} × C3

because it contains a cotangent vector (0, 0, 0; 0, 1, 0) that does not belong
to the closure of the conormal space to X∗.

3. A class of singularities with smooth fibre-integrals. In this
section, we consider the following situation. Let g ∈ OCn+1 have an isolated
singularity at 0, g(0) = 0. Denote by Mg the monodromy of g at 0 and
suppose Mg does not have the eigenvalue 1, that is,

(8) Mg − 1 is invertible,

or, equivalently, the intersection form on Hn(G), where G is the Milnor fibre
of g, is nondegenerate (see [A-G-Z-V], p. 410).

Assume also the existence of an integer N > 0 such that

(9) MN
g = 1.

This last hypothesis implies that Mg diagonalizes.
Let σ(g) denotes the Arnold exponent of g and R(g) ⊂ ]0, 1[ its spectrum

modulo 1. Hypothesis (9) yields

(10) N ·R(g) ⊂ N∗.
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By classical results (cf. [B 85]), fibre-integrals with respect to g have asymp-
totic expansions at 0 of the following type, for ̺ ∈ C∞

c (Cn+1) equal to 1 in
a neighbourhood of 0 ∈ Cn+1:

(11)

η′, η′′ ∈ Ωn
Cn+1 ⇒

\
g=t

̺η′ ∧ η′′ ∈
∑

r∈R(g)

C[[t, t]] |t|2r ,

ζ ′, ζ ′′ ∈ Ωn+1
Cn+1 ⇒

\
g=t

̺
ζ ′

dg
∧
ζ ′′

dg
∈

∑

r∈R(g)

C[[t, t]] |t|2r−2.

There are no logarithmic terms because 1 6∈ specMg and all Jordan blocks
of Mg have size 1.

Let us now define the analytic space X and the holomorphic function f
we will study in this section:

(H)
X = {(x, s) ∈ Cn+2 | g(x) = sN}, where g satisfies (8) and (9),

f(x, s) = s.

Observe that the hypersurface X has an isolated singularity at 0 because
df ∧ (dg −NsN−1ds) = 0 implies ds ∧ dg = 0.

The commutative diagram

X
f
→ C

π↓ ↓τ

Cn+1 g
→ C

where π(x, s) = x and τ(s) = sN , shows that the fibres of f and g are
isomorphic because f−1(s) = g−1(sN ) × {s}; it also explains why Mf =
MN

g = 1. On X ′ := X \ {s = 0}, we have

(12) N
ds

s
=
dg

g
.

As a consequence, for any η ∈ Ωn
Cn+1 such that dη = r dg

g
∧ η, the following

formula holds:

(13) d

(

π∗η

sm

)

= (rN −m)
ds

s
∧
π∗η

sm
, m ∈ N.

For holomorphic forms on X we use the obvious decomposition

(14)
Ωn

X = OXπ
∗Ωn

Cn+1 + OXπ
∗Ωn−1

Cn+1 ∧ ds,

Ωn+1
X = OXπ

∗Ωn+1
Cn+1 + OXπ

∗Ωn
Cn+1 ∧ ds.

For the sheaves ωn
X and ωn+1

X we need a lemma.

Lemma 4. Under hypothesis (H), we have

ωn
X ⊆

1

sN−1
OXπ

∗Ωn
Cn+1 , ωn+1

X ⊆
1

sN−1
OXπ

∗dx0 ∧ . . . ∧ dxn.
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P r o o f. Let j = n or n+ 1. Any section of ωj
X near the origin belongs

to Ωj
X [s−1] because there exists ν ∈ N such that sνωj

X is contained in Ωj
X

modulo torsion. On the other hand, on X ′ we have

ds =
1

NsN−1
dg,

by (12). So any section of ωj
X is a finite sum of elements of the type π∗α/sk

where α ∈ Ωj
Cn+1 and k ∈ Z. Suppose k ≥ N ; because the sections of ωj

X

have the trace property (see [B 78]), we get

traceπ

(

π∗α

sN

)

= N
α

g
∈ Ωj

Cn+1 .

Hence α = gβ with β ∈ Ωj
Cn+1 and so π∗α/sk = π∗β/sk−N . Iterating this

process we are reduced to k ≤ N − 1, proving the inclusions.

Remark. The second inclusion is in fact an equality.

Proposition 5. Assume (H). Then for (p, q) ∈ {0, 1} we have

Mp,q = C[[s, s]] dsp ∧ dsq.

P r o o f. Case 1: p = q = 0. Thanks to (14) we only need to show that
fibre-integrals for π∗η′∧π∗η′′ are C∞ for η′, η′′ ∈ Ωn

Cn+1 . Indeed, the second
term in (14) does not contribute and OX ⊆ C[[s]]π∗OCn+1 explains how OX

coefficients are treated. But\
f−1(s)∩X

̺π∗η′ ∧ π∗η′′ =
\

g=sN

̺η′ ∧ η′′ ∈
∑

r∈R(g)

C[[sN , sN ]] |s|2rN ⊆ C[[s, s]]

by (11) and (10).

Case 2: p = q = 1. The term containing ds in formula (14) produces
a C∞ term after fibre-integration, from the first part of the proof. Now for
ζ ∈ Ωn+1

Cn+1 , we have

π∗ζ

ds
=

1

s
π∗

(

Ngζ

dg

)

= NsN−1π∗

(

ζ

dg

)

from (13) and hence\
f−1(s)

̺
π∗ζ ′

ds
∧
π∗ζ ′′

ds
= N2|s|2N−2

\
g=sN

̺
ζ ′

dg
∧
ζ ′′

dg

∈
∑

r∈R(g)

C[[sN , sN ]]|s|2rN−2;

this fibre-integral is C∞ because Nσ(g) − 1 ≥ 0 from Nσ(g) ∈ N∗.

Other cases are left to the reader.
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Remarks. 1) The cutoff function ̺ need not be compactly supported
in s, that is why it only depends on x in the above calculations. In fact the
f -proper forms and the compactly supported ones give the same asymptotic
expansions modulo C[[s, s]].

2) Proposition 5 and Corollary 6.5 of [B-M 99] show that dimHn(X∗) =
dimHn(F ). In our situation (H), this dimension is easily computable be-
cause F is isomorphic to the Milnor fibre of g.

Proposition 6. Under hypothesis (H), the following implications hold :

(a) Nσ(g) ≥ N − 1 ⇒ Nf = C[[s, s]];

(b) σ(g) > 1 ⇔ N 1,1
f = C[[s, s]] ds ∧ ds.

The converse of (a) is true for quasi-homogeneous g.

Remark. Because σ(g) is not an integer, σ(g) > 1 is equivalent to σ(g)
≥ 1. On the other hand, because Nσ(g) is an integer, σ(g) ≥ 1 is equivalent
to σ(g) > (N − 1)/N .

Proof of Proposition 6. (a)(⇒) Let η′, η′′∈ωn
X . By Lemma 4, there exist

η′j , η
′′
k ∈ Ωn

Cn+1 such that

η′ =
1

sN−1

∞
∑

j=0

sjπ∗η′j , η′′ =
1

sN−1

∞
∑

k=0

skπ∗η′′k .

Therefore \
f−1(s)∩X

̺π∗η′ ∧ π∗η′′ =
∑

j,k≥0

\
g=sN

̺sj−N+1sk−N+1η′j ∧ η
′′
k

∈ C[[s, s]] |s|2Nσ(g)−2N+2 ⊆ C[[s, s]].

(a)(⇐) When g is quasi-homogeneous, from [L] we get the existence of
ω ∈ Ωn

Cn+1 such that

(15)
\

g=t

̺ω ∧ ω = |t|2σ(g) + o(|t|2σ(g)).

It is possible to choose ω such that

(16) dω = σ(g)
dg

g
∧ ω.

Consider η = (1/sN−1)π∗ω; we check η belongs to ωn
X . By [B 78], it is

enough to see that for all j ∈ [0, N − 1],

traceπ

(

sj

sN−1
π∗ω

)

∈ Ωn
Cn+1 and traceπ

(

sj

sN−1
ds ∧ π∗ω

)

∈ Ωn+1
Cn+1 .

The first trace vanishes for j < N−1, and it is equal to Nω when j = N−1.
The second trace is nonzero only for j = N−2 and then it is equal to dg

g
∧ω.
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Relation (16) implies η ∈ ωn
X .

Integrating along fibres, we get, from (15),\
f−1(s)∩X

̺η ∧ η = |s|2Nσ(g)−2N+2(1 + o(1)).

In order that this integral be C∞, we must have Nσ(g) ≥ N − 1.
(b)(⇒) For ζ ∈ Ωn+1

Cn+1 , we have by (12),

1

sN−1

π∗ζ

ds
=

1

sN
π∗

(

Ngζ

dg

)

= Nπ∗

(

ζ

dg

)

.

Taking fibre-integrals gives\
f−1(s)

̺
π∗ζ ′

ds
∧
π∗ζ ′′

ds
= N2

\
g=sN

̺
ζ ′

dg
∧
ζ ′′

dg
∈

∑

r∈R(g)

C[[sN , sN ]] |s|2N(r−1);

this fibre-integral is C∞. It remains to use C[[s, s]]-linearity and Lemma 4.
(b)(⇐) Following [L], take a holomorphic (n+ 1)-form Ω on Cn+1 such

that \
g=t

̺
Ω

dg
∧
Ω

dg
= |t|2σ(g)−2 + o(|t|2σ(g)−2).

With ζ := 1
NsN−1π

∗Ω ∈ ωn+1
X we have\

f−1(s)∩X

̺
ζ

ds
∧
ζ

ds
= |s|2N(σ(g)−1)(1 + o(1)).

If this integral is C∞ then σ(g) ≥ 1.

4. Explicit examples. We present here explicit examples of singular-
ities X and functions f for which all fibre-integrals are C∞; integration of
forms in ωn+1

X is allowed.
To fulfill conditions (8) and (9), we look for Fermat’s singularities

g(x) = xp0

0 + . . .+ xpn
n

where p0, . . . , pn are integers ≥ 2 that satisfy

(17)
a0

p0
+ . . .+

an

pn
6∈ N

for all aj ∈ N with 0 < aj < pj . We take N = lcm(p0, . . . , pn) in (9). A
sufficient condition for (17) is

∃j ∈ [0, n] such that (pj , pk) = 1, ∀k 6= j.

For n even, the following condition is also sufficient:

∀j, ∀k : (pj , pk) = 2 if j 6= k.
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Case n = 1. Condition (17) is equivalent to (p0, p1)=1 and so N=p0p1.
The smallest values of p0 ≤ p1 are 2, 3, so that

1

p0
≤

1

2
,

1

p1
≤

1

3
,

1

N
≤

1

6
.

Hence
1

p0
+

1

p1
+

1

N
≤ 1 or

1

p0
+

1

p1
≤
N − 1

N

and the inequalities are strict if p0 > 2 or p1 > 3. Hence the only X for
which Proposition 6 applies is

(18) X = {x2
0 + x3

1 = s6}.

Case n = 2. We take p0 ≤ p1 ≤ p2 and notice that

1

p0
+

1

p1
+

1

p2
≥
N − 1

N

with N = lcm(p0, p1, p2) may be satisfied, because N ≥ p2, only if

p2 ≤
2p0p1

p0p1 − p0 − p1
.

This remark enables us to easily eliminate many values of p0, p1, p2 satisfy-
ing (17).

p0 p1 p2 N σ(g) N−1
N

2 2 2k 2k 2k+1
2k > 2k−1

2k

2 2 2k + 1 2k + 1 2k+2
2k+1 >

2k
2k+1

2 3 3 6 5
6 = 5

6

2 3 4 12 13
12 > 11

12

2 3 5 30 31
30 > 29

30

2 3 7 42 41
42 = 41

42

2 3 8 24 23
24 = 23

24

2 3 9 18 17
18 = 17

18

2 4 5 20 19
20 = 19

20

2 5 5 10 9
10 = 9

10

3 3 4 12 11
12 = 11

12

In the table above, we give all triples p0, p1, p2 for which Proposition 6
applies, that is, (17) and σ(g) ≥ (N − 1)/N hold. So there are only few
examples where σ(g) > 1, i.e., examples for which all fibre-integrals are
smooth.
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Remark. Using the Thom–Sebastiani result, it is easy to see that if
g and N satisfy conditions (8) and (9), then the function G defined by
G(x, y, z0, . . . , zn) = x2 + y2 + g(z0, . . . , zn) gives also an example with the
same N . So the first two series of examples in the table come from trivial
examples in dimension 1 (n = 0).

Application. The wave front set of the integration current on the quadrat-
ic cone X = {x2

0 + . . . + x2
n = s2}, for n even, is equal to the closure of the

conormal space to X∗. For n odd this wave front set contains {0} × Cn+2.
This follows, for n even, from the fact that fibre-integrals with respect to
ξ0x0 + . . .+ξnxn +ηs are C∞ if ξ20 + . . .+ξ2n 6= η2 because a linear change of
coordinates leaving the cone fixed reduces to our situation. Same argument
for n odd.
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