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Killing tensors and warped products

by W lodzimierz Jelonek (Kraków)

Abstract. We present some examples of Killing tensors and give their geometric
interpretation. We give new examples of non-compact complete and compact Riemannian
manifolds whose Ricci tensor % satisfies the condition ∇X%(X,X) = 2

n+2Xτg(X,X).

0. Introduction. Killing tensors are symmetric (0, 2) tensors % on a
Riemannian manifold (M, g) satisfying the condition

(K) ∇X%(X,X) = 0

for all X ∈ X(M) or equivalently CX,Y,Z∇X%(Y,Z) = 0 for all X,Y, Z ∈
X(M) where X(M) denotes the space of all local vector fields on M , C de-
notes the cyclic sum and ∇ denotes the Levi-Civita connection of (M, g).
The condition (K) is a generalization of the condition ∇% = 0. Another
generalization of this condition is ∇X%(Y, Z) = ∇Y %(X,Z), which gives the
class of Codazzi tensors. The Codazzi tensors are quite frequently used in
Riemannian geometry. For example the second fundamental form of any hy-
persurface immersed in a Euclidean space is a Codazzi tensor. On the other
hand it is difficult to find general examples of Killing tensors in the literature.
It is only known that a Ricci tensor of any naturally reductive homogeneous
space (and more generally of any D’Atri space) has this property.

The aim of the present paper is to show that Killing tensors appear quite
naturally in Riemannian geometry. We prove that on every warped product
M0 ×f1 M1 × . . . ×fk

Mk there exists a Killing tensor Φ(X,Y ) = g(SX, Y )
such that the functions λ0 = µ ∈ R and λi = µ + Cif

2
i for i > 1 are

eigenfunctions of S for any µ ∈ R and any real constants Ci ∈ R − {0}.
Conversely, let Φ(X,Y ) = g(SX, Y ) be a Killing tensor with an integrable
almost product structure given by its eigendistributions and with eigenvalues
µ, λ1, . . . , λk such that µ ∈ R is constant and

⊕
j>0Dj ⊂ ker dλi (i.e. ∇λi ∈
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Γ (D0)). If M is a simply connected, complete Riemannian manifold then
M = M0 ×f1 M1 × . . . ×fk

Mk where TMi = Di = ker(S − λi Id) and
f2
i = |λi − µ|.

A manifold M is called an A-manifold (see [G]) if its Ricci tensor satis-
fies condition (K). The scalar curvature τ of an A-manifold (M, g) is con-
stant. All the known examples of A-manifolds have Ricci tensors with con-
stant eigenvalues. Besse [B] (p. 433) defines a class of manifolds whose
Ricci tensor % satisfies the condition ∇X%(X,X) = 2

n+2Xτg(X,X) for
every X ∈ TM (in Besse’s notation D% ∈ C∞(Q ⊕ A)). A. Gray [G]
also considered these manifolds and denoted this class by A ⊕ C⊥ (see
[G], p. 265). It is remarked in [B] that very little is known about such
manifolds if dimM > 2. In the present paper we give a system of equa-
tions for the warping functions f1, f2, . . . , fk ∈ C∞(M0) and conditions on
manifolds (M0, g0), (M1, g1), . . . , (Mk, gk) under which the manifold M =
M0 ×f1 M1 × . . . ×fk

Mk is an A ⊕ C⊥-manifold whose Ricci tensor has
eigenfunctions λ0 = µ + 2

n+2τ, λi = µ + 2
n+2τ + Cif

2
i where µ ∈ R and

Ci ∈ R−{0}. We present very simple explicit examples of complete A⊕C⊥-
manifolds (M, g) (with M = Rn for every n > 2) and many examples of
compact A⊕C⊥-manifolds whose Ricci tensor has more than two eigenfunc-
tions.

1. Killing tensors—preliminaries. Assume that Mi are smooth
connected manifolds and gi are smooth Riemannian metrics on Mi. All the
manifolds, tensors and distributions considered in this paper are assumed to
be smooth (of class C∞). We also write g(X,Y ) = 〈X,Y 〉. Our present aim
is to study in more detail the (1, 1) tensors S such that Φ(X,Y ) = 〈SX, Y 〉
is a Killing tensor (which means that ∇XΦ(X,X) = 0 for all X ∈ TM). We
call such tensors A-tensors or simply Killing tensors (and we write S ∈ A).
Hence S satisfies the following conditions:

〈SX, Y 〉 = 〈SY,X〉,(a)
〈∇S(X,X), X〉 = 0(b)

for all X,Y ∈ X(M). Define as in [D] the integer valued function ES(x) =
(the number of distinct eigenvalues of Sx) and set MS = {x ∈ M : ES is
constant in a neighborhood of x}. Then MS is an open submanifold of M
and in every component U of MS the eigenfunctions λi of S are smooth
functions λi|U ∈ C∞(U). Set Di = ker(S − λi Id). Then Di ⊥ Dj if i 6= j.
We denote by Γ (Di) the set of all local sections of the vector bundle Di. If
f ∈ C∞(M) then∇f ∈ X(M) denotes the gradient of f , i.e. ∇f is the vector
field on M such that g(∇f,X) = df(X) for every X ∈ TM . We denote by
Hf the Hessian of f which is defined by Hf (X,Y ) = XY f − df(∇XY )
for every X,Y ∈ TM . The Hessian Hf is a symmetric (0, 2) tensor on M ,
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which means that Hf (X,Y ) = Hf (Y,X). In what follows we consider each
component U of MS separately so we can assume that MS = M . Note that

TM =
k⊕
i=1

Di.

Denote by pi : TM → Di the orthogonal projection of TM on Di.

Definition. A distribution D ⊂ TM is called umbilical if there exists
a vector field ξ ∈ X(M) such that

∇XX = p(∇XX) + g(X,X)ξ

for every local section X ∈ Γ (D) where p denotes the orthogonal projection
p : TM → D. If D is in addition integrable then we call D totally umbilical .
The field ξ is called the mean curvature normal of the distribution D.

Proposition 1. Assume that S is a Killing tensor. Then all the distri-
butions Di = ker(S − λi Id) are umbilical.

P r o o f. Recall (see [J-1]) that if S ∈ A and X ∈ Γ (Di), Y ∈ Γ (Dj)
where i 6= j then

(1.1) 〈∇XX,Y 〉 =
1
2

Y λi
λj − λi

‖X‖2.

Write ∇XX = pi(∇XX) + hi(X,X) where hi(X,X) ⊥ Di. From (1.1) it
follows that for all Y ∈ TM we have 〈hi(X,X), Y 〉 = φi(Y )〈X,X〉, where
φi is a one-form defined by

φi(Y ) =
1
2

∑
j 6=i

1
λj − λi

dλi ◦ pj .

Hence hi(X,X) = 〈X,X〉ξi where the mean curvature normal field ξi ∈
X(M) is defined as follows (note that dλj ◦ pj = 0, see [J-1]):

(1.2) ξi = −1
2

∑
j 6=i

pj(∇ ln |λi − λj |).

2. Killing tensors with integrable eigendistributions. In this sec-
tion we investigate Killing tensors whose eigendistributions form an inte-
grable almost product structure (D1, . . . , Dk). This means that all the dis-
tributions Di1 ⊕ . . .⊕Dip are integrable for any natural numbers 1 ≤ i1 ≤
. . . ≤ ip ≤ k and for any p ∈ {1, . . . , k}. We start with

Theorem 1. Let S be a Killing tensor with constant eigenfunctions
λ1, . . . , λk and integrable almost product structure given by its eigendistri-
butions Di = ker(S − λi Id). Then ∇S = 0.
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P r o o f. Note that (see [J-1]) if S is a Killing tensor then for X ∈ Γ (Di)
we have

(2.1) ∇S(X,X) = −1
2
∇λi‖X‖2

and for Y ∈ Γ (Dj),

(2.2) 〈∇XX,Y 〉 =
1
2

Y λi
λj − λi

‖X‖2.

If Di are integrable then for all X,Y ∈ Γ (Di) we obtain (see [J-1])∇S(X,Y )
= ∇S(Y,X) and consequently

(2.3) ∇S(X,Y ) = −1
2
∇λi〈X,Y 〉.

From (2.2) it follows that the distributions Di are autoparallel (i.e. ∇XY ∈
Γ (Di) if X,Y ∈ Γ (Di)). Note also that MS = M . Next we prove the
following lemma:

Lemma A. Let (D1, . . . , Dk) be an integrable almost product structure on
M such that Di ⊥ Dj if i 6= j and

TM =
k⊕
i=1

Di.

Then ∇XY ∈ Γ (Di⊕Dj) if i 6= j and X ∈ Γ (Di), Y ∈ Γ (Dj). Additionally
if each Di is autoparallel then each Di is parallel.

P r o o f. Since the almost product structure (D1, . . . , Dk) is integrable,
for i = 1, . . . , k and every point x0 ∈ M we can find local coordinates
(x1, . . . , xn) in a neighborhood U of x0 (see [K-N]) such that

Di|U = span
{

∂

∂xki

, . . . ,
∂

∂xki+ni

}
where dimDi = ni + 1 and k1 = 1 < k2 < . . . < kk < n are natural
numbers. In what follows we write ∂i = ∂/∂xi. Assume that p, q, r are
pairwise different numbers and ∂i ∈ Γ (Dp), ∂j ∈ Γ (Dq), ∂l ∈ Γ (Dr). Then
from the Koszul formula it easily follows that 〈∇∂i∂j , ∂l〉 = 0. Hence∇XY ∈
Γ (Di ⊕ Dj) if X ∈ Γ (Dj) and Y ∈ Γ (Di). We show that in fact ∇XY ∈
Γ (Di) if each Di is autoparallel. Assume that X ′ ∈ Γ (Dj) and i 6= j. Then
〈X ′, Y 〉 = 0. Thus

(2.4) 〈∇XX ′, Y 〉+ 〈X ′,∇XY 〉 = 0.

The distribution Dj is autoparallel, hence from (2.4) it follows that
〈X ′,∇XY 〉 = 0 and consequently for any section Y ∈ Γ (Di) and any
X ∈ X(M) we have ∇XY ∈ Γ (Di).
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Let now X ∈ X(M) and let Y ∈ Γ (Dj) be an arbitrary local section of
Dj . Then SY = λjY and consequently

(2.5) ∇S(X,Y ) = −(S − λj Id)(∇XY ) = 0.

From (2.5) it is clear that ∇S = 0, which finishes the proof of the theorem.

Now we prove Theorem 2 which shows that there is a close relation
between Riemannian warped products and certain Killing tensors. Recall
(see [H], [N]) that if (Mi, gi) for i = 0, 1, . . . , k are Riemannian manifolds
and f1, . . . , fk are smooth positive functions on M0 then the warped product
M = M0 ×f1 M1 × . . . ×fk

Mk is the Riemannian manifold (M, g) where
M = M0 ×M1 × . . .×Mk and

g(X,Y ) = g0(p0(X), p0(Y )) +
k∑
i=1

f2
i gi(pi(X), pi(Y ))

where pi : TM → TMi is the natural projection.

Theorem 2. Assume that (M, g) is a complete simply connected Rie-
mannian manifold and S is a Killing tensor on M with k+ 1 distinct eigen-
functions λ0 = µ, λ1, . . . , λk and eigendistributions Di = ker(S − λi Id).
If

(a) the almost product structure (D0, D1, . . . , Dk) is integrable,
(b) λ0 = µ is constant ,
(c) the λi satisfy the condition

⊕
i6=0,j Di ⊂ ker dλj ,

then
M = M0 ×f1 M1 ×f2 M2 × ..×fk

Mk

where TMi = Di and f2
i = |λi − µ|.

P r o o f. Note that D0 is an autoparallel foliation, which follows from
general properties of A-tensors (see [J-1]). In fact in [J-1] it is proved that
an eigendistribution D = ker(S−λ Id) of S is autoparallel if and only if D is
integrable and λ is constant. From Proposition 1 it follows that the Di are
totally umbilical. Note that ξ0 = 0 and since Dj ⊂ ker dλj for any A-tensor
S, taking account of (1.2) we get ξi = − 1

2p0∇ ln |λi − µ| = − 1
2∇ ln |λi − µ|

where hi(X,Y ) = 〈X,Y 〉ξi is the second fundamental form of the foliation
Di. It is clear that ξi∈Γ (D0). Define (we follow [H]) a new metric g on M by

(2.6) g(X,Y ) = g(p0(X), p0(Y )) +
k∑
i=1

f−2
i g(pi(X), pi(Y ))

where fi =
√
|λi − µ| and let ∇ be the Levi-Civita connection of g. We now

show that the distributionsDi are autoparallel with respect to∇. LetX,Y ∈
Γ (Di) and Z ∈ Γ (Dj) where i 6= j. Set f0 = 1. We consider two cases:
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(a) j 6= 0. From the Koszul formula, taking account of (2.6) we get

2g(∇XX,Z) = −Zg(X,X)− 2g([X,Z], X)

= f−2
i (−Zg(X,Y )− 2g([X,Z], X)) = 2f2

i (g(∇XX,Z)) = 0.

(b) j = 0. Then

2g(∇XX,Z) = −Zg(X,X)− 2g([X,Z], X)

= 2Zfif−3
i g(X,X)− f−2

i Zg(X,X)− f−2
i g([X,Z], X)

= f−2
i (2Z ln fig(X,X)− Zg(X,X)− 2g([X,Z], X)

= f−2
i (2Z ln fig(X,X) + 2g(∇XX,Z)) = 0.

Hence ∇XX ∈ Γ (Di) if X ∈ Γ (Di) and each Di is autoparallel. From
Lemma A it follows that each Di is parallel. The final result now follows
from the de Rham theorem (see [K-N]). Since M is complete and simply
connected we have

(M, g) = (M0, g0)× (M1, g1)× . . .× (Mk, gk)

where gi = f−2
i p∗i g. Hence g = g0+

∑k
i=1 f

2
i gi, which completes the proof.

Remark. Note that λi = µ + εif
2
i where εi ∈ {−1, 1}. Consequently,

trS =
∑k
i=1 εinif

2
i +(

∑k
i=0 ni)µ where ni = dimMi. Thus the trace of S is

constant if and only if
∑k
i=1 εinif

2
i is constant. In particular if k = 1 then

trS is constant only if f1 is constant. Note also that if µ = 0 then we simply
have

M = M0 ×√|λ1|
M1 × . . .×√|λk|

Mk.

Corollary. Let S ∈ End(M) be a Killing tensor on a complete, sim-
ply connected Riemannian manifold M which has exactly three eigenfunc-
tions λ0, λ1, λ2 (i.e. ES = 3). Assume that the almost product structure
(D0, D1, D2) given by eigendistributions Di of S is integrable, the trace trS
is constant and λ0 = µ ∈ R is constant. Then

M = M0 ×f1 M1 ×f2 M2

where TMi = Di = ker(S − λi Id) and f2
i = |λi − µ|.

P r o o f. It suffices to prove that condition (c) in the statement of The-
orem 2 holds in our case. Note that if ni = dimDi then the function
g = n0µ+ n1λ1 + n2λ2 is constant. Hence

(∗) n1∇λ1 + n2∇λ2 = 0.

Since S ∈ A it follows that Di ⊂ ker dλi. Thus ∇λi ⊥ Di. From (∗) it
follows that ∇λ1 ⊥ D2 and ∇λ2 ⊥ D1, which means that condition (c) is
satisfied.

The following fact will be useful.
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Lemma B. Assume that the distributions Dp are as above and i 6= j and
j 6= 0. If X,Y are local sections of Di, Dj respectively then ∇XY ∈ Γ (Dj).

P r o o f. Lemma A implies that ∇XY ∈ Γ (Di ⊕Dj). Assume that X ∈
Γ (Di), Y ∈Γ (Dj), Z∈Γ (Di). Hence 〈Z, Y 〉=0 and consequently 〈∇XZ, Y 〉
+ 〈Z,∇XY 〉 = 0. Since ∇XZ ∈ Γ (D0 ⊕Di) if i 6= 0 and ∇XZ ∈ Γ (D0) if
i = 0 and consequently 〈∇XZ, Y 〉 = 0, it follows that 〈Z,∇XY 〉 = 0, which
completes the proof.

Remark. To prove Lemma B we have only used the facts that TM =⊕
Di, (D0, D1, . . . , Dk) is an integrable almost product structure, Di ⊥ Dj

if i 6= j, the Di are totally umbilical, D0 is autoparallel and the normal
mean curvature ξi of Di is a section of D0, i.e. ξi ∈ Γ (D0).

Conversely, the following theorem holds:

Theorem 3. Assume that (Mi, gi) for i = 0, 1, . . . , k are Riemannian
manifolds and fi ∈ C∞(M0,R+), i ∈ {1, . . . , k} are positive, smooth func-
tions on M0. Let (M, g) be the warped product manifold

M = M0 ×f1 M1 ×f2 M2 × . . .×fk
Mk

and define a (1, 1) tensor on M by

SX = λiX if X ∈ Di = TMi ⊂ TM

where λ0 = µ ∈ R, λi = µ + Cif
2
i for a certain real number µ and real

numbers Ci 6= 0, i = 1, . . . , k. Then S is a Killing tensor on (M, g).

P r o o f. Define Di = TMi ⊂
⊕
TMj . Note that the almost product

structure (D0, D1, . . . , Dk) is integrable. Denote by ∇ the Levi-Civita con-
nection of g. Since M is a warped product it follows that the distribution D0

is autoparallel and each distribution Di, i > 0, is totally umbilical and spher-
ical with mean curvature normal ξi = −∇ ln fi = − 1

2∇ ln |λi − µ| ∈ Γ (D0).
Note that S is a well defined, smooth (1, 1) tensor on M . Consequently, if
X,Y ∈ Γ (Di) and i > 0 then from the equality SX = λiX we obtain

0 = ∇S(Y,X) + (S − λi Id)(∇YX)

= ∇S(Y,X) + (S − λi Id)
(
−1

2
〈X,Y 〉 ∇λi

λi − µ

)
= ∇S(Y,X) +

1
2
〈Y,X〉∇λi.

Thus for every X,Y ∈ Γ (Di), i > 0, we obtain the formula

(2.7) ∇S(X,Y ) = −1
2
〈X,Y 〉∇λi.
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Assume that X ∈ Γ (Di), Y ∈ Γ (Dj) and i 6= j, j 6= 0. From Lemma B we
get ∇XY ∈ Γ (Dj). Since ∇S(X,Y ) + (S − λj Id)(∇XY ) = 0 we get

(2.8) ∇S(X,Y ) = 0 if X ∈ Di, Y ∈ Dj , i 6= j, i, j 6= 0.

Assume now that X ∈ Γ (D0) and Y ∈ Γ (Di), i > 0. Then

∇S(X,Y ) + (S − λi Id)(∇XY ) = (Xλi)Y.

From Lemma B it follows that ∇XY ∈ Γ (Di) and hence

(2.9) ∇S(X,Y ) = (Xλi)Y if X ∈ Γ (D0), Y ∈ Γ (Di), i > 0.

Note also that ∇S(X,Y ) = 0 if X,Y ∈ Γ (D0).
Our present aim is to show that the tensor S is an A-tensor or equiva-

lently that the tensor Φ(X,Y ) = 〈SX, Y 〉 is a Killing tensor, which means
that

(A) CX,Y,Z∇XΦ(Y, Z) = 0

for all X,Y, Z ∈ X(M). We shall consider several cases.

(i) If X ∈ Di, Y ∈ Dj , Z ∈ Dk and i, j, k are pairwise different and differ-
ent from 0, then from (2.8) it follows that ∇XΦ(Y,Z) = 0 and consequently
condition (A) holds.

(ii) If X ∈ D0, Y ∈ Di, Z ∈ Dp and i 6= p, then from (2.9) we ob-
tain 〈∇S(X,Y ), Z〉 = 0. Similarly using (2.7) we get 〈∇S(Z,X), Y 〉 =
〈X,∇S(Z, Y )〉 = 0. Finally 〈∇S(Y,Z), X〉 = 0 since ∇S(Y,Z) = 0.

(iii) Now assume that X = Y ∈ Γ (Di) and Z∈ Γ (Dj). We shall consider
three subcases.

(a) Assume that i > 0, j > 0. Then from (2.7), 〈∇S(X,X), Z〉 = 0
and 〈∇S(Z,X), X〉 = −〈(S − λi)(∇ZX), X〉 = 0, thus CX,Y,Z∇XΦ(Y, Z) =
2〈∇S(X,X), Z〉 + 〈∇S(Z,X), X〉 = 0. Note that we did not assume here
that i 6= j.

(b) If i > 0 and j = 0 then 〈∇S(X,X), Z〉 = − 1
2Zλi‖X‖

2 and from
(2.9) we have ∇S(Z,X) = (Zλi)X. Thus

CX,Y,Z∇XΦ(Y, Z) = 2〈∇S(X,X), Z〉+ 〈∇S(Z,X), X〉 = 0.

(c) If i = 0 then ∇S(X,X) = 0 and

〈∇S(Z,X), X〉 = −〈(S − µ Id)(∇ZX), X〉 = 0.

From (i)–(iii) it follows that CX,Y,Z∇XΦ(Y, Z) = 0 for any X,Y, Z ∈
X(M), which completes the proof of Theorem 3.

Remark. Note that we do not assume here that ker(S−λi Id) = Di, i.e.
it may happen that some of the eigenfunctions λi coincide at some points
x0 ∈M (ES(x0) < k+1 for some x0 ∈M). However if M0 is compact we can
always choose Ci in such a way that all λi are different at every point x ∈M
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(i.e. ES(x) = k + 1 for every x ∈ M). Note that if λi(x0) = λj(x0) then
f2
i (x0) = αf2

j (x0) for some α > 0. If M0 is compact and α > sup f2
i / inf f2

j

then αf2
j (x)−f2

i (x) > 0 for every x∈M . Thus if M0 is compact then we can
choose by induction Ci in such a way that ES(x) = k + 1 for every x ∈M .
If M is not compact we can still choose Ci in such a way that ES = k + 1
on an open and dense subset U = MS of M .

3. The structure of A ⊕ C⊥-manifold on a warped product. In
this section we shall find conditions under which the warped product

M = M0 ×f1 M1 ×f2 M2 × . . .×fk
Mk

is an A⊕C⊥-manifold. We shall prove that in this case every manifold Mi,
i > 0, has to be an Einstein space and obtain a system of nonlinear partial
differential equations on the warping functions f1, . . . , fk such that every
solution f1, . . . , fk of this system gives the warped product M = M0 ×f1
M1×f2M2× . . .×fk

Mk which is an A⊕C⊥-manifold. In [G] it is proved that
every A-manifold has constant scalar curvature. Hence an A⊕C⊥-manifold
is an A-manifold if and only if it has constant scalar curvature.

Let us recall that a submersion p : (M, g)→ (N, g∗) is called a Rieman-
nian submersion if it preserves the lengths of horizontal vectors (see [O’N]).
We denote by V the distribution of vertical vectors (i.e. those tangent to
the fibers Fx = p−1(x), x ∈ N) and by H the horizontal distribution which
is an orthogonal complement of V in TM . Define the O’Neill tensors T,A
as follows:

T (E,F ) = H(∇VEVF ) + V(∇VEHF ),
A(E,F ) = V(∇HEHF ) +H(∇HEVF ),

where H,V denote the orthogonal projections on H,V respectively. Our
present aim is to describe the Ricci tensor of the warped product M . We
start with

Lemma C. Let p : (M, g) → (N, g∗) be a Riemannian submersion and
f ∈ C∞(N). Set F = f ◦ p ∈ C∞(M). Then the Hessian HF of F has the
following properties:

(a) HF (X∗, Y ∗) = Hf (X,Y ) ◦ p,
(b) HF (X∗, V ) = −g(A(∇f,X∗), V ),
(c) HF (U, V ) = −g(∇f, T (U, V )),

where X,Y ∈ X(M), U, V ∈ Γ (V ) and X∗ denotes the horizontal lift of X.

P r o o f. This follows from the following calculations:

HF (X∗, Y ∗) = g(DX∗∇F, Y ∗) = X∗g(∇F, Y ∗)− g(∇F,DX∗Y ∗)(a)
= Xg∗(∇f, Y )− g∗(∇f,∇XY ) = Hf (X,Y ) ◦ p,



24 W. Jelonek

HF (X∗, V ) = g(DX∗∇F, V ) = −g(∇F,DX∗V )(b)
= −g(∇F,H(DX∗V )) = −g∗(∇F,A(X∗, V ))
= g(A(X∗,∇F ), V ) = −g(A(∇F,X∗), V ),

HF (U, V ) = g(DU∇F, V ) = −g(∇F,DUV )(c)
= −g(∇F,H(DUV ))− g∗(∇F, T (U, V )),

where D denotes the Levi-Civita connection of g and ∇ the Levi-Civita
connection of g∗.

Corollary. The Laplacian ∆F = trgHF of F with respect to g equals

∆F = ∆f − 〈∇f, trg T 〉.
If we take M = M0 ×f1 M1 and N = M0 then A = 0 and T (U, V ) =

−∇ ln f1〈U, V 〉. Consequently, for any f ∈ C∞(M0) Lemma C shows that
if F = f ◦ p then

HF (X∗0 , Y
∗
0 ) = Hf (X0, Y0),

HF (X∗0 , X
∗
1 ) = 0,(3.1)

HF (X∗1 , Y
∗
1 ) = 〈∇ ln f1,∇f〉〈X∗1 , Y ∗1 〉,

where X0, Y0 ∈ X(M0), X0, Y1 ∈ X(M1), ∗ denotes the lift of X to X∗ ∈
X(M0 ×M1) and 〈 , 〉 denotes the warped product metric on M . In what
follows we shall not distinguish X from X∗. Note also that in view of (3.1),
∆F = ∆f +n1〈∇ ln f1,∇f〉. Let M = M0×f1 M1×f2 M2× . . .×fk

Mk and
write

M i = M0 ×f1 M1 ×f2 M2 × . . .×fi Mi

for i > 0. Then M i+1 = M i×fi+1 Mi+1. Hence by an easy induction taking
account of (3.1) we obtain for any f ∈ C∞(M0) the following formulas for
HF where F = f ◦ p ∈ C∞(M) and Xi, Yi ∈ X(Mi):

HF (Xi, Yi) = 〈∇f,∇ ln fi〉〈Xi, Yi〉 if i 6= 0,
HF (X0, Y0) = Hf (X0, Y0),(3.2)
HF (Xi, Xj) = 0 if i 6= j.

Recall that if M = M0 ×f1 M1 then (see for example [B]) we have the
following formulas for the Ricci tensor Ric of M :

Ric(X0, Y0) = Ric0(X0, Y0)− n

f1
Hf1(X0, Y0),

Ric(X0, X1) = 0,(3.3)

Ric(X1, Y1) = Ric1(X1, Y1)−
(
∆f1
f1

+ (n− 1)
‖∇f1‖2

f2
1

)
〈X1, Y1〉,

where ∆f = trgHf and n = dimM1. Hence, taking account of (3.2) and
(3.3), by an easy induction we obtain
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Lemma D. Let M = M0 ×f1 M1 ×f2 M2 × . . . ×fk
Mk and assume that

Xi, Yi ∈ X(Mi) for i = 0, 1, . . . , k are arbitrary vector fields. Then the Ricci
tensor of (M, g) is given by

Ric(X0, Y0) = Ric0(X0, Y0)−
k∑
i=1

ni
fi
Hfi(X0, Y0),

Ric(Xi, Yi) = Rici(Xi, Yi)

−
(
∆fi
fi

+
k∑
j=1

nj〈∇ ln fi,∇ ln fj〉 − ‖∇ ln fi‖2
)
〈Xi, Yi〉,

where i > 0 and Ric(Xi, Xj) = 0 if i 6= j (here Ric, Rici denote the Ricci
tensors of (M, g) and (Mi, gi) respectively and ni = dimMi). In particular
if k = 2 then

Ric(X0, Y0) = Ric0(X0, Y0)− n1

f1
Hf1(X0, Y0)− n2

f2
Hf2(X0, Y0),

Ric(X1, Y1) = Ric1(X1, Y1)

−
(
∆f1
f1

+ (n1−1)‖∇ ln f1‖2 + n2〈∇ ln f1,∇ ln f2〉
)
〈X1, Y1〉,

Ric(X2, Y2) = Ric2(X2, Y2)

−
(
∆f2
f2

+ (n2−1)‖∇ ln f2‖2 + n1〈∇ ln f1,∇ ln f2〉
)
〈X2, Y2〉.

Assume that the Ricci endomorphism S of (M, g) is such that for a
certain function s ∈ C∞(M) the tensor S − s Id satisfies the conditions
of Theorem 3 (i.e. Ric(Xi, Y ) = (λi + s)〈Xi, Y 〉 where λ0 = µ and λi =
µ+ Cif

2
i , i > 0). Then

Ric0(X0, Y0) =
k∑
i=1

ni
fi
Hfi(X0, Y0) + (µ+ s)〈X0, Y0〉,(3.4i)

Rici(Xi, Yi) =
(
µ+ s+ Cif

2
i +∆ ln fi(3.4ii)

+
k∑
j=1

nj〈∇ ln fi,∇ ln fj〉
)
〈Xi, Yi〉

for some Ci ∈ R− {0}.

Lemma E. Let (M, g) be a Riemannian manifold of dimension n. Then
M is an A⊕ C⊥-manifold if and only if there exists a function s ∈ C∞(M)
such that
(∗) S − s Id ∈ A.
If (∗) holds then ds = 2

n+2dτ where τ is the scalar curvature of (M, g).
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P r o o f. From (∗) we get

CX,Y,Z∇X%(Y,Z) = CX,Y,ZXsg(Y,Z).

Hence

(3.5) 2∇X%(X,Y ) +∇Y %(X,X) = 2Xsg(X,Y ) + Y sg(X,X).

Set δ%(Y ) = trg∇.%(·, Y ). Then δ% = 1
2dτ .

On the other hand taking account of (3.5) we have

(3.6) 2δ%+ tr∇Y %(·, ·) = 2g(∇s, Y ) + nY s.

Since tr∇Y %(·, ·) = Y τ we finally obtain 2dτ = (n+ 2)ds.

Taking account of Theorem 3 and Lemma E we get

Corollary. If (Mi, gi) and fi satisfy equations (3.4i), (3.4ii) then
(M, g) is an A⊕C⊥-manifold and all the manifolds (Mi, gi) are Einstein for
i > 0, i.e. Rici = τigi where τi ∈ R.

Summarizing we get

Theorem 4. Assume that a simply connected complete A⊕C⊥-manifold
(M, g) has Ricci tensor S, with k+1 eigenfunctions λ0, λ1, . . . , λk, such that
for s = 2

n+2τ the tensor S − s Id satisfies the assumptions of Theorem 2.
Then

M = M0 ×f1 M1 ×f2 M2 × . . .×fk
Mk

where (Mi, gi) are Einstein manifolds (Rici = τigi for i > 0) of dimensions
dimMi = ni and the Ricci tensor Ric0 of (M0, g0) satisfies

(3.7) Ric0(X,Y ) = (µ+ s)g0(X,Y ) +
k∑
i=1

ni
fi
Hfi(X,Y )

and λ0 = µ+s where µ ∈ R, λi = µ+s+Cif
2
i for i > 0 where Ci ∈ R−{0}.

The functions fi additionally satisfy the following k equations:

(3.8) ∆ ln fi +
k∑
j=1

nj〈∇ ln fi,∇ ln fj〉+ µ+ s+ Cif
2
i −

τi
f2
i

= 0.

Conversely , assume that (Mi, gi) are Einstein with Rici = τigi for i > 0,
dimMi = ni and functions f1, . . . , fk satisfy equations (3.4i), (3.4ii) for
some Ci ∈ R−{0} and s ∈ C∞(M). Then M = M0×f1 M1× . . .×fk

Mk ∈
A⊕ C⊥ and ds = 2

n+2dτ where τ is the scalar curvature of (M, g).
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P r o o f. Note that

H ln f (X,Y ) = 〈DX∇ ln f, Y 〉

=
〈
DX
∇f
f
, Y

〉
=
〈

1
f
DX∇f, Y

〉
+
〈
− Xf

f2
∇f, Y

〉
= −X ln fY ln f +

1
f
Hf (X,Y ).

Hence ∆ ln f = −‖∇ ln f‖2 + 1
f∆f and the assertion follows from Lemmas

D and E.

Corollary. Let (M, g) be a complete, simply connected A-manifold
whose Ricci tensor S has exactly three eigenfunctions λ0, λ1, λ2 (i.e. ES
= 3). Assume that all eigendistributions Di of S form an integrable almost
product structure and λ0 = µ ∈ R is constant. Then

M = M0 ×f1 M1 ×f2 M2

where TMi = Di = ker(S−λi Id) and f2
i = |λi−µ| for i > 0. The manifolds

M1,M2 are Einstein spaces (Rici = τigi, i = 1, 2) and the warping functions
f1, f2 satisfy equations (3.7) and (3.8) with k = 2.

In the book [B] many examples of A ⊕ C⊥-manifolds are given, includ-
ing compact twisted warped products. However the description of these ex-
amples is rather complicated. All of them have harmonic Weyl tensor so
they are C⊥-manifolds in Gray’s notation (see [G]). Now we give examples
of complete A ⊕ C⊥-manifolds (M, g) with M = Rn for every n > 2 which
are of a very simple explicit form. These manifolds are conformally flat so in
fact they are also C⊥-manifolds. Take M0 = R+ and k = 1. We shall write
f1 = f and C1 = C, τ1 = τ . Equations (3.7) and (3.8) are

nf ′′

f
= −(µ+ s),(3.9a)

f ′′

f
+ (n− 1)

(f ′)2

f2
− τ

f2
+ µ+ s+ Cf2 = 0.(3.9b)

Consequently, we get

(3.10) −(n− 1)
(
f ′′

f
− (f ′)2

f2

)
=

τ

f2
− Cf2.

From (3.10) we obtain (n− 1)(ln f)′′ = Cf2 − τf−2. Write g = ln f and let
C = τ . Hence we get

(3.11) g′′ =
2τ
n− 1

sinh 2g.
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Integrating (3.11) we have

(3.12)
1
2

(g′)2 =
τ

n− 1
cosh 2g +D1 =

τ

n− 1
(cosh 2g +D0)

where D0 ∈ R. Take D0 = −1. Then equation (3.12) reads

(g′)2 =
4τ
n− 1

(sinh g)2.

Thus τ > 0 and consequently

(3.13) g′ = 2ε
√

τ

n− 1
sinh g,

where ε ∈ {−1, 1}. Take ε = −1. Integrating equation (3.13) we get

(3.14) tanh
(
g

2

)
= E0 exp

(
−2
√

τ

n− 1
t

)
,

where E0 ∈ R−{0}. From (3.14) we obtain, taking E0 = −1, and M1 = Sn

with the standard metric of constant sectional curvature,

(3.15) f(t) = tanh
(√

τ

n− 1
t

)
.

Our metric on M = R+ × Sn is

(3.16) gλ = dt2 + φ(t)2λ can

where can is the standard metric on Sn with sectional curvature 1,

φ(t) = tanh
(√

τ

n− 1
t

)
and λ =

n− 1
τ

.

Hence φ′(0) = 1/
√
λ. Thus φ′(0) = λ if λ = 1. In view of Lemma 9.114,

p. 269 of [B], the metric gλ for λ = λ0 = 1 extends to a C∞ metric gλ0
on

M = Rn+1 for n > 1. Since M = Rn+1 − {0} and (M, gλ0) is an A ⊕ C⊥-
manifold it follows that (M, gλ0

) is also an A⊕C⊥-manifold. We shall show
that (M, gλ0

) is complete. To this end recall the following

Lemma F. Assume that d1, d2 are metrics on the space M . If (M,d1) is
a complete metric space and there exist positive constants C1, C2 such that
for every x, y ∈M ,

C1d1(x, y) ≤ d2(x, y) ≤ C2d1(x, y)

then the metric space (M,d2) is also complete. Every Cauchy sequence in
(M,d1) is a Cauchy sequence in (M,d2) and vice versa.

Observe that on M ,

(3.17) gλ0 = dt2 + (tanh t)2can.
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Note that the metric gn = dt2 + (sinh t)2 can on M = R+ × Sn can be
extended to a complete metric on the hyperbolic space M = Hn+1 (see [B],
9.111, p. 268). Let p : M = Rn+1 → R+ ∪ {0} be defined by

p(x1, . . . , xn+1) =
√
x2

1 + . . .+ x2
n+1.

Then p is an extension to M of the natural projection p : R+ × Sn → R+.
We shall denote by d0 the metric induced on M by the Riemannian metric
tensor gλ0 , and by |a−b| the natural metric on R. Note that in view of (3.17),
|p(x)−p(y)| ≤ d0(p(x), p(y)). Hence if (xn) is a Cauchy sequence in (M,d0)
then (p(xn)) is a Cauchy sequence in (R, | |). In particular p(xn) is bounded,
i.e. there exists K > 0 such that p(xn) < K for every n ∈ N. It follows that
cosh(p(xn)) < L = coshK. Note that on D = {x ∈M : p(x) < K} we have

1
L2

(du2 + (sinhu)2 can) < gλ0 < (du2 + (sinhu)2 can).

Hence L−1dn(x, y) < d0(x, y) < dn(x, y) for every x, y ∈ D where dn denotes
the complete hyperbolic metric on Hn+1 induced by du2 + (sinhu)2 can.
Taking account of Lemma F we see that the Cauchy sequence xn in (M,d0)
is convergent, which means that (M,d0) is complete. Hence we have proved

Theorem 5. For every n ≥ 2 the metric gλ0 = dt2 +(tanh t)2 can on the
space M = R+×Sn extends to a smooth complete metric gλ0

on M = Rn+1

such that (Rn+1, gλ0
) is an A⊕ C⊥-manifold.

Finally we shall construct compact examples of A⊕ C⊥-manifolds with
more than two eigenvalues of the Ricci tensor. As in [B], we shall also
consider twisted warped products (note that in [B] all the examples have only
two eigenvalues and the construction is different from ours). Consider the
equations (3.7) and (3.8) and take k = 2, M0 = R. The manifolds M1,M2

are assumed to be Einstein with dimM1 = n1 = n, dimM2 = n2 = m where
m,n > 1. Equations (3.7) and (3.8) are

nf ′′

f
+
mg′′

g
= −(µ+ s),(3.18a)

f ′′

f
+ (n− 1)

(f ′)2

f2
+m

g′f ′

fg
− τ1
f2

+ µ+ s+ C1f
2 = 0,(3.18b)

g′′

g
+ (m− 1)

(g′)2

g2
+ n

f ′g′

fg
− τ2
g2

+ µ+ s+ C2g
2 = 0.(3.18c)

Assume that f = 1/g. Then ln f = − ln g and

f ′g′

fg
= −

(
f ′

f

)2

= −
(
g′

g

)2

.
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Hence we obtain as before (see the solution of (3.9))

−(n− 1)(ln f)′′ −m(ln g)′′ − 2m
(
f ′

f

)2

=
τ1
f2
− C1f

2,(3.19a)

−n(ln f)′′ − (m− 1)(ln g)′′ − 2n
(
f ′

f

)2

=
τ2
g2
− C2g

2.(3.19b)

Consequently,

(m− n+ 1)
f ′′

f
− (3m− n+ 1)

(
f ′

f

)2

=
τ1
f2
− C1f

2,(3.20a)

(m− n− 1)
f ′′

f
− (m+ n+ 1)

(
f ′

f

)2

= τ2f
2 − C2

f2
.(3.20b)

Thus equations (3.19) are

f ′′

f
−
(

3m− n+ 1
m− n+ 1

)(
f ′

f

)2

=
1

m− n+ 1

(
τ1
f2
− C1f

2

)
,(3.21a)

f ′′

f
−
(
m+ n+ 1
m− n− 1

)(
f ′

f

)2

=
1

m− n− 1

(
τ2f

2 − C2

f2

)
.(3.21b)

Set k = m− n. Hence k ∈ Z. Note that

(3.22)
3m− n+ 1
m− n+ 1

=
m+ n− 1
m− n− 1

if and only if

(3.23) k2 + k − 2m = 0.

Consequently, (3.22) holds if and only if m = 1
2k(k + 1), n = 1

2k(k − 1)
where (we have assumed that m,n > 1) k ∈ Z and |k| > 2. We can assume
that k > 2 since the case k < −2 is obtained from the first case on replacing
f by g. We shall assume that the above conditions on m and n are satisfied.
Then

(3.24)
3m− n+ 1
m− n+ 1

=
m+ n− 1
m− n− 1

= k + 1.

Set a = k + 1. Assume also that C1, C2 satisfy

τ1
k + 1

= − C2

k − 1
and

τ2
k − 1

= − C1

k + 1
.

Hence the equations (3.21) reduce to

(A)
f ′′

f
− a
(
f ′

f

)2

=
c

f2
+ df2

where a = k+ 1, c = τ1
k+1 , d = τ2

k−1 . Write (f ′)2 = P (f2) where P ∈ C∞(R).
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Then P satisfies the equation

(3.25) P ′(x)− a

x
P (x) =

c

x
+ dx.

Hence

P (x) = C0x
a +

d

2− a
x2 − c

a

where C0 ∈ R. Consequently,

(3.26) (f ′)2 = C0f
2a +

d

2− a
f4 − c

a
.

From (3.26) and (A) it follows that f satisfies

(3.27) f ′′ =
2d

2− a
f3 + aC0f

2a−1

and (3.26) is a first integral of (3.27). Every solution of equations (3.26) and
(3.27) satisfies (A). Note that (3.26) can be written as (f ′)2 = Q(f) where
Q(x) = C0x

2a +Dx4 + E and

D =
d

2− a
= − τ2

(k − 1)2
, E = − c

a
= − τ1

(k + 1)2
.

Lemma G. Consider the equations

f ′′ =
1
2
Q′(f),(F1)

(f ′)2 = Q(f),(F2)

where Q(x) = C0x
2a + Dx4 + E and a = k + 1 ≥ 4. Then the equations

(F1), (F2) admit a periodic nonconstant positive solution f if and only if
C0 < 0, E < 0, D > 0 and

Q(x0) = x4
0D

(
k − 1
k + 1

)
+ E > 0

where x0 is a positive root of the equation Q′(x) = 0, thus

x0 =
(
− 2D
C0a

)1/(2k−2)

.

P r o o f. We shall use Lemma 16.37, p. 445 of [B]. The equation Q′(x) =
0 has a positive solution if and only if C0D < 0. From Lemma 16.37 of [B]
it follows that C0 < 0. Hence D > 0. Note that in our case the range of
a solution f is imf = [x1, x2] where x1 < x2 are positive roots of Q. The
polynomial Q has two positive roots if Q(0) = E < 0 and Q(x0) > 0.
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From Lemma G it follows that equation (A) has a periodic, nonconstant
and positive solution if τ1 > 0, τ2 < 0 and τ1 ∈ (0, α) where

α = −x4
0τ2

k + 1
k − 1

= |τ2|(k+1)/(k−1)

(
2

(k − 1)2(k + 1)|C0|

)2/(k−1)
k + 1
k − 1

.

Take compact Einstein manifolds (M1, g1), (M2, g2) whose Ricci tensors
%1, %2 satisfy %i = τigi and τi are as above. We also assume that dimM1 =
1
2k(k − 1) and dimM2 = 1

2k(k + 1). Let f be a positive periodic solution
of (A). Then the A ⊕ C⊥-manifold M = R ×f M1 ×1/f M2 has compact
quotients M = M/Z with a twisted warped product metric (for the details
see [B], 16.26, p. 441). Such quotients are compact A⊕C⊥-manifolds whose
Ricci tensor has three different eigenfunctions (at least on an open and dense
subset U of M).

Theorem 6. Let (M1, g1), (M2, g2) be compact Einstein manifolds,
dimM1 = 1

2k(k−1), dimM2 = 1
2k(k+ 1) where k ∈ N, k > 2. Assume that

the Ricci tensors %i of (Mi, gi) satisfy %i = τigi where τ1 > 0 and τ2 < 0.
Then there exists a positive, periodic nonconstant function f ∈ C∞(R) such
that M = R ×f M1 ×1/f M2 is an A ⊕ C⊥-manifold. If A1 ∈ Iso(M1) and
A2 ∈ Iso(M2) are isometries of (Mi, gi), i = 1, 2, respectively , then the map-
ping A : M →M defined by A(t, x1, x2) = (t+ T,A1(x1), A2(x2)), where T
is the period of f , is an isometry of (M, g). The quotient M = M/ZA with
the twisted warped product metric g is a compact A ⊕ C⊥-manifold whose
Rici tensor has three eigenfunctions.

P r o o f. Choose C0 < 0 such that

τ1 < |τ2|(k+1)/(k−1)

(
2

(k − 1)2(k + 1)|C0|

)2/(k−1)
k + 1
k − 1

.

Then our theorem follows from Lemma G and from [B], 16.26 (p. 441).

Remark. It is easy to show that the above examples do not have har-
monic Weyl tensor, i.e. that the tensor %(X,Y )− τ

2n−2g(X,Y ) where τ = tr %
is not a Codazzi tensor. Thus (M, g) ∈ A⊕ C⊥ and (M, g) 6∈ C⊥. Since the
scalar curvature of (M, g) is not constant we also have (M, g) 6∈ A. As far
as the author knows these are the first known examples of this kind (see [B],
p. 433). Note that from the author’s paper [J-2] it follows that the examples
of compact Einstein–Weyl 4-manifolds given in [M-P-P-S] are also of this
kind.
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