
ANNALES

POLONICI MATHEMATICI

LXXV.2 (2000)

Existence and multiplicity results for nonlinear

eigenvalue problems with discontinuities

by Nikolaos S. Papageorgiou (Athens) and
Francesca Papalini (Ancona)

Abstract. We study eigenvalue problems with discontinuous terms. In particular we
consider two problems: a nonlinear problem and a semilinear problem for elliptic equations.
In order to study the existence of solutions we replace these two problems with their
multivalued approximations and, for the first problem, we estabilish an existence result
while for the second problem we prove the existence of multiple nontrivial solutions. The
approach used is variational.

1. Introduction. The aim of this paper is to study nonlinear and semi-
linear eigenvalue problems with discontinuous terms. So let Z ⊂ R

N be a
bounded domain with a C1 boundary Γ . We start with the following eigen-
value problem:

(1)

{
− div(‖Dx(z)‖p−2Dx(z))−λ|x(z)|p−2x(z)=f(z, x(z)) a.e. on Z,
x|Γ = 0, 2 ≤ p < ∞.

Here f : Z × R → R is a function such that for all z ∈ Z, f(z, ·) is locally
bounded but not necessarily continuous and this implies that the problem
(1) may not have any solutions. So in order to develop a reasonable exis-
tence theory, we need to pass to a multivalued extension of problem (1) by,
roughly speaking, filling in the gaps at the discontinuity points of f(z, ·).
More precisely, we introduce the following two functions:

f0(z, x) = lim inf
x′→x

f(z, x′), f1(z, x) = lim sup
x′→x

f(z, x′).

Note that when the one-sided limits f(z, x−) and f(z, x+) exist then
f0(z, x) = min{f(z, x−), f(z, x+)} and f1(z, x) = max{f(z, x−), f(z, x+)}.
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Instead of (1) we consider the following multivalued version:

(2)





− div(‖Dx(z)‖p−2Dx(z)) − λ|x(z)|p−2x(z)
∈ [f0(z, x(z)), f1(z, x(z))] a.e. on Z,

x|Γ = 0, 2 ≤ p < ∞.

Using a variational approach (for nonsmooth, locally Lipschitz energy
functionals) we show that problem (2) has a solution.

We will also study the semilinear problem

(3)

{
−∆x(z) − λx(z) = f(z, x(z)) a.e. on Z,
x|Γ = 0.

In this case f(z, ·) need not be continuous either. So after introducing
the functions f0(z, x) and f1(z, x), we replace (3) with its multivalued coun-
terpart

(4)

{
−∆x(z) − λx(z) ∈ [f0(z, x(z)), f1(z, x(z))] a.e. on Z,
x|Γ = 0.

For problem (4), using a result for locally Lipschitz functionals due to
D. Goeleven, D. Motreanu and P. D. Panagiotopoulos [9], we prove the
existence of multiple nontrivial solutions.

Similar eigenvalue problems were studied by K. J. Brown and H. Budin
[3], P. Hess [10], P. Rabinowitz [14], D. G. De Figueiredo [8], C. Lefter
and D. Motreanu [12], M. Ramos [15]. All these works deal with semilin-
ear equations (i.e. p = 2) and with exception of [12], assume f(·, ·) to be
continuous. The approaches vary although all use some aspects of the varia-
tional method. More specifically P. Rabinowitz [14], D. G. De Figueiredo [8],
C. Lefter and D. Motreanu [12], M. Ramos [15] follow the variational ap-
proach. P. Hess [10] has a proof which combines variational and topological
degree arguments, while K. J. Brown and H. Budin [3] employ a combination
of variational and monotone iteration methods.

In this paper our approach is solely variational. We use the critical point
theory for nonsmooth local energy functionals (see K. C. Chang [5]).

2. Mathematical preliminaries. Let X be a reflexive Banach space
and X∗ its topological dual. A function Φ : X → R is said to be locally

Lipschitz if for every x ∈ X, there exists a neighbourhood U of x and a
constant k > 0 depending on U such that |Φ(z) − Φ(y)| ≤ k‖z − y‖ for all
z, y ∈ U . For this kind of functions the generalized directional derivative

Φ0(x;h) at x ∈ X in the direction h ∈ X is defined by

Φ0(x;h) = lim sup
x′→x, λ↓0

Φ(x′ + λh) − Φ(x′)

λ
.
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It is known that the function h 7→ Φ0(x;h) is sublinear, continuous and
it is the support function of the nonempty convex w∗-compact set

∂Φ(x) = {x∗ ∈ X : (x∗, h) ≤ Φ0(x;h) for all h ∈ X}.

The set ∂Φ(x) is called the generalized or Clarke subdifferential of Φ at x.
If Φ,Ψ : X → R are locally Lipschitz functions, then ∂(Φ+Ψ)(x) ⊆ ∂Φ(x)+
∂Ψ(x), while for any λ ∈ R we have ∂(λΦ(x)) = λ∂Φ(x). Moreover, if Φ :
X → R is convex, then this subdifferential coincides with the subdifferential
in the sense of convex analysis. If Φ : X → R is strictly differentiable then
∂Φ(x) = {Φ′(x)}. A point x ∈ X is a critical point of Φ if 0 ∈ ∂Φ(x), while a
critical value is the value assumed by Φ at a critical point. For more details
we refer to the monograph of Clarke [6].

The compactness conditions for locally Lipschitz functionals Φ : X → R

that we consider are the following:

• Φ satisfies the (PS )-condition if any sequence {xn}n≥1 ⊂ X such
that {Φ(xn)}n≥1 is bounded and m(xn) → 0 as n → ∞ has a convergent
subsequence (where m(xn) = minx∗∈∂Φ(xn) ‖x∗‖X∗ ; the existence of such an
element follows from the fact that ∂Φ(xn) is weakly compact and the norm
functional on X∗ is weakly semicontinuous);

• Φ satisfies the C-(PS)-condition if any sequence {xn}n≥1 ⊂ X such
that {Φ(xn)}n≥1 is bounded and (1 + ‖xn‖)m(xn) → 0 as n → ∞ has a
convergent subsequence.

Remark 1. The (PS)-condition is a generalization of the well known
Palais–Smale condition proposed by Chang [5] in his nonsmooth critical
point theory in order to obtain various minimax principles concerning the
existence and characterization of critical points for locally Lipschitz func-
tionals. The C-(PS)-condition is a weaker form of the (PS)-condition and
it is the nonsmooth version of the condition introduced by Cerami in [4].
In a recent paper N. C. Kourogenis and N. S. Papageorgiou [11], using the
C-(PS)-condition, derive minimax principles. For the convenience of the
reader, we recall the following version of the Mountain Pass Theorem
(cf. [11], Theorem 6).

Theorem 1. If X is a reflexive Banach space, Φ : X → R is a locally

Lipschitz functional satisfying the C-(PS)-condition and there are ̺ > 0,
α, β ∈ R and x1 ∈ X such that ‖x1‖ > ̺ and max[Φ(0), Φ(x1)] ≤ α < β ≤
inf‖x‖=̺ Φ(x) then Φ has a critical value c ≥ β characterized by

c = inf
γ∈Γ

max
0≤t≤1

Φ(γ(t))

where Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = x1}.
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Moreover we recall the abstract multiplicity result due to Goeleven–
Motreanu–Panagiotopoulos (cf. [9], Theorem 2.1) that we will use to prove
the existence of multiple nontrivial solutions for the problem (4).

Theorem 2. Let X be a reflexive Banach space. Suppose that Φ : X → R

is an even, locally Lipschitz functional satisfying the (PS)-condition and the

conditions:

(i) Φ(0) = 0,

(ii) there exists a subspace X1 of X of finite codimension and numbers

β, ̺ > 0 such that Φ(x) ≥ β for all x ∈ X1 such that ‖x‖ = ̺,

(iii) there is a finite-dimensional subspace X2 of X, with dim X2 >
codim X1, such that Φ(u) → −∞ as ‖u‖ → ∞, u ∈ X2.

Then Φ has at least dim X2−codimX1 pairs of nontrivial critical points.

Finally, we recall the following definitions for an operator A : X → X∗:

• A is said to be monotone if 〈Ax1−Ax2, x1−x2〉 ≥ 0 for all x1, x2 ∈ X;

• A is said to be pseudomonotone if for any sequence {xn}n≥1 ⊂ X such
that xn → x weakly in X and lim supn→∞〈Axn, xn − x〉 ≤ 0 it follows that
〈Ax, x − w〉 ≤ lim infn→∞〈Axn, xn − w〉 for all w ∈ X;

• A is said to be demicontinuous if for any sequence {xn}n≥1 ⊂ X such
that xn → x in X it follows that Axn → Ax weakly in X.

3. Existence result. We start with the quasilinear problem. Let λ1 be
the first eigenvalue of the p-Laplacian −∆px = − div(‖Dx‖p−2Dx) on Z
with zero Dirichlet boundary condition, which is the least real number λ for
which the problem

{
− div(‖Dx(z)‖p−2Dx(z)) = λ|x(z)|p−2x(z) a.e. on Z,
x|Γ = 0,

has a nontrivial solution. It is known (cf. [13]) that this first eigenvalue
λ1 is positive, isolated and simple (i.e. the associated eigenfunctions are
constant multiples of each other). Moreover we have the following variational
characterization of λ1 via the Rayleigh quotient:

λ1 = min[‖Dx‖p
p/‖x‖p

p : x ∈ W 1,p
0 (Z), x ≥ 0],

where ‖ · ‖p denotes the norm in the space Lp(Z).

One can prove that the corresponding eigenfunction u1 is almost every-
where nonzero on Z. Let

λ2 = inf{λ > 0 : λ is an eigenvalue of −∆p on W 1,p
0 (Z) and λ > λ1}.

Note that since λ1 is isolated, λ2 > λ1. Moreover, if p = 2, then λ2 is the
second eigenvalue of the Laplacian.
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In what follows let F (z, x) =
Tx
0

f(z, r) dr, x ∈ R, be the potential func-

tion corresponding to f and Ψ : W 1,p
0 (Z) → R be the energy functional

defined as Ψ(x) =
T
Z

F (z, x(z)) dz.

We introduce the following hypotheses on the function f :

H(f)1: f : Z × R → R is a Borel measurable function such that for all
z ∈ Z, f(z, ·) is locally bounded and

(i) f0, f1 are both N-measurable (i.e. for every measurable function
x : Z → R the functions z 7→ fi(z, x(z)), i = 0, 1, are measurable);

(ii) there are a ∈ L∞(Z, R+) and c1 > 0 such that

|f(z, x)| ≤ a(z) + c1|x|p−1 a.e. on Z, ∀x ∈ R;

(iii) there are c2 > 0 and µ such that 1 ≤ µ ≤ p and

lim sup
|x|→∞

fi(z, x)x − pF (z, x)

|x|µ ≤ −c2 uniformly for a.e. z ∈ Z, i = 0, 1;

(iv) there are c3 ∈ R and q > p such that q − p < µ if 1 ≤ N ≤ p, while
N(q − p)/p < µ and q < Np/(N − p) if N > p, with the property that

lim sup
|x|→∞

F (z, x)

|x|q ≤ c3 uniformly for a.e. z ∈ Z;

lim inf
|x|→∞

pF (z, x)

|x|p ≥ 0 uniformly for a.e. z ∈ Z;(v)

lim sup
|x|→0

pF (z, x)

|x|p ≤ −λ2 for a.e. z ∈ Z.(vi)

Remark 2. Condition H(f)1 (iii) was first introduced by D. G. Costa
and C. A. Magalhães [7]. Note that this condition follows from the well
known Ambrosetti–Rabinowitz condition (see [1], when p = 2) which says:
there are θ > 2 and ξ > 0 such that 0 < θF (z, x) < xf(z, x) for a.e. z ∈ Z
and all x such that |x| ≥ ξ.

We now present an example of a function f that satisfies hypotheses
H(f)1. For simplicity we drop the z-dependence and we assume p > 2. Fix
M > 1 and η, ξ > 0 such that pη + λ2 − 1 ≤ ξ. Let k ∈ L1

loc(R) be the
function defined by

k(x) =





−ξ|x|p−2x, |x| ≤ 1,
x4, 1 < |x| ≤ M ,
x, |x| > M .

We define f : Z × R → R by

f(z, x) = pη|x|p−2x − |x|p−2x

|x|p + 1
+ k(x).
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Then the corresponding potential function is

F (z, x) = η|x|p − 1

p
log(|x|p + 1) + θ(x),

where

θ(x) =

x\
0

k(r) dr =





x2/2 − ξ/p + M5/5 − M2/2 − 1/5, x < −M ,
−ξ/p + x5/5 + 1/5, −M < x < −1,
−(ξ/p)|x|p, |x| ≤ 1,
−ξ/p + x5/5 − 1/5, 1 < x < M ,
x2/2 − ξ/p + M5/5 − M2/2 + 1/5, x > M .

Evidently hypothesis H(f)1(ii) is satisfied. Also for i = 1, 2 we have

fi(z, x)x − pF (z, x)

|x|2 = − |x|p
|x|p+2 + x2

+1− log(|x|p + 1)

x2
− pθ(x)

x2
→ 1− p

2
< 0

as |x| → ∞. So H(f)1(iii) is satisfied with µ = 2 < p. Moreover for any
q > p we have F (z, x)/|x|q → 0 as |x| → ∞ and so H(f)1(iv) holds. Now
we deduce that

pF (z, x)

|x|p = pη − log(|x|p + 1)

|x|p +
pθ(x)

|x|p → pη as |x| → ∞,

while

pF (z, x)

|x|p = pη − log(|x|p + 1)

|x|p +
pθ(x)

|x|p → pη − 1 − ξ as |x| → 0.

So recalling the choice of η and ξ we see that H(f)1(v) and H(f)1(vi) are
satisfied.

Now we start to study the problem (2). We introduce, for every λ > 0,
the functional Rλ : W 1,p

0 (Z) → R defined by

Rλ(x) =
1

p
‖Dx‖p

p − λ

p
‖x‖p

p −
\
Z

F (z, x(z)) dz =
1

p
‖Dx‖p

p − λ

p
‖x‖p

p − Ψ(x).

It is well known (cf. [5]) that Ψ is locally Lipschitz. Hence so is Rλ.

Proposition 3. If hypotheses H(f)1 hold , then Rλ satisfies the C-

(PS)-condition.

P r o o f. Let {xn}n≥1 ⊂ W 1,p
0 (Z) be a sequence such that {Rλ(xn)}n≥1

is bounded and (1 + ‖xn‖)m(xn) → 0 as n → ∞. Let x∗
n ∈ W−1,q(Z)

(1/p + 1/q = 1), x∗
n ∈ ∂Rλ(xn), n ≥ 1, be such that ‖x∗

n‖ = m(xn). We
have

x∗
n = A(xn) − λJ(xn) − u∗

n,

where A : W 1,p
0 (Z) → W−1,q(Z) is defined by

〈A(x), y〉 =
\
Z

‖Dx(z)‖p−2(Dx(z),Dy(z)) dz, ∀x, y ∈ W 1,p
0 (Z)



Eigenvalue problems with discontinuities 131

(here 〈·, ·〉 denotes the duality brackets for the pair (W 1,p
0 (Z),W−1,q(Z))),

and J : W 1,p
0 (Z) → Lq(Z) ⊂ W−1,q(Z) is given by

J(x)(·) = |x(·)|p−2x(·)
and u∗

n ∈ ∂Ψ(xn). From [5] we know that f0(z, xn(z)) ≤ u∗
n ≤ f1(z, xn(z))

a.e. on Z. Moreover let M > 0 be such that |Rλ(xn)| ≤ M for all n ≥ 1;
we have

(5) −‖Dxn‖p
p + λ‖xn‖p

p +
\
Z

pF (z, xn(z)) dz ≤ pM, ∀n ≥ 1.

Also since (1 + ‖xn‖)‖x∗
n‖ → 0 as n → ∞, there exists n ∈ N such that

〈A(xn), xn〉 − λ(J(xn), xn)p,q −
\
Z

u∗
n(z)xn(z) dz < 1, ∀n ≥ n

(here (·, ·)p,q denotes the duality brackets for the pair (Lp(Z), Lq(Z))). So
we have

(6) ‖Dxn‖p
p − λ‖xn‖p

p −
\
Z

u∗
n(z)xn(z) dz < 1, ∀n ≥ n.

Adding (5) and (6) above we obtain

(7)
\
Z

(pF (z, xn(z)) − u∗
n(z)xn(z)) dz ≤ pM + 1, ∀n ≥ n.

From H(f)1(iii) we find that there exist ĉ2 > 0 and M1 > 1 such that
for almost all z ∈ Z, all |x| ≥ M1 and all u∗ ∈ [f0(z, x), f1(z, x)], we have

(8)
u∗x − pF (z, x)

|x|µ ≤ −ĉ2.

Also using the growth hypothesis H(f)1(ii), we see that there exists β1 > 0
such that

u∗x − pF (z, x) ≤ β1 for almost all z ∈ Z and all |x| < M1,

hence, from (8), setting β2 = β1 + ĉ2|M1|µ, we obtain

u∗x − pF (z, x) ≤ −ĉ2|x|µ + β2 for almost all z ∈ Z and all x ∈ R.

Using this in (7), we obtain

pM + 1 ≥
\
Z

(ĉ2|xn(z)|µ − β2) dz, ∀n ≥ n,

which implies that there exists β3 > 0 such that

(9) ‖xn‖µ ≤ β3, ∀n ≥ 1,

that is, the sequence {xn}n≥1 is bounded in Lµ(Z).
Now let 0 < θ < 1 be such that

1

q
=

1 − θ

µ
+

θ

p∗
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where p∗ = Np/(N − p) if p < N , otherwise any p∗ such that 1 ≤ µ ≤ p <
q < p∗. Using the interpolation inequality (cf. [2], p. 57) and (9) we have

‖xn‖q ≤ ‖xn‖1−θ
µ ‖xn‖θ

p∗ ≤ β1−θ
3 ‖xn‖θ

p∗ , ∀n ≥ 1,

and so, from the Sobolev embedding theorem, there exists β4 > 0 with the
property

(10) ‖xn‖q ≤ β4‖xn‖θ
1,p, ∀n ≥ 1

(‖ · ‖1,p denotes the norm in W 1,p
0 (Z)). By H(f)1(ii), (iv), for fixed ĉ3 > c3,

there exists c4 > 0 such that

(11) F (z, x) ≤ ĉ3|x|q + c4 for almost all z ∈ Z and all x ∈ R.

From the choice of the sequence {xn}n≥1, we find that Rλ(xn) ≤ M for all
n ≥ 1, and so, using (11) we obtain

1

p
‖Dxn‖p

p ≤ λ

p
‖xn‖p

p + ĉ3‖xn‖q
q + β5, ∀n ≥ 1,

where β5 = c4|Z| + M ; hence, as p < q it follows that there exists β6 > 0
such that

1

p
‖Dxn‖p

p ≤ λ

p
β6‖xn‖p

q + ĉ3‖xn‖q
q + β5, ∀n ≥ 1.

Now Young’s inequality and (10) show that there exist two positive numbers
depending on λ: β7(λ) and β8(λ), with the property

1

p
‖Dxn‖p

p ≤ β7(λ)‖xn‖θq
1,p + β8(λ), ∀n ≥ 1.

From our assumptions we can assume that θ q < p, in fact if p < N , then
(N/p)(q − p) < µ is equivalent to θ q < p, while if p ≥ N , then we can
always choose p∗ large and then θ in the interpolation inequality small so
that θ q < p. Therefore, recalling that from Poincaré’s inequality (cf. [2],
p. 174), ‖Dx‖p is an equivalent norm in W 1,p

0 (Z), it follows that {xn}n≥1

is bounded in W 1,p
0 (Z). Thus, by passing to a subsequence if necessary, we

may assume that

xn → x weakly in W 1,p
0 (Z), xn → x in Lp(Z),

and so xn(z)→x(z) a.e. on Z and there exists η ∈ Lp(Z) such that |xn(z)| ≤
η(z) a.e. on Z for all n ≥ 1. Hence we have

λ(J(xn), xn − x)p,q → 0 as n → ∞,

(u∗
n, xn − x)p,q → 0 as n → ∞,

〈x∗
n, xn − x〉 → 0 as n → ∞.
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Since 〈x∗
n, xn − x〉 = 〈A(xn), xn − x〉 − λ(J(xn), xn − x)p,q − (u∗

n, xn − x)p,q

for all n ≥ 1, we infer that

(12) lim sup
n→∞

〈A(xn), xn − x〉 = lim
n→∞

〈A(xn), xn − x〉 = 0.

It is simple to see that A : W 1,p
0 (Z) → W−1,q(Z) is monotone and

demicontinuous and so (cf. [16], p. 596) it is pseudomonotone; therefore
from (12) we obtain

lim
n→∞

〈A(xn), xn〉 = 〈A(x), x〉,

which implies that

‖Dxn‖p → ‖Dx‖p as n → ∞.

But we also have Dxn → Dx weakly in Lp(Z), thus, since Lp(Z) is a uni-
formly convex space, we deduce that xn → x in W 1,p

0 (Z) as n → ∞. So Rλ

satisfies the C-(PS)-condition.

Using the previous proposition and the above-mentioned mountain pass
theorem, we can prove the existence of nontrivial solutions for the prob-
lem (2).

Theorem 4. If hypotheses H(f)1 hold , then for every λ ∈ (λ1, λ2) the

problem (2) has a nontrivial solution.

P r o o f. From H(f)1(v), given ε > 0 we can find M2 > 0 such that

F (x, z) ≥ − ε

p
|x|p for a.e. z ∈ Z and all x such that |x| ≥ M2;

also from H(f)1(ii), there exists γ > 0 with

F (x, z) ≥ −γ for a.e. z ∈ Z and all x such that 0 ≤ |x| < M2.

Thus we deduce that

F (z, x) ≥ − ε

p
|x|p − γ for a.e. z ∈ Z and all x ∈ R.

Hence, for all u1 ∈ W 1,p
0 (Z), u1 6= 0, and all t ∈ R, it follows that

Rλ(tu1) =
|t|p
p

‖Du1‖p
p − λ

|t|p
p

‖u1‖p
p −

\
Z

F (z, tu1(z)) dz

≤ |t|p
p

(
1 − λ

λ1

)
‖Du1‖p

p +
ε|t|p
λ1p

‖Du1‖p
p + γ1

=
|t|p
p

(
1 − λ − ε

λ1

)
‖Du1‖p

p + γ1,

where γ1 = γ|Z|. Take ε > 0 so that λ1 < λ − ε. Then

(13) Rλ(tu1) → −∞ as |t| → ∞.
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Next using H(f)1(vi), given ε > 0 we can find 0 < δ < 1 such that

F (z, x) ≤ 1

p
(−λ2 + ε)|x|p for a.e. z ∈ Z and all x such that |x| < δ.

From (11) we know that

F (z, x) ≤ ĉ3|x|q + c4 for a.e. z ∈ Z and all x ∈ R,

so we have

F (z, x) ≤
(

ĉ3 +
c4

δq

)
|x|q for a.e. z ∈ Z and all x such that δ ≤ |x| ≤ 1,

while

F (z, x) ≤ (ĉ3 + c4)|x|q for a.e. z ∈ Z and all x such that |x| ≥ 1.

Thus finally we can find η > 0 such that

F (z, x) ≤ 1

p
(−λ2 + ε)|x|p + η|x|q for a.e. z ∈ Z and all x ∈ R.

Therefore, taking ε > 0 such that λ < λ2 − ε, for all x ∈ W 1,p
0 (Z) we obtain

Rλ(x) =
1

p
‖Dx‖p

p − λ

p
‖x‖p

p −
\
Z

F (z, x(z)) dz

≥ 1

p
‖Dx‖p

p − λ

p
‖x‖p

p +
1

p
(λ2 − ε)‖x‖p

p − η‖x‖q
q

≥ 1

p
‖Dx‖p

p − η1‖Dx‖q
p

=

(
1

p
− η1‖Dx‖q−p

p

)
‖Dx‖p

p,

where η1 is a positive constant found by using the Rayleigh quotient and
the Sobolev embedding theorem because p < q < p∗. Since ‖Dx‖p is an

equivalent norm in W 1,p
0 (Z), from this last inequality we deduce that there

are ̺ > 0 and α, β ∈ R such that

0 ≤ α < β ≤ inf
‖x‖=̺

Rλ(x).

Now we observe that Rλ(0) = 0 and from (13) it is possible to find
x1 ∈ W 1,p

0 (Z) with ‖x1‖ > ̺ and Rλ(x1) ≤ 0, therefore

max[Rλ(0), Rλ(x1)] ≤ α < β ≤ inf
‖x‖=̺

Rλ(x).

So, from Proposition 3, we can apply Theorem 1 to find x ∈ W 1,p
0 (Z) such

that 0 ∈ ∂Rλ(x) and Rλ(x) ≥ β > 0. Hence x 6= 0.
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Also, since 0 ∈ ∂Rλ(x), there exists u∗ ∈ ∂Ψ(x) such that 0 = A(x) −
λJ(x) − u∗, hence

〈A(x), ϕ〉 = λ(J(x), ϕ)p,q + (u∗, ϕ)p,q for all ϕ ∈ C∞
0 (Z).

Thus\
Z

‖Dx(z)‖p−2(Dx(z),Dϕ(z))N dz

=
\
Z

(λ|x(z)|p−2x(z)ϕ(z) + u∗(z)ϕ(z)) dz for all ϕ ∈ C∞
0 (Z).

From the definition of the distributional derivative, we infer that

− div(‖Dx(z)‖p−2Dx(z)) = λ|x(z)|p−2x(z) + u∗(z) a.e. on Z.

Since u∗(z) ∈ ∂Ψ(x)(z) ⊂ [f0(z, x(z)), f1(z, x(z))] a.e. on Z (cf. [5]), we
deduce that x ∈ W 1,p

0 (Z) is a nontrivial solution of problem (2).

4. Semilinear problem. Now we pass to the semilinear eigenvalue prob-
lem with discontinuous right hand side

(3)

{
−∆x(z) − λx(z) = f(z, x(z)) a.e. on Z,
x|Γ = 0.

Again the discontinuity of f(z, ·) in (3) forces us to pass to the multival-
ued variant of (3). Namely we pass to the elliptic eigenvalue inclusion

(4)

{
−∆x(z) − λx(z) ∈ [f0(z, x(z)), f1(z, x(z))] a.e. on Z,
x|Γ = 0.

Also in this case we denote by F (z, x) the function F (z, x) =
Tx
0

f(z, r) dr,
x ∈ R, which is the potential function corresponding to f .

In order to prove the existence of multiple nontrivial solutions we make
the following hypotheses on f :

H(f)2: f : Z × R → R is a Borel measurable function such that for all
z ∈ Z, f(z, ·) is locally bounded and

(i) f0, f1 are both N-measurable;

(ii) there are a1 ∈ L∞(Z, R+) and c > 0 such that

|f(z, x)| ≤ a1(z) + c|x|s a.e. on Z, ∀x ∈ R,

where 0 ≤ s ≤ (N + 2)/(N − 2) and N > 2;

(iii) there are θ > 2 and ξ > 0 such that

0 < θF (z, x) < xf(z, x) for a.e. z ∈ Z and all x such that |x| ≥ ξ;

(iv) lim inf
|x|→∞

2F (z, x)

x2
≥ 0 uniformly for a.e. z ∈ Z.
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Remark 3. Condition H(f)2(iii) forces the s in H(f)2(ii) to satisfy
1 < s ≤ (N + 2)/(N − 2) (see [14], p. 9).

Again we introduce, for every λ > 0, the locally Lipschitz functional
Rλ : H1

0 (Z) → R defined by

Rλ(x) =
1

2
‖Dx‖2

2 −
λ

2
‖x‖2

2 − Ψ(x),

where Ψ : H1
0 (Z) → R is defined by Ψ(x) =

T
Z

F (z, x(z)) dz.

Proposition 5. If hypotheses H(f)2 hold , then Rλ satisfies the (PS )-
condition.

P r o o f. Let {xn}n≥1 ⊂ H1
0 (Z) be a sequence with the property that

there exists M3 > 0 such that |Rλ(xn)| ≤ M3 for all n ≥ 1 and m(xn) → 0
as n → ∞. As before let x∗

n ∈ H−1(Z), x∗
n ∈ ∂Rλ(xn), n ≥ 1, be such that

‖x∗
n‖ = m(xn). We know that

x∗
n = A(xn) − λxn − u∗

n, n ≥ 1,

where A : H1
0 (Z) → H−1(Z) is defined by 〈A(x), y〉 =

T
Z
(Dx(z),Dy(z)) dz

for x, y ∈ H1
0 (Z) (here 〈·, ·〉 denotes the duality brackets for the pair

(H1
0 (Z),H−1(Z))) and u∗

n ∈ ∂Ψ(xn). From [5] we know that f0(z, xn(z)) ≤
u∗

n(z) ≤ f1(z, xn(z)) a.e. on Z. It is simple to see that A is linear and
monotone and so (cf. [16], p. 596) it is pseudomonotone.

Let η ∈ (1/θ, 1/2) and observe that there exists n ≥ 1 such that

−η〈x∗
n, xn〉 ≤ η‖xn‖1,2, ∀n ≥ n,

which implies that

−η〈A(xn), xn〉 + ηλ‖xn‖2
2 + η(u∗

n, xn)2 ≤ η‖xn‖1,2, ∀n ≥ n,

where (·, ·)2 denotes the inner product in the Hilbert space L2(Z). So from

the definition of Rλ and since 2 < θ, we deduce that there exists β̂1 such
that

M3 + η‖xn‖1,2 ≥ (1/2 − η)‖Dxn‖2
2 − λ(1/2 − η)β̂1‖xn‖2

θ(14)

−
\
Z

(F (z, xn(z)) − ηu∗
n(z)xn(z)) dz, ∀n ≥ n.

Using H(f)2(iii), we have

0 < θF (z, x) ≤ xfi(z, x) for a.e. z ∈ Z and all x with |x| > ξ, i = 0, 1,

and so, for all n ≥ 1, we obtain

(15) 0 < θF (z, xn(z)) ≤ u∗
n(z)xn(z) for a.e. z ∈ Z with |xn(z)| > ξ.
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Now, passing to integrals, we have\
Z

(ηu∗
n(z)xn(z) − F (z, xn(z))) dz

=
\
A

(ηu∗
n(z)xn(z) − F (z, xn(z))) dz +

\
B

ηu∗
n(z)xn(z) dz

−
\
B

F (z, xn(z)) dz, ∀n ≥ 1,

where A = {z ∈ Z : |xn(z)| > ξ} and B = {z ∈ Z : |xn(z)| ≤ ξ}. Note that,

from H(f)2(ii), |ηu∗
n(z)xn(z)| ≤ η(a1(z)+ c|xn(z)|s)|xn(z)| ≤ β̂2 a.e. on B,

where β̂2 = η(‖a1‖∞ + cξs)ξ. Hence, using (15) we obtain

(16)
\
Z

(ηu∗
n(z)xn(z) − F (z, xn(z))) dz

≥
\
A

(ηθ − 1)F (z, xn(z)) dz −
\
B

F (z, xn(z)) dz − β̂3, ∀n ≥ 1,

where β̂3 = β̂2|Z|.
Hypothesis H(f)2(iii) implies (cf. [14], p. 9) that there exist c̃3, c̃4 > 0

such that F (z, x) ≥ c̃3|x|θ − c̃4 a.e. on Z and for all x ∈ R. So we have

(17)
\
A

(ηθ − 1)F (z, xn(z)) dz

≥ (ηθ − 1)
\
Z

(c̃3|xn(z)|θ − c̃4) dz − (ηθ − 1)
\
B

(c̃3|xn(z)|θ − c̃4) dz

≥ (ηθ − 1)(c̃3‖xn‖θ
θ − c̃4|Z|) − (ηθ − 1)c̃3ξ

θ|Z|
+ (ηθ − 1)c̃4|B|, ∀n ≥ 1.

Also, by H(f)2(ii) there exists β̂4 > 0 such that

(18)
\
B

F (z, xn(z)) dz ≤ β̂4, ∀n ≥ 1.

Using (17) and (18) in (16) we find that there exists β̂5 > 0 such that

(19)
\
Z

(ηu∗
n(z)xn(z) − F (z, xn(z))) dz ≥ (ηθ − 1)c̃3‖xn‖θ

θ − β̂5, ∀n ≥ 1.

Now, using (19) in (14), we have

M3 + η‖xn‖1,2 ≥ (1/2 − η)‖Dxn‖2
2 − λ(1/2 − η)β̂1‖xn‖2

θ

+ (ηθ − 1)c̃3‖xn‖θ
θ − β̂5, ∀n ≥ n.

Since by hypothesis 2 < θ, from Young’s inequality, for fixed ε > 0, there
exists δ(ε) > 0 such that ‖xn‖2

θ ≤ δ(ε) + ε‖xn‖θ
θ for all n ≥ 1; so we deduce
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that

M3 + η‖xn‖1,2 ≥ (1/2 − η)‖Dxn‖2
2 − λ(1/2 − η)β̂1ε‖xn‖θ

θ

+ (ηθ − 1)c̃3‖xn‖θ
θ − β̂6(ε), ∀n ≥ n,

where β̂6(ε) = β̂5 + λ(1/2 − η)β̂1δ(ε). Choose ε > 0 so that (ηθ − 1)c̃3 −
λ(1/2 − η)β̂1ε > 0. Then

M3 + η‖xn‖1,2 ≥ (1/2 − η)‖Dxn‖2
2 − β̂6(ε), ∀n ≥ n.

Since η < 1/2 and using Poincaré’s inequality, we infer that {xn}n≥1 is
bounded in H1

0 (Z); thus we may assume that xn → x weakly in H1
0 (Z) and

xn → x in L2(Z) as n → ∞. Since by hypothesis s < (N + 2)/(N − 2),
we have s + 1 < p∗ = 2N/(N − 2) and so H1

0 (Z) is compactly embedded in
Ls+1(Z). Hence xn → x in Ls+1(Z) as n → ∞.

Moreover from Theorem 2.1 of [5] we find that u∗
n ∈ ∂Ψ(xn) ⊂ Lν(Z)

for all n ≥ 1 where 1/ν + 1/(s + 1) = 1, and since f0(z, xn(z)) ≤ u∗
n(z) ≤

f1(z, xn(z)) a.e. on Z and for all n ≥ 1, from H(f)2(ii) we deduce that
{u∗

n}n≥1 is bounded in Lν(Z).
Now, from our assumptions, we know that

x∗
n = A(xn) − λxn − u∗

n, n ≥ 1,

and so

〈A(xn), xn −x〉 = 〈x∗
n, xn −x〉+ λ(xn, xn −x)2 + (u∗

n, xn −x)ν,s+1, n ≥ 1.

Therefore
lim sup

n→∞
〈A(xn), xn − x〉 = 0,

and so from the pseudomonotonicity of A : H1
0 (Z) → H−1(Z) we deduce

‖Dxn‖2 → ‖Dx‖2 as n → ∞.

But we also have Dxn → Dx weakly in L2(Z), thus, since L2(Z) is a uni-
formly convex space, we deduce that xn → x in H1

0 (Z) as n → ∞. So Rλ

satisfies the (PS)-condition.

In what follows we denote by (λn)n≥1 the increasing sequence of positive
numbers which are distinct eigenvalues of −∆ with the Dirichlet boundary
condition (cf. [2], p. 192). Using the previous proposition we can prove our
multiplicity result:

Theorem 6. If hypotheses H(f)2 hold , if for a.e. z ∈ Z, f(z, ·) is odd

and if there exists k ≥ 1 such that

lim sup
x→0

2F (z, x)

x2
≤ −λk+1 uniformly for a.e. z ∈ Z,

then for every λ ∈ (λk+1, λk) the problem (4) has k pairs of nontrivial

solutions.
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P r o o f. From H(f)2(iv), given ε > 0, we can find M4 > 0 such that

F (z, x) ≥ −ε

2
x2 for a.e. z ∈ Z and all x such that |x| > M4.

Also from the growth hypothesis H(f)2(ii) we know that there exists β̂7

such that

|F (z, x)| ≤ β̂7 for a.e. z ∈ Z and all x such that |x| ≤ M4.

Hence we infer that

(20) F (z, x) ≥ −ε

2
x2 − β̂7 for a.e. z ∈ Z and all x ∈ R.

Let V = span{um}k
m=1, where u1, . . . , uk are the eigenfunctions corre-

sponding to the first k eigenvalues of the Laplacian. Recall that for all x ∈ V
we have ‖Dx‖2

2 ≤ λk‖x‖2
2, so, using (20), we obtain

Rλ(x) =
1

2
‖Dx‖2

2 −
λ

2
‖x‖2

2 −
\
Z

F (z, x(z)) dz

≤ 1

2
‖Dx‖2

2 −
λ

2
‖x‖2

2 +
ε

2
‖x‖2

2 + β̂8

≤ 1

2

(
1 − λ − ε

λk

)
‖Dx‖2

2 + β̂8,

where β̂8 = β̂7|Z|. Take ε > 0 so that λk < λ − ε. Then we see that

(21) Rλ(x) → −∞ as ‖x‖1,2 → ∞.

Next using our assumption, given ε > 0 we can find 0 < δ < 1 such that

F (z, x) ≤ (−λk+1 + ε)
x2

2
for a.e. z ∈ Z and all x such that |x| < δ.

Also from H(f)2(ii) we have

F (z, x) ≤ γδ|x|s for a.e. z ∈ Z and all x such that δ ≤ |x| ≤ 1,

where γδ = (‖a1‖∞/δs + c). Moreover, there exists γ̃ > 0 such that for
almost all z ∈ Z and all x such that |x| ≥ 1 we have

F (z, x) ≤ γ̃|x|s ≤ γ̃|x|r,
with 2 < r ≤ 2N/(N − 2) and r ≥ s + 1. Therefore we can find γ̂ > 0 large
enough such that

F (z, x) ≤ (−λk+1 + ε)
x2

2
+ γ̂|x|r for a.e. z ∈ Z and all x ∈ R.

Hence, for all x ∈ H1
0 (Z), taking ε > 0 such that λ + ε < λk+1, it follows
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that

Rλ(x) =
1

2
‖Dx‖2

2 −
λ

2
‖x‖2

2 −
\
Z

F (z, x(z)) dz

≥ 1

2
‖Dx‖2

2 −
λ

2
‖x‖2

2 +
λk+1 − ε

2
‖x‖2

2 − γ̂‖x‖r
r

≥ 1

2
‖Dx‖2

2 − γ∗‖Dx‖r
2

=

(
1

2
− γ∗‖Dx‖r−2

2

)
‖Dx‖2

2,

where γ∗ is a positive constant found by using Poincaré’s inequality.
Since ‖Dx‖2 is an equivalent norm in H1

0 (Z), from this last inequality
we deduce that there are ̺, β > 0 such that

Rλ(x) ≥ β for all x ∈ H1
0 (Z) such that ‖x‖1,2 = ̺.

Now, since Rλ is even and Rλ(0) = 0, by Proposition 5 and (21), we can
apply Theorem 2 with X1 = H1

0 (Z) and X2 = V to deduce the existence
of k pairs of nontrivial critical points for Rλ. As in the proof of Theorem
4 we can verify that these pairs of nontrivial critical points are nontrivial
solutions of problem (4).

We conclude by presenting an example of a function f that satisfies
hypotheses H(f)2 and the conditions of our Theorem 6. Again we drop the
z-dependence and we suppose for simplicity that N = 3. Let f : Z ×R → R

be defined by

f(z, x) =

{
− 3
√

x, |x| ≤ 1,
6x5, |x| > 1.

Evidently f(z, ·) is odd and

F (z, x) =

{
−(3/4)

3
√

x4, |x| ≤ 1,
x6 − 7/4, |x| > 1.

Note that if s = 5 = (N + 2)/(N − 2), then f satisfies the growth hypothesis
H(f)2(ii). Also, assuming θ = 6 and ξ = 2, for |x| > ξ we obtain

0 < θF (z, x) = 6(x6 − 7/4) ≤ 6x6 = xf(z, x).

So H(f)2(iii) is satisfied . Moreover if |x| > 1 then

2F (z, x)

x2
= 2x4 − 7

2x2
→ +∞ as |x| → ∞;

while if |x| < 1 then

2F (z, x)

x2
= −3

2
x−2/3 → −∞ as |x| → 0.

Therefore the function f satisfies hypotheses H(f)2 and the conditions of
Theorem 6.
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Basel, 1992.

[13] P. Lindqv ist, On the equations div(‖Dx‖p−2Dx) + λ|x|p−2x = 0, Proc. Amer.
Math. Soc. 109 (1990), 157–164.

[14] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to
Partial Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer.
Math. Soc., Providence, RI, 1986.

[15] M. Ramos, A critical point theorem suggested by an elliptic problem with asym-
metric nonlinearities, J. Math. Anal. Appl. 196 (1995), 938–946.

[16] E. Ze id ler, Nonlinear Functional Analysis and its Applications, Springer, New
York, 1985.

Department of Mathematics
National Technical University
Zografou Campus
Athens 15780, Greece
E-mail: npapg@math.ntua.gr

Department of Mathematics
University of Ancona
Via Brecce Bianche
Ancona 60131, Italy

E-mail: papalini@dipmat.unian.it
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