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Regular analytic transformations of R2

by Joseph Gubeladze (Tbilisi)

Abstract. Existence of loops for non-injective regular analytic transformations of the
real plane is shown. As an application, a criterion for injectivity of a regular analytic trans-
formation of R

2 in terms of the Jacobian and the first and second order partial derivatives
is obtained. This criterion is new even in the special case of polynomial transformations.

1. Introduction. We define the notion of a loop and use it to derive
properties of non-injective regular analytic mappings F : R

2 → R
2. We

observe that a loop system exists for any such mapping (Proposition 4.6).
This observation seems to be of independent interest. Basing on Proposi-
tion 4.6, we obtain a criterion for injectivity of a regular real-analytic 2-map
(Theorem 6.1). This criterion, in the special case of polynomial mappings,
translates into the following claim (Theorem 6.2): a non-degenerate polyno-
mial map F : R

2 → R
2 is a global diffeomorphism of the real plane if there

exist λ, κ > 0 such that deg(F ) ≤ 3
2
λ + 3 and j(F )z ≥ κ‖z‖λ for all z with

‖z‖ sufficiently large.

In particular, any cubic transformation of R
2 with Jacobian separated

from 0 (i.e. > const > 0) is a global diffeomorphism. Recently it has been
shown by Gwoździewicz [Gw] that any cubic polynomial transformation of
R

2 with non-vanishing Jacobian is a global diffeomorphism.

One can check that the Jacobian of Pinchuk’s counterexample [P] to the
Strong Real Jacobian Conjecture (for two variables) approaches zero along
a certain algebraic curve, extending to infinity. Thus our result says that
on the other extreme, when the Jacobian grows rapidly with certain rate at
infinity, such counterexamples do not exist.

Thanks are due to Madhav Nori for discussions of details and for his
proof of Lemma 3.2, and to Arno van den Essen for sending a copy of [Gw].
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2. Preliminaries. “Analytic mapping” always means a real-analytic
mapping. Let F = (f, g) : R

2 → R
2 denote an analytic mapping. We fix an

orientation on R
2. ‖z‖ will refer to the standard Euclidean norm of z ∈ R

2.

For z = (x, y) ∈ R
2 we put

J(F )z =

( ∂f
∂x

(z) ∂f
∂y

(z)

∂g
∂x

(z) ∂g
∂y

(z)

)

and j(F )z = detJ(F )z . In this paper F is called regular (or non-degenerate)
if j(F )z > 0 for all z ∈ R

2

O will denote the origin of R
2, i.e. O = (0, 0).

For r > 0 we denote by Cr the circle in R
2 with radius r and centre

at O, while Dr denotes the closed disc bounded by Cr. We put S1 = C1.
For z ∈ R

2 we denote by Cz,r and Dz,r the circle z + Cr and the disc
z+Dr respectively. An arc of some circle always means a closed arc, strictly
contained in this circle and not degenerating to a single point. An arc, unless
specified otherwise, always means that of a circle with centre at the origin.

A curve in R
2 is just a homeomorphic image of the unit interval [0, 1].

An analytic curve in R
2 is the image of [0, 1] under some injective analytic

map θ = (θ1, θ2) : [0, 1] → R
2. In the special case when the derivatives of

θ1 and θ2 do not have a common zero in [0, 1] the curve is called regular. A
point (θ1(t), θ2(t)) of an analytic curve P ⊂ R

2 is called singular if t ∈ [0, 1]
is a common zero of the derivatives of θ1 and θ2. For any analytic curve P
the set of its singular points is finite. Further, two analytic curves having
the same end points and infinite intersections coincide. A piecewise analytic

curve is defined as a curve which is the union of finitely many successive
analytic curves P1, . . . , Pn so that Pi ∩ Pi+1 is an end point of both Pi and
Pi+1, i ∈ [1, n − 1].

A path refers to a continuous mapping from [0, 1], and a closed path to
one from S1.

#(A) denotes the number of elements in A. N = {1, 2, . . .}. For a subset
A ⊂ R

2, homeomorphic to a convex subset B ⊂ R
2, int(A) refers to the

corresponding image of the relative interior of B. Further notations are
explained in the text.

3. Analytic background. A map f : A → B is called almost injective

if #(f−1(b)) < ∞ for all b ∈ B and #(f−1(b)) ≤ 1 for all but finitely many
b ∈ B.

Lemma 3.1. Any non-degenerate analytic map F : S1 → R
2 admits a

factorization F = φ ◦ γ into two non-degenerate analytic mappings, where

γ is an n-fold analytic covering of S1 for some uniquely determined natural

number n and φ : S1 → R
2 is an almost injective analytic map.
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P r o o f. Define an equivalence relation on S1 as follows: for x, y ∈ S1

we write x ∼ y if and only if any neighbourhoods of x and y contain x′ 6= x
and y′ 6= y respectively, such that F (x′) = F (y′). Then straightforward
arguments show that the function #([−]∼) : S1 → N ∪ {∞} is finite and
constant with a value, say, n. It follows easily that n is the desired number.

Lemma 3.2. Assume F : R
2 → R

2 is a regular analytic mapping. Then

F |Cr
: Cr → R

2 is almost injective for any r > 0.

P r o o f. By Lemma 3.1, F |Cr
admits a factorization F |Cr

= φ ◦ γ for
some analytic n-fold covering γ : S1 → S1 and some analytic almost injective
φ : C1 → R

2. It suffices to show that n = 1.
Consider the function Ψ : R

2 → R
2 defined by

Ψ(r, θ) = F (reiθ), r, θ ∈ R (R2 = C).

Since j(F )z > 0, z ∈ R
2, we have the well defined function

∂Ψ

∂θ
: R

2 \ {O} → R
2 \ {O}.

For any t > 0 we have the closed path

̺t =
∂Ψ

∂θ

∣

∣

∣

∣

Ct

: Ct → R
2 \ {O}.

Let W (̺t, O) denote the winding number of ̺t around the origin O.
Since for any z ∈ Cr the vector ̺r(z) has the same direction as the oriented
tangent line to F (Cr) at F (z) we see that

(∗) n ≤ W (̺r, O).

For t, t′ > 0 distinct the closed paths ̺t and ̺t′ are homotopic in R
2 \ {O}.

Using the fact that the winding numbers (around O) of closed homotopic
paths encircling O are the same ([F, p. 157]) we get W (̺r, O) = W (̺ε, O),
where ε is any small positive number. By the non-degeneracy condition
F : R

2 → R
2 is an orientation preserving local homeomorphism. But then

W (̺ε, O) = 1 for ε > 0 small enough. By (∗) we are done.

Let F : R
2 → R

2 be a regular analytic mapping. Put

A = {(p, q) ∈ R
2 × R

2 | p 6= q, F (p) = F (q), ‖p‖ = ‖q‖}.

Let π : R
2 × R

2 → R
2 be the projection onto the first factor.

Lemma 3.3. (I) #(Cr ∩ π(A)) < ∞ for any r > 0.
(II) For any z ∈ R

2 there exists a disc Dz,r such that π(A)∩Dz,r is one

of the following sets:

(a) ∅,
(b) {z},
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(c) the union of a finite system of analytic curves containing z, having

no other points of intersection pairwise, and regular outside {z}.

P r o o f. (I) Assume #(Cr ∩ π(A)) = ∞. Then F (Cr) has an infinite
number of self-intersections. This contradicts Lemma 3.2.

(II) A ⊂ R2×R2 is an analytic subset. Observe that dim(A) = 1 because
dim(A) = 2 would contradict (I). Now the classical Puiseux Theorem says
that irreducible components of A locally admit an analytic parametrization.
We are done because such local parametrizations are inherited by π(A)
⊂ R

2.

4. Loop systems. In what follows F = (f, g) : R
2 → R

2 will always
denote a regular analytic mapping. We let π and A be as in Lemma 3.3 and
put B = π(A).

Definition 4.1. An arc α of a circle Cr (r > 0) is called an F -loop
if F (α) is homeomorphic to S1 and F : α → F (α) only identifies the end
points.

The height of α, denoted by ht(α), is the radius of the circle that contains
α (i.e. ht(α) = r).

The end points of an F -loop α will be denoted by pα and qα. Thus
pα, qα ∈ B for any F -loop α. Moreover, we assume that pα precedes qα with
respect to the orientation of the plane of reference. The point F (pα) = F (qα)
will be called a base point of the homeomorphic circle F (α).

One more notation: for an F -loop α we denote by F (α)+ the homeomor-
phic disc in R

2 that is bounded by F (α).

Definition 4.2. Assume 0 < a < b, a ∈ R, b ∈ R ∪ {∞}. A system
{αt}[a,b[ is called a continuous F -loop system if the following conditions are
satisfied:

(1) αt is an F -loop for any t ∈ [a, b[,

(2) pαt
, qαt

: [a, b[ → R
2 are continuous functions,

(3) F (αt2) is contained in the interior of F (αt1)
+ whenever a ≤ t1 <

t2 < b,

(4) ht(αt) = t.

Lemma 4.3. Let a and b be as in Definition 4.2 and {αt}[a,b[ be a con-

tinuous F -loop system. If b < ∞ then limt→b pαt
and limt→b qαt

exist and

are different.

P r o o f. Let p be any limit point of {pαt
}[a,b[ such that ‖p‖ = b. The

structural description of π(A) near p, as given in Lemma 3.3(II), shows that
p = limt→b pαt

.



Regular analytic transformations 103

If the two limits coincide then the map F : R
2 → R

2 is not a local
homeomorphism at the corresponding limit point, a contradiction.

Lemma 4.4. Let {αt}[a,b[ be a continuous F -loop system for some 0 <
a < b < ∞. Then the curves {pαt

}[a,b] and {qαt
}[a,b] are piecewise analytic,

where pαb
= limt→b pαt

and qαb
= limt→b qαt

.

P r o o f. Since pαb
6= qαb

(Lemma 4.3) we have pαb
, qαb

∈ B. We also
have pαt

, qαt
∈ B for t ∈ [a, b[. Now the claim follows directly from Lem-

ma 3.3(II).

Definition 4.5. For 0 < a < ∞ a system {αt}[a,∞[ is called an F -loop
system if there is a sequence a = a0 < a1 < a2 < . . . such that

(1) {αt}[ai,ai+1[ is a continuous F -loop system for any i = 0, 1, 2, . . . ,
(2) F (αt2) is contained in the interior of F (αt1)

+ whenever a ≤ t1 <
t2 < ∞,

(3) either the sequence a0, a1, . . . is finite or limi→∞ ai = ∞.

The main observation on loop systems is

Proposition 4.6. The map F is non-injective if and only if there exists

an F -loop system.

The proof of this claim is a lengthy sequence of mostly standard facts
on the topology of R

2 and local triviality of the analytic set π(A) as in
Lemma 3.3. We therefore skip the details and only sketch the course of
proof: we start with a small circle C such that F maps it to a diffeomorphic
circle. By blowing up C homothetically we reach the first position when
F (C) touches itself. Then C contains an F -loop α ⊂ C. Moreover, the loop
is regular in the sense that there is an intermediate arc α ⊂ β ⊂ C such that
F (β \α) does not intersect the homeomorphic disc bounded by F (α). Next
we show that there is a continuous F -loop system {αt}[a,b[ with αa = α. By
the Zorn lemma we can choose a maximal such system (w.r.t. the natural
partial order). Assume b < ∞. The next crucial fact is the existence of a
regular F -loop α′ of height b which is mapped into the interiors of all the
homeomorphic discs bounded by the F (αt). We then iterate the process,
and so on. The concluding step in the proof is showing that the resulting
sequence {a, b, . . .} satisfies the condition 4.5(3).

5. Extension rate and curvature. Assume z ∈ R
2\{O} and r = ‖z‖.

We define the extension rate of F at z as follows. Consider a small arc of
Cr, say γ, that contains z in its interior. For ε > 0 we let γε denote the
polar projection of γ into Cr+ε. Then the normal to F (γ) at F (z) intersects
F (γε) in a single point, providing ε is small enough. We denote this point by
F (z)ε. Now consider an infinitesimal square one of whose edges is tangent
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to Cr at z so that the square is outside the disc Dr. Its image under F is
an infinitesimal parallelogram, tangent to F (γ) at F (z). This parallelogram
is the image of the above mentioned tangent square under the derivative of
F at z. The height of the parallelogram above the edge tangent to F (γ) is
ε‖F (z)ε − F (z)‖ + o(ε). The limit

e.r.(F )z = lim
ε→0

‖F (z)ε − F (z)‖

ε
> 0

will be called the extension rate of F at z.
We shall say that F has a negative curvature at z if for small ε > 0 the

point F (z)ε and the centre of curvature of F (γ) at F (z) lie on the same
ray with origin at F (z). If these two points are separated by F (z) then we
say that F has a positive curvature at z. The curvature of F at z, denoted
by c(F )z , is defined as the real number whose absolute value equals the
curvature of F (γ) at F (z) and whose sign is chosen as above.

Theorem 5.1. Let {αt}[a,∞[ be an F -loop system and let {ci}i∈N be any

increasing sequence of positive numbers such that limi→∞ ci = ∞. Then

there exist ̺ > 0, a sequence {ti}i∈N ⊂ [a,∞[ and points zi ∈ αti
such that :

(A) e.r.(F )zi
< 1/(citi),

(B) −c(F )zi
> 1/̺,

(C) t1 < t2 < . . . and ti → ∞ as i → ∞.

We will need the following (easily checked) fact:

• For any compact subset Z ⊂ R
2, Z 6= ∅, there exists a smallest disc

containing Z. Moreover, the boundary of this smallest disc intersects Z at
least in 2 points.

(Disc here means a set congruent to Dr for some r ≥ 0.)

Proof of Theorem 5.1. First observe that it suffices to achieve (A)&(B).
Now for each t ≥ a we let Dαt

denote the smallest disc in R
2 containing

F (αt). Let Cαt
denote the boundary of Dαt

and ̺αt
its radius. So the

function ̺αt
: [a,∞[→R+ is strictly decreasing. Put ̺ = ̺αa

. We know that
#(Cαt

∩ F (αt)) ≥ 2. Clearly, either #(Cαt
∩ F (αt)) < ∞ or Cαt

= F (αt).
The latter is excluded because we would have Cαt

= F (Ct). This is so
because if an arc of Ct is mapped under F to the circle Cαt

then the image
of the whole circle Ct cannot go outside Cαt

(we use the fact that F is
regular). On the other hand the winding number of F : Ct → Cαt

is at least
2 because already the proper arc αt ⊂ Ct covers the whole circle Cαt

under
the mapping F . In particular, F |Ct

is not almost injective—a contradiction
by Lemma 3.2.

It follows that

Xt = αt ∩ F−1((Cαt
∩ F (αt)) \ {F (pαt)})
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is a finite non-empty subset of int(αt). Now for each end point of αt there
are two possibilities:

(a) the tangent direction to Ct at this end point is mapped under F to
a direction tangent to Cαt

at F (pαt
),

(b) the tangency as in (a) does not occur.

We put

Tant = Xt ∪ {the end points of αt that satisfy the condition (a)}.

It is clear that −c(F )ξ = 1/̺αt
≥ 1/̺ for each ξ ∈ Tant.

Theorem 5.1 will clearly be proved once we show the following

Claim. For any ε > 0 there exists t ∈ [a,∞[ such that min{e.r.(F )ξ |
ξ ∈ Tant} < ε/t.

First one convention: for a disc D ⊂ R
2 and λ > 0 we denote by λ×D the

image of D under the homothety centred at the centre of D with factor λ.

Assume to the contrary that there exists ε > 0 such that

min{e.r.(F )ξ | ξ ∈ Tant} ≥ ε/t

for any t ∈ [a,∞[. Fix such an ε. For each t there are two possibilities:
either (1) F (pαt

) 6∈ Cαt
, or (2) F (pαt

) ∈ Cαt
.

Let 0 < κ < 1. Since the extension rate of F at a point of αt represents
a “shrinking rate” of the homeomorphic circle F (αt) at the corresponding
point, our lower bound for e.r.(F )ξ in case (1) implies the following: there
exists δt > 0 for which

F (ατ ) ⊂ (1 − κε(τ − t)/t) × Dαt

for all τ ∈ [t, t+ δt]. Similar standard analytic arguments show that, in case
(2), there exists δt > 0 for which F (ατ ) is contained in the convex hull of

((1 − κε(τ − t)/t) × Dαt
) ∪ {F (pαt

)}

whenever τ ∈ [t, t + δt]. But the above-mentioned hull is obviously included
in a disc of radius

(

1 −
κε(τ − t)

2t

)

̺αt
,

namely the one contained in Dαt
with boundary tangent to Cαt

at F (pαt
).

By integration we get

̺αt
≤

(

1 −
κε

2

t\
a

1

τ
dτ

)

̺

for all t ∈ [a,∞[. But the latter inequality implies ̺αt
< 0 for t sufficiently

large, which is absurd.
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Corollary 5.2. If F : R
2 → R

2 is not injective then for any increasing

sequence {ci}i∈N of positive numbers such that limi→∞ ci = ∞, there exist

̺, σ > 0 and a system {zi}i∈N ⊂ R
2 \ {O} satisfying :

(A) ‖z1‖ < ‖z2‖ < . . . and ‖zi‖ → ∞ as i → ∞,
(B) e.r.(F )zi

< 1/(ci‖zi‖),
(C) ‖F (zi)‖ < σ,
(D) −c(F )zi

> 1/̺.

P r o o f. This immediately follows from Proposition 4.6 and Theo-
rem 5.1.

Remark 5.3. The conditions (A)&(B) can actually be derived from Ha-
damard’s classical results [Ha]. Moreover, the analyticity assumption on F
can at this point be relaxed to a smooth local diffeomorphism. The new
thing here is to have simultaneously the condition (D) satisfied.

6. Injectivity. For a regular analytic map F : R
2 → R

2 and z ∈ R
2 we

let D2(F )z denote the maximum of the absolute values of all second order
partial derivatives of F at z, and let a(F )z denote maxv∈S1 ‖F ′

z(v)‖. Two
applications of loops are as follows:

Theorem 6.1. Let F be a regular analytic transformation of R
2. Assume

there exist κ1, κ2, λ > 0 such that κ1‖z‖
λ ≤ j(F )z and D2(F )za(F )z ≤

κ2‖z‖
3λ+3 for ‖z‖ large enough. Then F is injective.

Theorem 6.2. Let F : R
2 → R

2 be a non-degenerate polynomial mapping

of degree d. Assume there exist κ, λ > 0 such that d ≤ 3
2
λ + 3 and κ‖z‖λ ≤

j(F )z for ‖z‖ large enough. Then F is a global diffeomorphism of R
2.

Remark. Any quadratic non-degenerate polynomial transformation of
R

n, n ∈ N, is a global diffeomorphism [KR, §3].

Proof of Theorem 6.2. By [BR] it suffices to show that F is injective. We
have a(F )z = maxv∈S1 ‖J(F )z ·v

T ‖, where vT is the column transpose. Thus
a(F )z ≤ ‖J(F )z‖ · ‖v

T ‖ = ‖J(F )z‖, where ‖J(F )z‖ denotes the standard
Euclidean norm of the matrix J(F )z . In particular, there exists κ′ > 0 such
that a(F )z ≤ κ′‖z‖d−1 for ‖z‖ large enough. It is clear that D2(F )z ≤
κ′′‖z‖d−2 for some κ′′ > 0 whenever ‖z‖ is large enough. We get

d ≤ 3
2
λ + 3 ⇔ (d − 1) + (d − 2) ≤ 3λ + 3

and Theorem 6.1 applies.

To prove Theorem 6.1 we need several inequalities.
First a few notations. We denote by vol the standard translation invariant

volume function in R
2. For two (measurable) subsets M,N ⊂ R

2 we put

vol(M,N) = vol(M \ N) − vol(M ∩ N).
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For ε > 0 and M ⊂ R
2 we denote by εM the image of M under the

homothety centred at O with factor ε.

For a, b > 0 an ellipse E ⊂ R
2 will be called an (a, b)-ellipse if E is

congruent to the ellipse x2/a2 + y2/b2 = 1 and is centred at O. For an
(a, b)-ellipse E we denote by Ex the positive number such that (Ex, 0) ∈ E.

For an ellipse E the homeomorphic disc bounded by E will be denoted
by E+.

D1 will refer to the disc D(0,1),1.

Finally, for z ∈ R
2 we denote by Dcurv

F,z the disc centred at the curvature
centre of F (C‖z‖) at F (z), with radius |c(F )z | (Dcurv

F,z may be the whole
halfplane).

We have the following three observations.

(1) There exists a real number c1 such that for any ellipse E centred at

O, the inequality
vol(εE+,D1)

ε3E3
x

> c1

holds for ε > 0 small enough (depending on E).

In fact, by elementary geometric observations one concludes easily that
vol(εE+,D1) is more than the area of Σ\D1 modulo infinitesimals of higher
order, where Σ is the triangle with vertices O, (0, 1), (Ex, 0). Now the Taylor
series expansion of arctan near 0 applies.

(2) Let 0 < b ≤ d ≤ a and E be an (a, b)-ellipse, tangent to the line

y = d. Then
π

4

ab

d
< Ex.

It suffices to observe that E can be inscribed in the parallelogram having
one edge on the line y = d and containing (Ex, 0) in its boundary. The area
of this parallelogram is 4dEx and the area of our ellipse is πab. Hence
πab < 4dEx.

(3) There is c2 > 0 such that the F -image of any smooth path P ⊂ Dz,ε is

contained in the c2D
2(F )zε

2-neighbourhood of F (z)+F ′
z(P ), providing

ε is small enough (depending on z). Moreover , c2 can be chosen so

that the area of the above-mentioned neighbourhood is always at most

c2∆
2(F )za(F )z l(P )ε2 for ε small enough (depending on z), where

l(P ) is the length of P .

(Here the image of a continuous mapping from [0, 1] (i.e. of a path) is itself
called a path.)

Summing up (1), (2) and (3), and using the equalities

j(F )z = πa(F )zb(F )z, l(F ′
z(C1)) = π(a(F )z + b(F )z) ≤ 2πa(F )z ,
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where b(F )z = minv∈S1 ‖F ′
z(v)‖, one easily derives the following

Lemma 6.3. (a) There exist τ1, τ2 > 0 such that for any z ∈ R
2 with

c(F )z 6= 0, and ε > 0 small enough (depending on z) the following inequality

holds:

τ1|c(F )z |

(

j(F )z

e.r.(F )z

)3

ε3 − τ2D
2(F )za(F )zε

3 ≤ vol(F (Dz,ε),D
curv
F,z ).

(b) There exists τ3 > 0 such that for any z ∈ R
2, any smooth curve

P ⊂ Dz,ε which is a topological diameter of Dz,ε, and any ε > 0 small

enough (depending on z) the following inequality holds:

|(vol(F (D′)) − vol(F (D′′))) − j(F )z(vol(D′) − vol(D′′))|

≤ τ3D
2(F )za(F )zε

2(2πε + l(P )),

where D′ and D′′ denote the two parts of Dz,ε, separated by P .

Proof of Theorem 6.1. Assume F is not injective. Fix {ci}i∈N, {zi}i∈N

and ̺ > 0 as in Corollary 5.2. After scaling we can achieve ̺ = 1.
Let ε>0 be small. We put D+

zi,ε
=Dzi,ε∩D‖zi‖ and D−

zi,ε
=Dzi,ε \D‖zi‖.

The first observation is that vol(D+
zi,ε

) − vol(D−
zi,ε

) < 0 for all i and all
small ε > 0. Therefore j(F )zi

(vol(D+
zi,ε

) − vol(D−
zi,ε

)) < 0.
Let Pi,ε denote the arc of C‖zi‖ inside Dzi,ε. Then l(Pi,ε) < 3ε for ε > 0

small. It follows from Lemma 6.3(b) and the assumptions of the theorem
that

vol(F (D+
zi,ε

)) − vol(F (D−
zi,ε

)) < τ3D
2(F )zi

a(F )zi
ε2(2πε + 3ε)

and

τ3D
2(F )zi

a(F )zi
ε2(2πε + 3ε) ≤ (2π + 3)τ3κ2‖zi‖

3λ+3ε3

whenever i is large and ε > 0 is small enough (depending on i). Since

vol(F (Dzi,ε),D
curv
F,zi

) ∼ vol(F (D+
zi,ε

)) − vol(F (D−
zi,ε

))

as ε → 0, we have

vol(F (Dzi,ε),D
curv
F,zi

) < 2(vol(F (D+
zi,ε

)) − vol(F (D−
zi,ε

)))

for ε > 0 small (depending on i). On the other hand, by Lemma 6.3(a),

τ1c
3
i j(F )3zi

‖zi‖
3ε3 − τ2D

2(F )za(F )zi
ε3 ≤ vol(F (Dzi,ε),D

curv
zi

)

for i large and ε > 0 small enough (depending on i). By the assumptions

‖zi‖
3λ+3ε3(τ1κ

3
1c

3
i − τ2κ2) ≤ τ1c

3
i j(F )3zi

‖zi‖
3ε3 − τ2D

2(F )za(F )zi
ε3.

Summing up these 5 inequalities (and using the equivalence above) we get

τ1κ
3
1c

3
i − τ2κ2 < 2(2π + 3)τ3κ2,

which is obviously violated for i large, a contradiction.
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