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Newton numbers and residual measures

of plurisubharmonic functions

by Alexander Rashkovskii (Kharkov)

Abstract. We study the masses charged by (ddcu)n at isolated singularity points of
plurisubharmonic functions u. This is done by means of the local indicators of plurisubhar-
monic functions introduced in [15]. As a consequence, bounds for the masses are obtained
in terms of the directional Lelong numbers of u, and the notion of the Newton number
for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also
describe the local indicator of u as the logarithmic tangent to u.

1. Introduction. The principal information on local behaviour of a
subharmonic function u in the complex plane can be obtained by studying
its Riesz measure µu. If u has a logarithmic singularity at a point x, the main
term of its asymptotics near x is µu({x}) log |z − x|. For plurisubharmonic
functions u in C

n, n > 1, the situation is not so simple. The local properties
of u are controlled by the current ddcu (we use the notation d = ∂+∂, dc =
(∂−∂)/(2πi)) which cannot charge isolated points. The trace measure σu=
ddcu ∧ βn−1 of this current is precisely the Riesz measure of u; here βp =
(p!)−1(π/2)p(ddc|z|2)p is the volume element of C

p. A significant role is
played by the Lelong numbers ν(u, x) of the function u at points x:

ν(u, x) = lim
r→0

(τ2n−2r
2n−2)−1σu[B

2n(x, r)],

where τ2p is the volume of the unit ball B2p(0, 1) of C
p. If ν(u, x) > 0

then ν(u, x) log |z − x| gives an upper bound for u(z) near x; however, the
difference between these two functions can be comparable to log |z − x|.

Another important object generated by the current ddcu is the Monge–
Ampère measure (ddcu)n. For the definition and basic facts on the complex
Monge–Ampère operator (ddc)n and Lelong numbers, we refer the reader to
the books [12], [14] and [8], and for more advanced results, to [2]. Here we
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mention that (ddcu)n cannot be defined for all plurisubharmonic functions u,
but if u∈PSH(Ω) ∩L∞

loc(Ω \K) with K⊂⊂Ω, then (ddcu)n is well defined
as a positive closed current of bidimension (0, 0) (or, which is the same, as
a positive measure) on Ω. This measure cannot charge pluripolar subsets of
Ω \K, and it can have positive masses at points of K, e.g. (ddc log |z|)n =
δ(0), the Dirac measure at 0, |z| = (

∑
|zj |

2)1/2. More generally, if f : Ω →
C
N , N ≥ n, is a holomorphic mapping with isolated zeros at x(k) ∈ Ω

of multiplicities mk, then (ddc log |f |)n|x(k) = mk δ(x
(k)). So, the masses of

(ddcu)n at isolated singularity points of u (the residual measures of u) are
of especial importance.

Let a plurisubharmonic function u belong to L∞
loc(Ω \ {x}); its residual

mass at the point x will be denoted by τ(u, x):

τ(u, x) = (ddcu)n|{x}.

The problem under consideration is to estimate this value.
The following well known relation compares τ(u, x) with the Lelong num-

ber ν(u, x):

(1) τ(u, x) ≥ [ν(u, x)]n.

Equality in (1) means that, roughly speaking, the function u(z) behaves near
x as ν(u, x) log |z − x|. In many cases however relation (1) is not optimal;
e.g. for

(2) u(z) = sup{log |z1|
k1 , log |z2|

k2}, k1 > k2,

we have τ(u, 0) = k1k2 > k2
2 = [ν(u, 0)]2.

As follows from the Comparison Theorem due to Demailly (see Theo-
rem A below), the residual mass is determined by asymptotic behaviour of
the function near its singularity, so one needs to find appropriate character-
istics for the behaviour. To this end, a notion of local indicator was proposed
in [15]. Note that ν(u, x) can be calculated as

ν(u, x) = lim
r→−∞

r−1 sup{v(z) : |z − x| ≤ er} = lim
r→−∞

r−1M(u, x, r),

where M(u, x, r) is the mean value of u over the sphere |z − x| = er (see
[4]). In [5], the refined, or directional , Lelong numbers were introduced as

ν(u, x, a) = lim
r→−∞

r−1 sup{v(z) : |zk − xk| ≤ erak , 1 ≤ k ≤ n}(3)

= lim
r→−∞

r−1g(u, x, ra),

where a = (a1, . . . , an) ∈ R
n
+ and g(u, x, b) is the mean value of u over

the set {z : |zk − xk| = exp bk, 1 ≤ k ≤ n}. For x fixed, the collection
{ν(u, x, a)}a∈R

n
+

gives a more detailed information about the function u
near x than ν(u, x) does, so one can expect a more precise bound for τ(u, x)
in terms of the directional Lelong numbers. It was noticed already in [5]
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that the mean value of u over {z : |zk − xk| = |exp yk|, 1 ≤ k ≤ n} is
a plurisubharmonic function of y ∈ C

n, Re yk ≪ 0, so a 7→ ν(u, x, a) is
a concave function on R

n
+. The idea was developed in [15] where a local

indicator Ψu,x of the function u at x was constructed as a plurisubharmonic
function in the unit polydisk D = {y ∈ C

n : |yk| < 1, 1 ≤ k ≤ n}, given by
the formula

Ψu,x(y) = −ν(u, x, (− log |yk|)).

It is the largest negative plurisubharmonic function in D whose direc-
tional Lelong numbers at 0 coincide with those of u at x, (ddcΨu,x)

n =
τ(Ψu,x, 0) δ(0), and finally,

(4) τ(u, x) ≥ τ(Ψu,x, 0),

so the singularity of u at x is controlled by its indicator Ψu,x.

Since τ(Ψu,x, 0) ≥ [ν(Ψu,x, 0)]
n = [ν(u, x)]n, (4) is a refinement of (1).

For the function u defined by (2), τ(Ψu,0, 0) = k1k2 = τ(u, 0) > [ν(u, 0)]2.

Being a function of quite a simple nature, the indicator can produce
effective bounds for residual measures of plurisubharmonic functions. In
Theorems 1–3 of the present paper we study the valuesN(u, x) := τ(Ψu,x, 0),
the Newton numbers of u at x; the reason for this name is explained below.
We obtain, in particular, the following bound for τ(u, x) (Theorem 4):

τ(u, x) ≥
[ν(u, x, a)]n

a1 . . . an
∀a ∈ R

n
+;

it reduces to (1) when a1 = . . . = an = 1. For n plurisubharmonic functions
u1, . . . , un in general position (see the definition below), we estimate the
measure ddcΨu1,x ∧ . . .∧ dd

cΨun,x and prove a similar relation (Theorem 6):

(5) ddcu1 ∧ . . . ∧ dd
cun|{x} ≥

∏
j ν(uj , x, a)

a1 . . . an
∀a ∈ R

n
+.

The main tool used to obtain these bounds is the Comparison Theorem
due to Demailly. To formulate it we give the following

Definition 1. A q-tuple of plurisubharmonic functions u1,. . ., uq is said
to be in general position if their unboundedness loci A1, . . . , Aq satisfy the
following condition: for all choices of indices j1 < . . . < jk, k ≤ q, the
(2q − 2k + 1)-dimensional Hausdorff measure of Aj1 ∩ . . . ∩Ajk equals zero.

Theorem A (Comparison Theorem, [2], Th. 5.9). Let n-tuples of pluri-

subharmonic functions u1, . . . , un and v1, . . . , vn be in general position on a

neighbourhood of a point x ∈ C
n. Suppose that uj(x) = −∞, 1 ≤ j ≤ n,

and

lim sup
z→x

vj(z)

uj(z)
= lj <∞.
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Then

ddcv1 ∧ . . . ∧ dd
cvn|{x} ≤ l1 . . . ln dd

cu1 ∧ . . . ∧ dd
cun|{x}.

We also obtain a geometric interpretation for the value N(u, x) (Theo-
rem 7). Let Θu,x be the set of points b ∈ Rn+ such that ν(u, x, a) ≥ 〈b, a〉 for
some a ∈ R

n
+. Then

(6) τ(u, x) ≥ N(u, x) = n! Vol(Θu,x).

In many cases the volume of Θu,x can be easily calculated, so (6) gives an
effective formula for N(u, x).

To illustrate these results, consider functions u= log |f |, f = (f1, . . . , fn)
being an equidimensional holomorphic mapping with an isolated zero at a
point x. It is probably the only class of functions whose residual measures
were studied in detail before. In this case, τ(u, x) equals m, the multiplicity
of f at x, and

(7) ν(log |f |, x, a) = I(f, x, a) := inf{〈a, p〉 : p ∈ ωx}

where

ωx =

{
p ∈ Z

n
+ :

∑

j

∣∣∣∣
∂pfj
∂zp

(x)

∣∣∣∣ 6= 0

}

(see [13]). For polynomials F : C
n → C, the value I(F, x, a) is a known

object (the index of F at x with respect to the weight a) used in number
theory (see e.g. [11]).

Relation (4) gives us m = τ(log |f |, x) ≥ N(log |f |, x). In general, the
value N(log |f |, x) is not comparable to m1 . . . mn with mj the multiplicity
of the function fj : for f(z) = (z2

1 + z2, z2) and x = 0, m1m2 = 1 < 2 =
N(log |f |, x) = m while for f(z) = (z2

1 + z2, z
3
2), N(log |f |, x) = 2 < 3 =

m1m2 < 6 = m. A sharper bound for m can be obtained from (5) with
uj = log |fj |, 1 ≤ j ≤ n. In this case, the left-hand side of (5) equals m,
and its right-hand side with a1 = . . . = an equals m1 . . .mn. For both the
above examples of the mapping f , the supremum of the right-hand side of
(5) over a ∈ R

n
+ equals m. For a1, . . . , an rational, relation (5) is a known

bound for m via the multiplicities of weighted homogeneous initial Taylor
polynomials of fj with respect to the weights (a1, . . . , an) ([1], Th. 22.7).

Recall that the convex hull Γ+(f, x) of the set
⋃
p{p + R

n
+}, p ∈ ωx, is

called the Newton polyhedron of (f1, . . . , fn) at x, the union Γ (f, x) of the
compact faces of the boundary of Γ+(f, x) is called the Newton boundary

of (f1, . . . , fn) at x, and the value Nf,x = n! Vol(Γ−(f, x)) with Γ−(f, x) =
{λt : t ∈ Γ (f, x), 0 ≤ λ ≤ 1} is called the Newton number of (f1, . . . , fn) at
x (see [10], [1]). The relation

(8) m ≥ Nf,x
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was established by A. G. Kouchnirenko [9] (see also [1], Th. 22.8). Since
Θlog |f |,x = Γ−(f, x), (8) is a particular case of (6). It is the reason for calling
N(u, x) the Newton number of u at x.

These observations show that the technique of plurisubharmonic func-
tions (and local indicators in particular) is quite a powerful tool to produce,
in a unified and simple way, sharp bounds for the multiplicities of holomor-
phic mappings.

Finally, we obtain a description for the indicator Ψu,x(z) as the weak
limit of the functions m−1u(x1 + zm1 , . . . , xn + zmn ) as m→ ∞ (Theorem 8),
so Ψu,x can be viewed as the tangent (in the logarithmic coordinates) for
the function u at x. Using this approach we obtain a sufficient condition,
in terms of Cn−1-capacity, for the residual mass τ(u, x) to coincide with the
Newton number of u at x (Theorem 9).

2. Indicators and their masses. We will use the following notations.
For a domain Ω of C

n, PSH(Ω) will denote the class of all plurisubhar-
monic functions on Ω, PSH−(Ω) the subclass of nonpositive functions, and
PSH(Ω,x) = PSH(Ω) ∩ L∞

loc(Ω \ {x}) with x ∈ Ω.
Let D = {z ∈ C

n : |zk| < 1, 1 ≤ k ≤ n} be the unit polydisk,
D∗ = {z ∈ D : z1 · . . . · zn 6= 0}, and R

n
± = {t ∈ R

n : ±tk > 0}. By
CNVI−(Rn−) we denote the collection of all nonpositive convex functions on
R
n
− increasing in each variable tk. The mapping Log : D∗ → R

n
− is de-

fined as Log(z) = (log |z1|, . . . , log |zn|), and Exp : R
n
− → D∗ is given by

Exp(t) = (exp t1, . . . , exp tn).
A function u on D∗ is called n-circled if

(9) u(z) = u(|z1|, . . . , |zn|),

i.e. if Log∗ Exp∗ u = u. Any n-circled function u ∈ PSH−(D∗) has a unique
extension to the whole polydisk D keeping the property (9). The class of
such functions will be denoted by PSHc

−(D). The cones CNVI−(Rn−) and
PSHc

−(D) are isomorphic: u ∈ PSHc−(D) ⇔ Exp∗ u ∈ CNVI−(Rn−), h ∈
CNVI−(Rn−) ⇔ Log∗ h ∈ PSHc−(D).

Definition 2 (see [15]). A function Ψ ∈ PSHc−(D) is called an indicator

if its convex image Exp∗ Ψ satisfies

(10) Exp∗ Ψ(ct) = c Exp∗ Ψ(t) ∀c > 0, ∀t ∈ R
n
−.

The collection of all indicators will be denoted by I. It is a convex subcone
of PSHc

−(D), closed in D′ (or equivalently, in L1
loc(D)). Moreover, if Ψ1,

Ψ2 ∈ I then also sup{Ψ1, Ψ2} ∈ I.
Every indicator is locally bounded in D∗. In what follows we will often

consider indicators locally bounded in D \ {0}; the class of such indicators
will be denoted by I0: I0 = I ∩ PSH(D, 0).
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An example of indicators can be given by the functions

ϕa(z) = sup
k

ak log |zk|, ak ≥ 0,

(“simple” indicators). If all ak > 0, then ϕa ∈ I0.

Proposition 1. Let Ψ ∈ I0, Ψ 6≡ 0. Then

(a) there exist reals ν1, . . . , νn > 0 such that

(11) Ψ(z) ≥ ϕν(z) ∀z ∈ D

with ϕν the simple indicator corresponding to ν = (ν1, . . . , νn);

(b) Ψ ∈ C(D \ {0}), Ψ |∂D = 0;

(c) the directional Lelong numbers ν(Ψ, 0, a) of Ψ at the origin with re-

spect to a ∈ R
n
+ (see (3)) are

(12) ν(Ψ, 0, a) = −Ψ(Exp(−a)),

and its Lelong number is ν(Ψ, 0) = −Ψ(e−1, . . . , e−1);

(d) (ddcΨ)n = 0 on D \ {0}.

P r o o f. Let Ψk(zk) denote the restriction of the indicator Ψ(z) to the disk
D(k) = {z ∈ D : zj = 0 ∀j 6= k}. By monotonicity of Exp∗ Ψ , Ψ(z) ≥ Ψk(zk).
Since Ψk is a nonzero indicator in the disk D(k) ⊂ C, Ψk(zk) = νk log |zk|
with some νk > 0, and (a) follows.

As Exp∗ Ψ ∈ C(Rn−), we have Ψ ∈ C(D∗). Its continuity in D \ {0}
can be shown by induction on n. For n = 1 it is obvious, so assuming it
for n ≤ l, consider any point z0 6= 0 with z0

j = 0. Let zs → z0; then

the points z̃s with z̃sj = 0 and z̃sm = zsm, m 6= j, also tend to z0, and by

the induction hypothesis, Ψ(z̃s) → Ψ(z̃0) = Ψ(z0). So, lim infs→∞ Ψ(zs) ≥
lims→∞ Ψ(z̃s)=Ψ(z0), i.e. Ψ is lower semicontinuous and hence continuous
at z0. Continuity of Ψ up to∂D and the boundary condition follow from (11).

Equality (12) is an immediate consequence of the definition of the direc-
tional Lelong numbers (3) and the homogeneity condition (10). The relation
ν(u, x) = ν(u, x, (1, . . . , 1)) [5] gives us the desired expression for ν(Ψ, 0).

Finally, statement (d) follows from the homogeneity condition (10) (see
[15], Proposition 4).

For functions Ψ ∈ I0, the complex Monge–Ampère operator (ddcΨ)n is
well defined and gives a nonnegative measure on D. By Proposition 1,

(ddcΨ)n = τ(Ψ)δ(0)

with some constant τ(Ψ) ≥ 0 which is strictly positive unless Ψ ≡ 0. In this
section, we will study the value τ(Ψ).

An upper bound for τ(Ψ) is given by
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Proposition 2. For every Ψ ∈ I0,

(13) τ(Ψ) ≤ ν1 . . . νn

with ν1, . . . , νn as in Proposition 1(a).

P r o o f. Since all νk > 0, the simple indicator ϕν is in I0, and (11)
implies

lim sup
z→0

Ψ(z)

ϕν(z)
≤ 1,

so (13) follows by Theorem A.

To obtain a lower bound for τ(Ψ), we need a relation between Ψ(z) and
Ψ(z0) for z, z0 ∈ D. Define

Φ(z, z0) = sup
k

log |zk|

|log |z0
k||
, z ∈ D, z0 ∈ D∗.

When considered as a function of z with z0 fixed, Φ(z, z0) is in I0.

Proposition 3. For any Ψ ∈ I, we have Ψ(z) ≤ |Ψ(z0)|Φ(z, z0) for all

z ∈ D, z0 ∈ D∗.

P r o o f. For a fixed z0∈D∗ and t0 =Log(z0), define u= |Ψ(z0)|−1 Exp∗ Ψ
and v = Exp∗ Φ = supk tk/|t

0
k|. It suffices to establish the inequality u(t) ≤

v(t) for all t ∈ R
n
− with t0k < tk < 0, 1 ≤ k ≤ n. Given such a t, define

λ0 = [1 + v(t)]−1. Since {t0 + λ(t − t0) : 0 ≤ λ ≤ λ0} ⊂ Rn−, the functions
ut(λ) := u(t0 + λ(t− t0)) and vt(λ) := v(t0 + λ(t− t0)) are well defined on
[0, λ0]. Furthermore, ut is convex and vt is linear there, ut(0) = vt(0) = −1,
ut(λ0) ≤ vt(λ0) = 0. This implies ut(λ) ≤ vt(λ) for all λ ∈ [0, λ0]. In
particular, as λ0 > 1, u(t) = ut(1) ≤ vt(1) = v(t), which completes the
proof.

Consider now the function

(14) P (z) = −
∏

1≤k≤n

|log |zk||
1/n ∈ I.

Theorem 1. The Monge–Ampère mass τ(Ψ) of any indicator Ψ ∈ I0 has

the bound

(15) τ(Ψ) ≥

∣∣∣∣
Ψ(z0)

P (z0)

∣∣∣∣
n

∀z0 ∈ D∗

where the function P is defined by (14).

P r o o f. By Proposition 3,

Ψ(z)

Φ(z, z0)
≤ |Ψ(z0)| ∀z ∈ D, z0 ∈ D∗.

By Theorem A,
(ddcΨ)n ≤ |Ψ(z0)|n(ddcΦ(z, z0))n,
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and the statement follows from the fact that

(ddcΦ(z, z0))n =
∏

1≤k≤n

|log |z0
k||

−1 = |P (z0)|−n.

Remarks. 1. One can consider the value

(16) AΨ = sup
z∈D

∣∣∣∣
Ψ(z)

P (z)

∣∣∣∣
n

;

by Theorem 1,

(17) τ(Ψ) ≥ AΨ .

2. Let I0,M = {Ψ ∈ I0 : τ(Ψ) ≤ M}, M > 0. Then (15) gives a lower
bound for the class I0,M :

Ψ(z) ≥M1/nP (z) ∀z ∈ D, ∀Ψ ∈ I0,M .

Let now Ψ1, . . . , Ψn ∈ I be in general position in the sense of Definition 1.
Then the current

∧
k dd

cΨk is well defined, as is (ddcΨ)n with Ψ = supk Ψk.
Moreover, we have

Proposition 4. If Ψ1, . . . , Ψn ∈ I are in general position, then

(18)
∧

k

ddcΨk = 0 on D \ {0}.

P r o o f. For Ψ1, . . . , Ψn ∈ I0, the statement follows from Proposition 1(d)
and the polarization formula

(19)
∧

k

ddcΨk =
(−1)n

n!

n∑

j=1

(−1)j
∑

1≤i1<...<ij≤n

(
ddc

j∑

k=1

Ψjk

)n
.

When the only condition on {Ψk} is to be in general position, we can
replace Ψk(z) with Ψk,N(z) = sup{Ψk(z), N supj log |zj |} ∈ I0 for which∧
k dd

cΨk,N = 0 on D \{0}. Since Ψk,N ց Ψk as N → ∞, this gives us (18).

The mass of
∧
k dd

cΨk will be denoted by τ(Ψ1, . . . , Ψn).

Theorem 2. Let Ψ1, . . . , Ψn ∈ I be in general position, Ψ = supk Ψk.
Then

(a) τ(Ψ) ≤ τ(Ψ1, . . . , Ψn);

(b) τ(Ψ1, . . . , Ψn) ≥ |P (z0)|−n
∏
k |Ψk(z

0)| for all z0 ∈ D∗, the function

P being defined by (14).

P r o o f. Since
Ψ(z)

Ψk(z)
≤ 1 ∀z 6= 0,

statement (a) follows from Theorem A.
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Statement (b) results from Proposition 3 exactly as the statement of
Theorem 1 does.

3.Geometric interpretation. In this section we study the masses τ(Ψ)
of indicators Ψ ∈ I0 by means of their convex images Exp∗ Ψ ∈ CNVI−(Rn−).

Let V ∈ PSHc−(rD) ∩C2(rD), r < 1, and v = Exp∗ V ∈ CNVI−((R− +
log r)n). Since

∂2V (z)

∂zj∂zk
=

1

4zjzk
·
∂2v(t)

∂tj∂tk

∣∣∣∣
t=Log(z)

, z ∈ rD∗,

we have

det

(
∂2V (z)

∂zj∂zk

)
= 4−n|z1 . . . zn|

−2 det

(
∂2v(t)

∂tj∂tk

)∣∣∣∣
t=Log(z)

.

By setting zj = exp{tj + iθj}, 0 ≤ θ ≤ 2π, we get βn(z) = |z1 . . . zn|
2dt dθ,

so

(20) (ddcV )n = n!

(
2

π

)n
det

(
∂2V

∂zj∂zk

)
βn =

n!

(2π)n
det

(
∂2v

∂tj∂tk

)
dt dθ.

Every function U ∈ PSHc−(D) ∩ L∞(D) is the limit of a decreasing se-
quence of functions Ul ∈ PSHc

−(E)∩C2(E) on an n-circled domain E ⊂⊂ D,
and by the convergence theorem for the complex Monge–Ampère operators,

(21) (ddcUl)
n|E → (ddcU)n|E .

On the other hand, for ul = Exp∗ Ul and u = Exp∗ U ,

(22) det

(
∂2ul
∂tj∂tk

)
dt

∣∣∣∣
Log(D∗∩E)

→ MA[u]

∣∣∣∣
Log(D∗∩E)

,

the real Monge–Ampère operator of u (see [16]).
Since (ddcUl)

n and (ddcU)n cannot charge pluripolar sets, (20) with
V = Ul and (21), (22) imply

(ddcU)n(E) = n! (2π)−nMA[u] dθ (Log(E) × [0, 2π]n)

for any n-circled Borel set E ⊂ D, i.e.

(23) (ddcU)n(E) = n!MA[u](Log(E)).

This relation allows us to calculate τ(Ψ) by using the technique of real
Monge–Ampère operators in R

n (see [16]).
Let Ψ ∈ I. Consider the set

(24) BΨ = {a ∈ R
n
+ : 〈a, t〉 ≤ Exp∗ Ψ(t) ∀t ∈ R

n
−}

and define

(25) ΘΨ = Rn+ \BΨ .
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Clearly, the set BΨ is convex, so Exp∗ Ψ is the restriction of its support
function to R

n
−. If Ψ ∈ I0, the set ΘΨ is bounded. Indeed, a ∈ ΘΨ if and only

if 〈a, t0〉 ≥ Exp∗ Ψ(t0) for some t0 ∈ R
n
−, which implies |aj | ≤ |Exp∗ Ψ(t0)/t0j |

for all j. By Proposition 1(a), |Exp∗ Ψ(t0)| ≤ νj |tj | and therefore |aj | ≤ νj
for all j.

Given a set F ⊂ R
n, we denote its Euclidean volume by Vol(F ).

Theorem 3. For any indicator Ψ ∈ I0, we have the relation

(26) τ(Ψ) = n! Vol(ΘΨ )

with the set ΘΨ given by (24) and (25).

P r o o f. Define U(z) = sup {Ψ(z),−1} ∈ PSHc−(D)∩C(D), u = Exp∗ U
∈ CNVI−(Rn−). Since U(z) = Ψ(z) near ∂D,

τ(Ψ) =
\
D

(ddcU)n.

Furthermore, as (ddcU)n = 0 outside the set E = {z ∈ D : Ψ(z) = −1},

(27) τ(Ψ) =
\
E

(ddcU)n.

In view of (23),

(28)
\
E

(ddcU)n = n!
\

Log(E)

MA[u].

As was shown in [16], for any convex function v in a domain Ω ⊂ R
n,

(29)
\
F

MA[v] = Vol(ω(F, v)) ∀F ⊂ Ω,

where

ω(F, v) =
⋃

t0∈F

{a ∈ R
n : v(t) ≥ v(t0) + 〈a, t− t0〉 ∀t ∈ Ω}

is the gradient image of the set F for the surface {y = v(x) : x ∈ Ω}.
We claim that

(30) ΘΨ = ω(Log(E), u).

Observe that

ΘΨ = {a ∈ Rn+ : sup
ψ(t)=−1

〈a, t〉 ≥ −1} where ψ = Exp∗ Ψ .

If a ∈ ω(Log(E), u), then for some t0 ∈ R
n
− with ψ(t0) = 1 we have

〈a, t0〉 ≥ 〈a, t〉 for all t ∈ R
n
− such that ψ(t) < −1. Taking here tj → −∞ we

get aj ≥ 0, i.e. a ∈ Rn+. Moreover, 〈a, t0〉 ≥ 〈a, t〉 − 1 − ψ(t) for all t ∈ R
n
−

with ψ(t) > −1, and letting t → 0 we derive 〈a, t0〉 ≥ −1. Therefore, a ∈ ΘΨ
and ΘΨ ⊃ ω(Log(E), u).
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Now we prove the converse inclusion. If a ∈ ΘΨ ∩ R
n
+, then

sup{〈a, t0〉 : t0 ∈ Log(E)} ≥ −1.

Let t be such that ψ(t) = −δ > −1. Then t/δ ∈ Log(E) and thus

〈a, t〉 − 1 − ψ(t) = δ〈a, t/δ〉 − 1 + δ ≤ δ sup
t0∈Log(E)

〈a, t0〉 − 1 + δ

≤ sup
t0∈Log(E)

〈a, t0〉 = sup
z0∈E

〈a,Log(z0)〉.

Since E is compact, the latter supremum is attained at some point ẑ0. Fur-
thermore, ẑ0 ∈ E∩D∗ because ak 6= 0, 1 ≤ k ≤ n. Hence supt0∈Log(E)〈a, t

0〉

= 〈a, t̂0〉 with t̂0 = Log(z0) ∈ R
n
−, so that a ∈ ω(Log(E), u) and ΘΨ ∩R

n
+ ⊂

ω(Log(E), u). Since ω(Log(E), u) is closed, this implies ΘΨ = ω(Log(E), u),
and (30) follows.

Now relation (26) is a consequence of (27)–(30). The theorem is proved.

Note that the value τ(Ψ1, . . . , Ψn) can also be expressed in geometric
terms. Namely, if Ψ1, . . . , Ψn ∈ I0, the polarization formula (19) gives us, by
Theorem 3,

τ(Ψ1, . . . , Ψn) = (−1)n
n∑

j=1

(−1)j
∑

1≤i1<...<ij≤n

Vol(Θ∑
k Ψjk

).

We can also give an interpretation for the bound (17). Write AΨ from
(16) as

(31) AΨ = sup
a∈Rn

+

|ψ(−a)|n

a1 . . . an
= sup
a∈Rn

+

|ψ(−a/a1) . . . ψ(−a/an)|,

where ψ = Exp∗ Ψ . For any a ∈ R
n
+, the point a(j) whose jth coordinate

equals |ψ(−a/aj)| and the others are zero, has the property 〈a(j),−a〉 =
ψ(−a). This remains true for every convex combination

∑
̺ja

(j), and thus
r
∑
̺ja

(j) ∈ ΘΨ with any r ∈ [0, 1]. Since (n!)−1|ψ(−a/a1) . . . ψ(−a/an)| is
the volume of the simplex generated by the points 0, a(1), . . . , a(n), we see
from (31) that (n!)−1AΨ is the supremum of the volumes of all simplices
contained in ΘΨ .

Moreover, (n!)−1[ν(Ψ, 0)]n is the volume of the simplex

{a ∈ Rn+ : 〈a, (1, . . . , 1)〉 ≤ ν(Ψ, 0)} ⊂ ΘΨ .

This is a geometric description for the “standard” bound τ(Ψ) ≥ [ν(Ψ, 0)]n.

4. Singularities of plurisubharmonic functions.Let u be a plurisub-
harmonic function in a domain Ω ⊂ C

n, and ν(u, x, a) be its directional
Lelong number (3) at x ∈ Ω with respect to a ∈ R

n
+. Fix a point x. It is
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known [5] that the function a 7→ ν(u, x, a) is concave on R
n
+. So, the function

ψu,x(t) := −ν(u, x,−t), t ∈ R
n
−,

belongs to CNVI−(Rn−) and thus

Ψu,x := Log∗ ψu,x ∈ PSHc
−(D).

Moreover, due to the positive homogeneity of ν(u, x, a) in a, Ψu,x ∈ I. The
function Ψu,x was introduced in [15] and called the (local) indicator of u
at x. According to (3),

Ψu,x(z) = lim
R→∞

R−1 sup{u(y) : |yk − xk| ≤ |zk|
R, 1 ≤ k ≤ n}

= lim
R→∞

R−1 1

(2π)n

\
[0,2π]n

u(xk + |zk|
Reiθk) dθ1 . . . dθn.

Clearly, Ψu,x ≡ 0 if and only if ν(u, x) = 0. It is easy to see that ΨΦ,0 = Φ
for any Φ ∈ I. In particular,

(32) ν(u, x, a) = ν(Ψu,x, 0, a) = −Ψu,x(Exp(−a)) ∀a ∈ R
n
+.

So, the results of the previous sections can be applied to study directional
Lelong numbers of arbitrary plurisubharmonic functions.

Proposition 5 (cf. [7], Prop. 5.3). For any u ∈ PSH(Ω),

ν(u, x, a) ≥ ν(u, x, b)min
k

ak
bk

∀x ∈ Ω, ∀a, b ∈ R
n
+.

P r o o f. In view of (32), this follows from Proposition 3.

For r ∈ R
n
+ and z ∈ C

n, we set r−1 = (r−1
1 , . . . , r−1

n ) and r · z =
(r1z1, . . . , rnzn).

Proposition 6 ([15]). Any function u ∈ PSH(Ω) has the bound

(33) u(z) ≤ Ψu,x(r
−1 · z) + sup {u(y) : y ∈ Dr(x)}

for all z ∈ Dr(x) = {y : |yk − xk| ≤ rk, 1 ≤ k ≤ n} ⊂⊂ Ω.

P r o o f. Assume for simplicity x = 0, Dr(0) = Dr.

Consider the function v(z) = u(r · z) − sup{u(y) : y ∈ Dr} ∈ PSH−(D).
The function gv(R, t) := sup{v(z) : |zk| ≤ exp{Rtk}, 1 ≤ k ≤ n} is convex
in R > 0 and t ∈ R

n
−, so as R→ ∞,

(34)
gv(R, t) − gv(R1, t)

R−R1
ր ψv,0(t),

where ψv,0 = Exp∗ Ψv,0.

For R = 1 and R1 → 0, (34) gives us gv(1, t) ≤ ψv,0(t) and thus (33).
The proposition is proved.
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Let Ωk(x) be the connected component of the set Ω∩{z ∈ C
n : zj =xj

∀j 6= k} containing the point x. If for some x ∈ Ω, u|Ωk(x) 6≡ −∞ for all k,
then Ψu,x ∈ I0. For example, this is fulfilled for u ∈ PSH(Ω,x).

If u ∈ PSH(Ω,x), the measure (ddcu)n is defined on Ω. Its residual mass
at x will be denoted by τ(u, x):

τ(u, x) = (ddcu)n|{x}.

The indicator Ψu,x of such a function belongs to the class I0. Define

N(u, x) = τ(Ψu,x).

Proposition 7 ([15], Th. 1). If u ∈ PSH(Ω,x), then τ(u, x) ≥ N(u, x).

P r o o f. Inequality (33) implies

lim sup
z→x

Ψu,x(r
−1 · (z − x))

u(z)
≤ 1,

and since

lim
y→0

Ψu,x(r
−1 · y))

Ψu,x(y)
= 1 ∀r ∈ R

n
+,

the statement follows from Theorem A.

So, to estimate τ(u, x) we may apply the bounds for τ(Ψu,x) from the
previous section.

Theorem 4. If u ∈ PSH(Ω,x), then

τ(u, x) ≥
[ν(u, x, a)]n

a1 . . . an
∀a ∈ R

n
+;

in other words, τ(u, x) ≥ Au,x where Au,x = AΨu,x
is defined by (16).

P r o o f. The result follows from Theorem 1 and Proposition 7.

Let now u1, . . . , un ∈ PSH(Ω) be in general position in the sense of
Definition 1. Then the current

∧
k dd

cuk is defined on Ω ([2], Th. 2.5); denote
its residual mass at a point x by τ(u1, . . . , un;x). Moreover, the n-tuple of
their indicators Ψuk,x is also in general position, which implies

∧

k

ddcΨuk,x = τ(Ψu1,x, . . . , Ψun,x) δ(0)

(Proposition 4).

In view of Theorem A and Proposition 6 we have

Theorem 5. The residual mass τ(u1, . . . , un;x) of the current
∧
k dd

cuk
has the bound τ(u1, . . . , un;x) ≥ τ(Ψu1,x, . . . , Ψun,x).

Now Theorems 2 and 5 give us
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Theorem 6.

(35) τ(u1, . . . , un;x) ≥

∏
j ν(uj , x, a)

a1 . . . an
∀a ∈ R

n
+.

Remark. For a1 = . . . = an, inequality (35) is proved in [2], Cor. 5.10.

Finally, by combination of Proposition 7 and Theorem 3 we get

Theorem 7. For any function u ∈ PSH(Ω,x),

(36) τ(u, x) ≥ N(u, x) = n!V (Θu,x)

with

Θu,x = {b ∈ R
n
+ : sup

∑
ak=1

[ν(u, x, a) − 〈b, a〉] ≥ 0}.

Remark on holomorphic mappings. Let f = (f1, . . . , fn) be a holomor-
phic mapping of a neighbourhood Ω of the origin into C

n and f(0) = 0
be its isolated zero. Then in a subdomain Ω′ ⊂ Ω the zero sets Aj of the
functions fj satisfy the conditions

A1 ∩ . . . ∩An ∩Ω′ = {0}, codimAj1 ∩ . . . ∩Ajk ∩Ω′ ≥ k

for all choices of indices j1<. . .<jk, k≤n. Set u=log |f |, uj=log |fj |. It is
known that τ(u, 0) = τ(u1, . . . , un; 0) = mf , the multiplicity of f at 0. For
a = (1, . . . , 1), ν(uj , 0, a) equals mj , the multiplicity of fj at 0. Therefore,
(35) with a = (1, . . . , 1) gives us the standard bound mf ≥ m1 . . .mn.

For aj rational, (35) is the known estimate of mf via the multiplicities
of weighted homogeneous initial Taylor polynomials for fj (see e.g. [1], Th.
22.7). Indeed, due to the positive homogeneity of the directional Lelong
numbers, we can take aj ∈ Z

n
+. Then by (7), ν(uj , 0, a) is equal to the

multiplicity of the function f
(a)
j (z) = fj(z

a).

We also mention that (35) gives a lower bound for the Milnor number
µ(F, 0) of a singular point 0 of a holomorphic function F (i.e. for the multi-
plicity of the isolated zero of the mapping f = gradF at 0) in terms of the
indices I(F, 0, a) (see (7)) of F . Since I(∂F/∂zk, 0, a) ≥ I(F, 0, a) − ak, we
have

µ(F, 0) ≥
∏

1≤k≤n

(
I(F, 0, a)

ak
− 1

)
.

Finally, it follows from (7) that the set Rn+ \Θu,0 is the Newton
polyhedron for the system (f1, . . . , fn) at 0 (see Introduction). Therefore,
n!V (Θu,0) is the Newton number of (f1, . . . , fn) at 0, and (36) becomes
the bound for mf due to A. G. Kouchnirenko (see [1], Th. 22.8). So, for
any plurisubharmonic function u, we will call the value N(u, x) the Newton

number of u at x.
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5. Indicators as logarithmic tangents. Let u ∈ PSH(Ω, 0), u(0) =
−∞. We will consider the following problem: under what conditions on u,
does its residual measure equal its Newton number?

Of course, the relation

(37) lim
z→0

u(z)

Ψu,0(z)
= 1

is sufficient, but it seems to be too restrictive. On the other hand, as the
example u(z) = log(|z1 + z2|

2 + |z2|
4) shows, the condition

lim
λ→0

u(λz)

Ψu,0(λz)
= 1 ∀z ∈ C

n \ {0}

does not guarantee the equality τ(u, 0) = N(u, 0).

To weaken (37) we first give another description for the local indicators.
In [6], a compact family of plurisubharmonic functions

ur(z) = u(rz) − sup{u(y) : |y| < r}, r > 0,

was considered and the limit sets, as r→0, of such families were described.
In particular, the limit set need not consist of a single function, so a plurisub-
harmonic function can have several (and thus infinitely many) tangents.Here
we consider another family generated by a plurisubharmonic function u.

Given m ∈ N and z ∈ C
n, write zm = (zm1 , . . . , z

m
n ) and set

Tmu(z) = m−1u(zm).

Clearly, Tmu ∈ PSH(Ω ∩ D) and Tmu ∈ PSH−(Dr) for any r ∈ R
n
+ ∩ D∗

(i.e. 0 < rk < 1) for all m ≥ m0(r).

Proposition 8. The family {Tmu}m≥m0(r) is compact in L1
loc(Dr).

P r o o f. Let M(v, ̺) denote the mean value of a function v over the set
{z : |zk| = ̺k, 1 ≤ k ≤ n}, 0 < ̺k ≤ rk. Then M(Tmu, ̺) = m−1M(u, ̺m).
The relation

(38) m−1M(u, ̺m) ր Ψu,0(̺) as m→ ∞

implies M(Tmu, ̺) ≥ M(Tm0
u, ̺). Since Tmu ≤ 0 in Dr, this proves the

compactness.

Theorem 8. (a) Tmu→ Ψu,0 in L1
loc(D);

(b) if u ∈ PSH(Ω, 0) then (ddcTmu)
n → τ(u, 0) δ(0).

P r o o f. Let g be a limit point of the sequence Tmu, that is, Tms
u → g

as s → ∞ for some sequence ms. For the function v(z) = sup{u(y) : |yk| ≤
|zk|, 1 ≤ k ≤ n} and any r ∈ R

n
+ ∩D∗ we have, by (33),

Tmu(z) ≤ (Tmv) (z) ≤ Ψu,0(r
−1 · z)
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and thus

(39) g(z) ≤ Ψu,0(z) ∀z ∈ D.

On the other hand, the convergence of Tms
u to g in L1 impliesM(Tms

u,r)
→M(g, r) ([3], Prop. 4.1.10). By (38), M(Tms

u, r) → Ψu,0(r), so M(g, r) =
Ψu,0(r) for every r ∈ Rn+ ∩D∗. Comparison with (39) gives us g ≡ Ψu,0, and
the statement (a) follows.

To prove (b) we observe that for each α ∈ (0, 1),\
αD

(ddcTmu)
n =

\
αmD

(ddcu)n → τ(u, 0)

as m→ ∞, and for 0 < α < β < 1,

lim
m→∞

\
βD\αD

(ddcTmu)
n = lim

m→∞

[ \
βmD

(ddcu)n −
\

αmD

(ddcu)n
]

= 0.

The theorem is proved.

So, Theorem 8 shows us that τ(u, 0) = N(u, 0) if and only if (ddcTmu)
n

→ (ddcΨu,0)
n. Now we are going to find conditions for this convergence.

Recall the definition of the inner Cn−1-capacity introduced in [17]: for
any Borel subset E of a domain ω,

Cn−1(E,ω) = sup
{ \
E

(ddcv)n−1 ∧ β1 : v ∈ PSH(ω), 0 < v < 1
}
.

It was shown in [17] that convergence of uniformly bounded plurisubhar-
monic functions vj to v in Cn−1-capacity implies (ddcvj)

n → (ddcv)n. In
our situation, neither Tmu nor Ψu,0 are bounded, so we will modify the
construction from [17].

Set

E(u,m, δ) =

{
z ∈ D \ {0} :

Tmu(z)

Ψu,0(z)
> 1 + δ

}
, m ∈ N, δ > 0.

Theorem 9. Let u ∈ PSH(Ω, 0), ̺ ∈ (0, 1/4), N > 0, and a sequence

ms ∈ N be such that

1) u(z) > −Nms on a neighbourhood of the sphere ∂B̺ms , for each s;

2) lims→∞ Cn−1(B̺ ∩ E(u,ms, δ),D) = 0 for all δ > 0.

Then (ddcTmu)
n → (ddcΨu,0)

n on D.

P r o o f. Without loss of generality we can take u ∈ PSH−(D, 0). Con-
sider the functions vs(z) = max {Tms

u(z),−N} and v = max {Ψu,0(z),−N}.
We have vs = Tms

u and v = Ψu,0 on a neighbourhood of ∂B̺, vs = v = −N
on a neighbourhood of 0, vs ≤ v on B̺, and vs ≥ (1+δ)v on B̺\E(u,ms, δ).
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We will prove that

(40) (ddcvs)
k ∧ (ddcv)l → (ddcv)k+l

for k = 1, . . . , n, l = 0, . . . , n − k. This will give us the statement of the
theorem. Indeed, by Theorem 8,\

B̺

(ddcvs)
n =

\
B̺

(ddcTms
u)n → τ(u, 0)

while \
B̺

(ddcv)n =
\
B̺

(ddcΨu,0)
n = N(u, 0),

and (40) with k = n proves the coincidence of the right-hand sides of these
relations and thus the convergence of (ddcTmu)

n to (ddcΨu,0)
n.

We prove (40) by induction on k. Let k = 1, 0 ≤ l ≤ n − 1, δ > 0. For
any test form φ ∈ Dn−l−1,n−l−1(B̺),
∣∣∣
\
ddcvs ∧ (ddcv)l ∧ φ−

\
(ddcv)l+1 ∧ φ

∣∣∣

=
∣∣∣
\
(v − vs)(dd

cv)l ∧ ddcφ
∣∣∣ ≤ Cφ

\
B̺

(v − vs)(dd
cv)l ∧ βn−l

= Cφ

[ \
B̺\Es,δ

+
\

B̺∩Es,δ

]
(v − vs)(dd

cv)l ∧ βn−l = Cφ[I1(s, δ) + I2(s, δ)],

where, for brevity, Es,δ = E(u,ms, δ).

We have

I1(s, δ) ≤ δ
\
B̺

|v|(ddcv)l ∧ βn−l ≤ Cδ

with a constant C independent of s, and

I2(s, δ) ≤ N
\

B̺∩Es,δ

(ddcv)l ∧ βn−l

≤ C(N, ̺, l) · Cn−1(B̺ ∩ Es,δ,D) → 0.

Since δ > 0 is arbitrary, this proves (40) for k = 1.

Suppose that we have (40) for k = j and 0 ≤ l ≤ n − j. For φ ∈
Dn−l−j,n−l(B̺),\
(ddcvs)

j+1 ∧ (ddcv)l ∧ φ =
\
(ddcvs)

j ∧ (ddcv)l+1 ∧ φ

+
\
[(ddcvs)

j+1 ∧ (ddcv)l − (ddcvs)
j ∧ (ddcv)l+1] ∧ φ.

The first integral on the right-hand side converges to
T
(ddcv)l+j+1 ∧ φ by

the induction assumption. The second integral can be estimated similarly
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to the case k = 1:∣∣∣
\
[(ddcvs)

j+1 ∧ (ddcv)l − (ddcvs)
j ∧ (ddcv)l+1] ∧ φ

∣∣∣

≤ Cφ

[ \
B̺\Es,δ

+
\

B̺∩Es,δ

]
(v − vs)(dd

cvs)
j(ddcv)l ∧ βn−j−l

= Cφ[I3(s, δ) + I4(s, δ)].

Since (ddcvs)
j ∧ (ddcv)l → (ddcv)j+l, we have\

(ddcvs)
j(ddcv)l ∧ βn−j−l ≤ C ∀s

and

I3(s, δ) ≤ δ
\
B̺

|v|(ddcvs)
j(ddcv)l ∧ βn−j−l ≤ CNδ.

Similarly,

I4(s, δ) ≤ N
\

B̺∩Es,δ

(ddcvs)
j(ddcv)l ∧ βn−j−l

≤ C(N, ̺, j, l) · Cn−1(B̺ ∩ Es,δ,D) → 0,

and (40) is proved.
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