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Newton numbers and residual measures
of plurisubharmonic functions

by ALEXANDER RASHKOVSKII (Kharkov)

Abstract. We study the masses charged by (ddu)™ at isolated singularity points of
plurisubharmonic functions . This is done by means of the local indicators of plurisubhar-
monic functions introduced in [15]. As a consequence, bounds for the masses are obtained
in terms of the directional Lelong numbers of u, and the notion of the Newton number
for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also
describe the local indicator of u as the logarithmic tangent to w.

1. Introduction. The principal information on local behaviour of a
subharmonic function u in the complex plane can be obtained by studying
its Riesz measure p,,. If u has a logarithmic singularity at a point x, the main
term of its asymptotics near x is u, ({z})log|z — z|. For plurisubharmonic
functions w in C", n > 1, the situation is not so simple. The local properties
of u are controlled by the current dd°u (we use the notation d = 9+9, d° =
(0—0)/(2mi)) which cannot charge isolated points. The trace measure o, =
dd°u N\ B,—1 of this current is precisely the Riesz measure of u; here 3, =
(p!)~(w/2)P(dd?|z|?)P is the volume element of CP. A significant role is
played by the Lelong numbers v(u,x) of the function u at points x:

v(u,z) = lin% (Tgn,2T2n72)710'u[B2n(1’,T)],

where 7o, is the volume of the unit ball B#(0,1) of CP. If v(u,z) > 0
then v(u,x)log |z — x| gives an upper bound for u(z) near z; however, the
difference between these two functions can be comparable to log|z — x|.
Another important object generated by the current ddu is the Monge—
Ampere measure (dd“u)". For the definition and basic facts on the complex
Monge-Ampere operator (dd®)™ and Lelong numbers, we refer the reader to
the books [12], [14] and [8], and for more advanced results, to [2]. Here we
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mention that (dd°u)™ cannot be defined for all plurisubharmonic functions u,
but if ue PSH(2) N LS (2 \ K) with K CC {2, then (dd°u)™ is well defined
as a positive closed current of bidimension (0,0) (or, which is the same, as
a positive measure) on {2. This measure cannot charge pluripolar subsets of
2\ K, and it can have positive masses at points of K, e.g. (dd€log|z|)" =
5(0), the Dirac measure at 0, |z| = (3_]z;|%)*/2. More generally, if f : 2 —
CN, N > n, is a holomorphic mapping with isolated zeros at z(*) €
of multiplicities my, then (dd®log|f|)"| ) = ms d(z*)). So, the masses of
(ddu)™ at isolated singularity points of u (the residual measures of u) are
of especial importance.

Let a plurisubharmonic function u belong to Lo (2 \ {x}); its residual
mass at the point z will be denoted by 7(u, x):

T(u, ) = (dd“u)" |3}

The problem under consideration is to estimate this value.
The following well known relation compares 7(u, x) with the Lelong num-
ber v(u,x):

(1) T(u,x) > [v(u,z)]".

Equality in (1) means that, roughly speaking, the function u(z) behaves near
x as v(u,x)log|z — x|. In many cases however relation (1) is not optimal;
e.g. for

(2) u(z) = sup{log ]zl\kl,log ]22]k2}, k1 > ko,

we have 7(u,0) = ki1ky > k2 = [v(u,0)]?.

As follows from the Comparison Theorem due to Demailly (see Theo-
rem A below), the residual mass is determined by asymptotic behaviour of
the function near its singularity, so one needs to find appropriate character-
istics for the behaviour. To this end, a notion of local indicator was proposed
in [15]. Note that v(u,x) can be calculated as

v(u,z) = nglmr_lsup{v(z) dz—x| <€} = TEIElOOr_lM(u,x,T),

where M(u,x,r) is the mean value of u over the sphere |z — x| = €” (see
[4]). In [5], the refined, or directional, Lelong numbers were introduced as

(3)  v(u,xz,a) = lim 7 sup{v(z): |z —ap| < e, 1<k <n}
r——00

= lim r 'g(u,z,ra),
r——00

where a = (ay,...,a,) € R} and g(u,z,b) is the mean value of u over
the set {z : |z — x| = expbg, 1 < k < n}. For z fixed, the collection
{v(u,z,a)}taery gives a more detailed information about the function u
near x than v(u, z) does, so one can expect a more precise bound for 7(u, x)
in terms of the directional Lelong numbers. It was noticed already in [5]
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that the mean value of u over {z : |z — x| = |expyx|, 1 < k < n} is
a plurisubharmonic function of y € C", Re yr < 0, so a — v(u,z,a) is
a concave function on R}. The idea was developed in [15] where a local
indicator ¥, , of the function u at = was constructed as a plurisubharmonic
function in the unit polydisk D = {y € C" : |yx| < 1, 1 < k < n}, given by
the formula

Ve (y) = —v(u, 2, (= log [yxl)).

It is the largest negative plurisubharmonic function in D whose direc-
tional Lelong numbers at 0 coincide with those of u at z, (dd“¥, ;)" =
T(Wu,2,0)0(0), and finally,

(4) T(u,x) > 7(¥y 5,0),

so the singularity of u at x is controlled by its indicator ¥, ;.

Since 7(¥y,z,0) > V(W4 4,0)]" = [v(u,x)]”, (4) is a refinement of (1).
For the function u defined by (2), 7(¥y.0,0) = k1ko = 7(u,0) > [v(u,0)]2.

Being a function of quite a simple nature, the indicator can produce
effective bounds for residual measures of plurisubharmonic functions. In
Theorems 1-3 of the present paper we study the values N (u, z) := 7(¥, 4, 0),
the Newton numbers of u at x; the reason for this name is explained below.
We obtain, in particular, the following bound for 7(u,z) (Theorem 4):

v(u,z,a)”
T(U,.’L’)zi[ (w,,0)] Va € R ;
ay...0ay
it reduces to (1) when a; = ... = a, = 1. For n plurisubharmonic functions
Up,...,u, in general position (see the definition below), we estimate the

measure dd°¥,, » A...ANdd°¥,, , and prove a similar relation (Theorem 6):

Hj v(uj,z,a)

dduq A ... A ddup |y >
(5) “ Y ‘{}_ ai...an

Va € RY}.
The main tool used to obtain these bounds is the Comparison Theorem
due to Demailly. To formulate it we give the following

DEFINITION 1. A g-tuple of plurisubharmonic functions uy,.. ., u, is said
to be in general position if their unboundedness loci Aq,..., A, satisfy the
following condition: for all choices of indices j; < ... < jx, k < g, the
(2q — 2k 4 1)-dimensional Hausdorff measure of A;, N...N A, equals zero.

THEOREM A (Comparison Theorem, [2], Th. 5.9). Let n-tuples of pluri-

subharmonic functions uy,...,u, and vy,...,v, be in general position on a
neighbourhood of a point x € C™. Suppose that uj(x) = —oo, 1 < j < n,
and

lim sup U]—(Z)

=1; < oo.
zZ—XT u](Z) J
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Then
dd°vi A ... A ddcvn|{x} <Ul...l,ddui N\... N\ ddcun|{x}.

We also obtain a geometric interpretation for the value N(u,z) (Theo-
rem 7). Let @, , be the set of points b € R7 such that v(u,z,a) > (b,a) for
some a € RY}. Then

(6) T(u,x) > N(u,z) = n!Vol(O, ).

In many cases the volume of 6, , can be easily calculated, so (6) gives an
effective formula for N(u,x).

To illustrate these results, consider functions u=1log|f|, f=(f1,.-., fn)
being an equidimensional holomorphic mapping with an isolated zero at a
point x. It is probably the only class of functions whose residual measures
were studied in detail before. In this case, 7(u,x) equals m, the multiplicity
of f at x, and

(7) v(log |f|,z,a) = I(f,z,a) :=inf{(a,p) : p € w,}

where
e ]

(see [13]). For polynomials F' : C" — C, the value I(F,z,a) is a known
object (the index of F at x with respect to the weight a) used in number
theory (see e.g. [11]).

Relation (4) gives us m = 7(log|f|,z) > N(log|f|,x). In general, the
value N (log |f|,z) is not comparable to my ...m, with m; the multiplicity
of the function f;: for f(z) = (27 4 22,22) and x = 0, mmg =1 < 2 =
N(log|f|,z) = m while for f(2) = (2% + 22,23), N(log|f|,z) =2 < 3 =
mims < 6 = m. A sharper bound for m can be obtained from (5) with
uj = log|fj|, 1 < j < n. In this case, the left-hand side of (5) equals m,

and its right-hand side with a1 = ... = a, equals m;...m,. For both the
above examples of the mapping f, the supremum of the right-hand side of
(5) over a € R"} equals m. For ay,...,a, rational, relation (5) is a known

bound for m via the multiplicities of weighted homogeneous initial Taylor

polynomials of f; with respect to the weights (a1,...,ay) ([1], Th. 22.7).
Recall that the convex hull I, (f,z) of the set U {P+ R}, pEwW,, is

called the Newton polyhedron of (fi,..., f,) at z, the union F(f x) of the

compact faces of the boundary of Iy ( f, x) is called the Newton boundary

of (fi,..., fn) at x, and the value Ny, = n! Vol(I'_(f,z)) with I'_(f,z) =

{Mt:te F(f, x), 0 < X <1} is called the Newton number of (f1,..., fn) at

x (see [10], [1]). The relation

(8) m 2> Nyg
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was established by A. G. Kouchnirenko [9] (see also [1], Th. 22.8). Since
Olog | f|,« = I'-(f,z), (8) is a particular case of (6). It is the reason for calling
N (u,z) the Newton number of u at x.

These observations show that the technique of plurisubharmonic func-
tions (and local indicators in particular) is quite a powerful tool to produce,
in a unified and simple way, sharp bounds for the multiplicities of holomor-
phic mappings.

Finally, we obtain a description for the indicator ¥, ,(z) as the weak
limit of the functions m~tu(xy + 21", ..., 2, + 2™) as m — oo (Theorem 8),
so ¥, , can be viewed as the tangent (in the logarithmic coordinates) for
the function v at x. Using this approach we obtain a sufficient condition,
in terms of C,,_1-capacity, for the residual mass 7(u, z) to coincide with the
Newton number of u at x (Theorem 9).

2. Indicators and their masses. We will use the following notations.
For a domain (2 of C", PSH({2) will denote the class of all plurisubhar-
monic functions on 2, PSH_({2) the subclass of nonpositive functions, and
PSH(£2,z) = PSH(2) N LS. (2 \ {z}) with z € £2.

Let D = {z € C" : |z] < 1, 1 < k < n} be the unit polydisk,
D*={2z€D:z-...-z, # 0}, and R} = {t € R" : +t;, > 0}. By
CNVI_(R™) we denote the collection of all nonpositive convex functions on
R"™ increasing in each variable t;. The mapping Log : D* — R” is de-
fined as Log(z) = (log|z],...,log|z,|), and Exp : R® — D* is given by
Exp(t) = (expt1,...,expty).

A function u on D* is called n-circled if

(9) ’LL(Z) :u(|zl|,...,|zn|),

i.e. if Log™ Exp® v = u. Any n-circled function v € PSH_(D*) has a unique
extension to the whole polydisk D keeping the property (9). The class of
such functions will be denoted by PSH? (D). The cones CNVI_(R") and
PSH® (D) are isomorphic: v € PSH® (D) < Exp*u € CNVI_(R"), h €
CNVI_(R"™) < Log" h € PSHE (D).

DEFINITION 2 (see [15]). A function ¥ € PSHC (D) is called an indicator
if its convex image Exp* ¥ satisfies

(10) Exp*¥(ct) = c Exp*¥(t) Ve>0, VteR™.

The collection of all indicators will be denoted by I. It is a convex subcone
of PSH® (D), closed in D’ (or equivalently, in L{ _(D)). Moreover, if ¥y,
Uy € I then also sup{¥;,¥} € I.

Every indicator is locally bounded in D*. In what follows we will often
consider indicators locally bounded in D \ {0}; the class of such indicators
will be denoted by Iy: Iy = I NPSH(D,0).
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An example of indicators can be given by the functions

QOQ(Z) = Sl]ip ag IOg ’Zk’7 ap > 07

(“simple” indicators). If all a; > 0, then ¢, € .
PROPOSITION 1. Let W € Iy, ¥ #0. Then

(a) there exist reals v1,...,v, > 0 such that
(11) U(z) > p,(2) VzeD
with ¢, the simple indicator corresponding to v = (v1,...,vy);

(b) ¥ € C(D\{0}), ¥lop = 0;
(c) the directional Lelong numbers v(¥,0,a) of ¥ at the origin with re-
spect to a € R (see (3)) are

(12) v(¥,0,a) = —¥(Exp(—a)),

and its Lelong number is v(¥,0) = —W(e™!, ... e71);
(d) (dd“@)™ =0 on D\ {0}.

Proof. Let ¥ (zx) denote the restriction of the indicator ¥(z) to the disk
DW®) = {> € D: 2z =0Vj # k}. By monotonicity of Exp* ¥, ¥(z) > W (2x).
Since ¥, is a nonzero indicator in the disk D*) c C, ¥ (z,) = vy log |2 |
with some vy > 0, and (a) follows.

As Exp*¥ € C(R™), we have ¥ € C(D*). Its continuity in D \ {0}
can be shown by induction on n. For n = 1 it is obvious, so assuming it
for n < I, consider any point z° # 0 with z? = 0. Let z* — 2% then
the points z° with 27 = 0 and 23, = z;,, m # j, also tend to 29, and by
the induction hypothesis, ¥(z°) — ¥(z°) = ¥(z°). So, liminf, . ¥(z%) >
lim, o ¥(2%)=¥(2°), i.e. ¥ is lower semicontinuous and hence continuous
at 2°. Continuity of ¥ up todD and the boundary condition follow from (11).

Equality (12) is an immediate consequence of the definition of the direc-
tional Lelong numbers (3) and the homogeneity condition (10). The relation
v(u,x) = v(u,z,(1,...,1)) [5] gives us the desired expression for v(¥,0).

Finally, statement (d) follows from the homogeneity condition (10) (see
[15], Proposition 4).

For functions ¥ € Iy, the complex Monge-Ampere operator (dd°¥)™ is
well defined and gives a nonnegative measure on D. By Proposition 1,

(ddw)™ = 7(¥)5(0)

with some constant 7(¥) > 0 which is strictly positive unless ¥ = 0. In this
section, we will study the value 7(¥).
An upper bound for 7(¥) is given by
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PROPOSITION 2. For every W € I,

(13) T(&p) S Z I
with vy, ...,vy, as in Proposition 1(a).
Proof. Since all v, > 0, the simple indicator ¢, is in Iy, and (11)
implies
4
lim sup (2) <1,
z—0 (;DV(Z)

so (13) follows by Theorem A.

To obtain a lower bound for 7(¥), we need a relation between ¥(z) and
¥(z°) for z,2° € D. Define

log |z |
®(z,2") = sup ,
K [loglzp]|

When considered as a function of z with 2° fixed, &(z,2°) is in I,.

PROPOSITION 3. For any ¥ € I, we have ¥(z) < |¥(2°)|®(z, 2°) for all
z€ D, 2° € D*.

Proof. For a fixed 2° € D* and t°=Log(2"), define u= ¥ (2°)|~! Exp* ¥
and v = Exp* @ = supy, t;/|t?]. It suffices to establish the inequality u(t) <
v(t) for all ¢ € R™ with t% <tp <0,1<k<n. Given such a t, define
Ao = [1+v(t)]7t. Since {t® + A(t —t°) : 0 < X\ < \g} C R”, the functions
ur(A) = u(t® + At — t%)) and v, (\) = v(t° + A(t — t9)) are well defined on
[0, A\o]. Furthermore, u; is convex and v; is linear there, u:(0) = v;(0) = —1,
ug(Ng) < ve(Ag) = 0. This implies uz(A) < ve(A) for all A € [0,)]. In
particular, as Ao > 1, u(t) = us(1) < ve(1) = v(t), which completes the
proof.

zeD, 2 e D*.

Consider now the function
(14) P(z)=— [ Noglzll*" e 1.
1<k<n

THEOREM 1. The Monge—Ampére mass T(¥) of any indicator ¥ € Iy has
the bound
()"
1 v) >
(15) ) > |5

where the function P is defined by (14).

Proof. By Proposition 3,
v (z)
D(z, 29)

v20 e D*

<|w(z")| VzeD, 2°e D"

By Theorem A,
(dd°w)"™ < [@(2°)|"(dd°d(z, 2°))",
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and the statement follows from the fact that
(dd°®(z,2)" = ] Nog|=pll™" = |P(z")| "
1<k<n
REMARKS. 1. One can consider the value
¥(2)
P(z)

n

(16) Ay = sup
zeD

9

by Theorem 1,
(17) T(¥) > Ayg.

2. Let Ioppy ={¥ € Iy : 7(¥) < M}, M > 0. Then (15) gives a lower
bound for the class Iy a:

W(z) > MY"P(z) Vze D, YW e Iy

Let now ¥y,...,¥, € I bein general position in the sense of Definition 1.
Then the current A, dd°¥;, is well defined, as is (dd°¥)" with ¥ = sup,, .
Moreover, we have

PROPOSITION 4. If ¥,...,¥,, € I are in general position, then
(18) N\ ddT, =0 on D\ {0}.
k

Proof. For¥,,...,¥, € I, the statement follows from Proposition 1(d)
and the polarization formula

(19) /\ddcwk:(_;)"Z(_w S (ard )"
k k=1

j=1 1<i1<...<1;<n

When the only condition on {¥;} is to be in general position, we can
replace Wy(z) with ¥y n(2) = sup{¥(z), Nsup,log|z;|} € Io for which
A dd°Ui, n =0 on D\ {0}. Since ¥y, n \, ¥}, as N — oo, this gives us (18).

The mass of A\, dd°¥;, will be denoted by 7(¥1,...,%,).

THEOREM 2. Let ¥1,..., ¥, € I be in general position, ¥ = sup, V.
Then

(a) 7(¥) < 7(¥1,...,¥,);

(b) 7(¥1, ..., ) > | PRI, Wk (2°)| for all 2° € D*, the function
P being defined by (14).

Proof. Since

statement (a) follows from Theorem A.
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Statement (b) results from Proposition 3 exactly as the statement of
Theorem 1 does.

3. Geometric interpretation. In this section we study the masses 7(¥)
of indicators ¥ € Iy by means of their convex images Exp* ¥ € CNVI_(R").

Let V € PSH® (rD)NC?(rD), r <1, and v = Exp* V € CNVI_((R_ +
logr)™). Since

2 2
PV(z) _ 1 9% . zerD
82]‘82k 4ijk atjatk t=Log(z)
we have
5 2
ot <a V(_z)> 4y a2 det (a v(t)> :
azjazk atjatk t=Log(z)

By setting z; = exp{t; +i0;}, 0 <0 < 27, we get B,(2) = |21 ... 2,|2dt db,
)

2\" o2V n! 0%
2 ¢ n _ ' — _— n — .
(20) (ddV)"=mn <7T> det <8zj82k> B G det <8tj8tk> dt do
Every function U € PSH? (D) N L*(D) is the limit of a decreasing se-

quence of functions U, € PSH® (E)NC?(E) on an n-circled domain £ CC D,
and by the convergence theorem for the complex Monge—Ampére operators,

(21) (dd°Up)"| g — (dd°U)"|E.
On the other hand, for u; = Exp* U; and v = Exp* U,
62’&1
(22) det dt — MAu] ,
Ot 0t} Log(D*NE) Log(D*NE)

the real Monge-Ampere operator of u (see [16]).
Since (dd°U;)™ and (dd°U)™ cannot charge pluripolar sets, (20) with
V =U; and (21), (22) imply

(dd°U)"(E) = n! (27) " " MA[u] df (Log(E) x [0,27]")
for any n-circled Borel set E C D, i.e.
(23) (dd°U)"(E) = n! MA[u](Log(E)).

This relation allows us to calculate 7(¥) by using the technique of real
Monge-Ampere operators in R™ (see [16]).
Let ¥ € I. Consider the set

(24) By ={a € R} : (a,t) < Exp*"¥(t) Vt e R" }
and define
(25) Oy = R\ By



222 A. Rashkovskii

Clearly, the set By is convex, so Exp* ¥ is the restriction of its support
function to R™. If ¥ € I, the set Oy is bounded. Indeed, a € Oy if and only
if (a,t°) > Exp” ¥(t°) for some t° € R™, which implies |a;| < [Exp* (%) /t)]
for all j. By Proposition 1(a), [Exp* ¥ (t°)| < v;|t;| and therefore |a;| < v;
for all j.
Given a set I C R”, we denote its Euclidean volume by Vol(F).
THEOREM 3. For any indicator ¥ € Iy, we have the relation
(26) T(¥) = n! Vol(Oy)
with the set Oy given by (24) and (25).
Proof. Define U(z) = sup{¥(z), —1} € PSH® (D)NC(D), u = Exp* U
€ CNVI_(R™). Since U(z) = ¥(z) near 0D,

(@) = | (ddvU)".

D
Furthermore, as (dd°U)™ = 0 outside the set E = {z € D : ¥(z) = —1},
(27) (@) = \(dd°U)".
E
In view of (23),
(28) Vddv)"=nl | MA].
E Log(E)

As was shown in [16], for any convex function v in a domain 2 C R",
(29) | MAJ] = Vol(w(F,v)) VF C £,
F
where
wFv) = | J{a e R v(t) > v(t°) + (a,t — ) Vt € 2}
tOcF
is the gradient image of the set F' for the surface {y = v(z) : x € 2}.
We claim that
(30) Op = w(Log(E), u).
Observe that
Oy ={a€R}: sup (a,t)>—1} where 1t =Exp*V.
w(t)=—1
If @ € w(Log(E),u), then for some t° € R™ with ¥ (t°) = 1 we have
(a,t%) > (a,t) for all ¢t € R™ such that ¢(t) < —1. Taking here t; — —oco we
get a; > 0, i.e. a € R?. Moreover, (a,t’) > (a,t) — 1 —¢(t) for all t € R™
with ¢(t) > —1, and letting ¢ — 0 we derive (a,t’) > —1. Therefore, a € Oy
and Oy D w(Log(E),u).
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Now we prove the converse inclusion. If a € Oy NR’, then
sup{(a,t°) : t° € Log(E)} > —1.
Let ¢ be such that ¢(t) = —0 > —1. Then ¢/6 € Log(E) and thus
(a,t) —1 —(t) = 8{a,t/0) —1+6<6 sup (a,t°) —1+6

t0cLog(E)
< sup (a,1%) = sup (a,Log(z")).
tOeLog(E) 209€E

Since E is compact, the latter supremum is attained at some point z°. Fur-
thermore, 20 € END* because ag # 0, 1 < k < n. Hence sup;ocyoq(s) (@, t”)
= (a,1°) with £ = Log(2°) € R™, so that a € w(Log(E),u) and Oy NRY C
w(Log(E),u). Since w(Log(E),u) is closed, this implies Oy = w(Log(E), u),
and (30) follows.

Now relation (26) is a consequence of (27)—(30). The theorem is proved.

Note that the value 7(¥y,...,%,) can also be expressed in geometric
terms. Namely, if ¥y, ..., ¥, € Iy, the polarization formula (19) gives us, by
Theorem 3,

T, W) = (D" (1)) > Vol(Os, ).

j=1 1<i1<...<;<n

We can also give an interpretation for the bound (17). Write Ay from
(16) as

_ Y=ol _
(31) Ay = sup ————— = sup |[(—a/a1)...P(=a/an)],
acRy A1 ...0n a€RY
where 1) = Exp*¥. For any a € R?, the point a\¥) whose jth coordinate
equals [¢)(—a/a;)| and the others are zero, has the property (a(), —a) =
¥(—a). This remains true for every convex combination 3 g;ja’), and thus
r 0ja) € Og with any r € [0,1]. Since (n!)~!|¢(—a/ay)...v(—a/ay)] is
the volume of the simplex generated by the points 0,a(?), ..., a™, we see
from (31) that (n!)~'Ay is the supremum of the volumes of all simplices
contained in Oy.
Moreover, (n!)~1[v(¥,0)]" is the volume of the simplex

{aeR? : {a,(1,...,1)) <v(¥,0)} C Oy.
This is a geometric description for the “standard” bound 7(¥) > [v(¥,0)]™.
4. Singularities of plurisubharmonic functions. Let u be a plurisub-

harmonic function in a domain 2 C C", and v(u,z,a) be its directional
Lelong number (3) at = € {2 with respect to a € R". Fix a point z. It is
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known [5] that the function a — v(u, z, a) is concave on R’;.. So, the function
Yuz(t) = —v(u,z,—t), teR?,
belongs to CNVI_(R"™) and thus
v, . := Log" ¢, , € PSH® (D).

Moreover, due to the positive homogeneity of v(u,z,a) in a, ¥, , € I. The
function ¥, , was introduced in [15] and called the (local) indicator of u
at z. According to (3),

Vuo(z) = lim R™ sup{u(y) : fys — o < |a]™, 1<k <n}

o ped
= Am R e

S u(zy + ‘Zk’Reiek) db ...do,.

Clearly, ¥, , = 0 if and only if v(u,z) = 0. It is easy to see that ¥ o = @
for any @ € I. In particular,

(32) v(u,z,a) = V(¥ q0,0,a) = =¥, »(Exp(—a)) VaeR].

So, the results of the previous sections can be applied to study directional
Lelong numbers of arbitrary plurisubharmonic functions.

PROPOSITION 5 (cf. [7], Prop. 5.3). For any u € PSH({2),

v(u,z,a) > v(u,x,b) mkin Z—k V€ {2, Va,b € R}
k

Proof. In view of (32), this follows from Proposition 3.

For r € R} and z € C", we set ! = (7’1_1,...,7‘,71) and 7 -2 =
(7"121, e ,rnzn).

PROPOSITION 6 ([15]). Any function u € PSH({2) has the bound
(33) u(z) < Wuu(r~' - 2) +sup{u(y) : y € Dp(z)}

forall z € Dy(x) ={y : lyx — x| <rg, 1 <k <n}cCC .

Proof. Assume for simplicity x = 0, D,.(0) = D,..

Consider the function v(z) = u(r - z) —sup{u(y) : y € D,} € PSH_(D).
The function g, (R,t) := sup{v(z) : |zx| < exp{Rtr}, 1 <k < n} is convex
in R>0andteR"”, soas R — oo,

9o (R’ t) - gU(R17 t)

(34) R— R,

/ T,Z)U,g(t),

where 1,0 = Exp* ¥, o.
For R =1 and Ry — 0, (34) gives us ¢,(1,t) < 1, 0(t) and thus (33).
The proposition is proved.
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Let £2;(z) be the connected component of the set 2N{z € C" : z; =z,
Vj # k} containing the point x. If for some x € 2, u|q, (z) #Z —oo for all k,
then ¥, , € Iy. For example, this is fulfilled for u € PSH({2, z).

If uw € PSH(£2, ), the measure (dd°u)™ is defined on (2. Its residual mass
at = will be denoted by 7(u, z):

T(u, ) = (dd“u)" | {2}
The indicator ¥, , of such a function belongs to the class Iy. Define
Nu,z) =7V 4).
PROPOSITION 7 ([15], Th. 1). If w € PSH(£2, z), then 7(u,x) > N(u,x).
Proof. Inequality (33) implies

Wy o(r™t (z—x))

lim sup <1,
z2—x U(Z)
and since .
. Lpu r(r_ : y))
lim —————~*> =1 VreR%,
y—0 Lpu,r(y) +

the statement follows from Theorem A.

So, to estimate 7(u,x) we may apply the bounds for 7(¥, ;) from the
previous section.

THEOREM 4. If w € PSH({2,z), then

[v(u,z,a)]"

T(u,x) > Va € RY};

ay...0ay
in other words, T(u,z) > Ay, where Ay, = Ay, , is defined by (16).

Proof. The result follows from Theorem 1 and Proposition 7.

Let now wq,...,u, € PSH({2) be in general position in the sense of
Definition 1. Then the current A\, dd“us is defined on §2 ([2], Th. 2.5); denote
its residual mass at a point « by 7(uq,...,u,;x). Moreover, the n-tuple of
their indicators ¥, . is also in general position, which implies

NddTy o =TTy s P, 2) 5(0)
k
(Proposition 4).
In view of Theorem A and Proposition 6 we have

THEOREM 5. The residual mass T(u1, ..., un;x) of the current )\, ddus
has the bound T(u1,...,un;2) > TPyy 2y s Y 2)-

Now Theorems 2 and 5 give us
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THEOREM 6.
v(uj,z,a
(35) T(Uly oy Up;T) > M Va € RY.
aj ...0ap
REMARK. For a; = ... = a,, inequality (35) is proved in [2], Cor. 5.10.

Finally, by combination of Proposition 7 and Theorem 3 we get

THEOREM 7. For any function uw € PSH(2, z),
(36) T(u,x) > N(u,x) =n!V(Oy.)
with

Ouz=1{b e R} : sup [v(u,z,a) — (b,a)] > 0}.
Zakzl

Remark on holomorphic mappings. Let f = (f1,..., fn) be a holomor-

phic mapping of a neighbourhood (2 of the origin into C™ and f(0) = 0

be its isolated zero. Then in a subdomain 2’ C {2 the zero sets A; of the
functions f; satisfy the conditions

Ain...NA, N2 ={0}, codimA; N...NA; N >k

for all choices of indices ji <...<jg, k<n. Set u=log |f|, u;=log|f;|. It is
known that 7(u,0) = 7(u1,...,u,;0) = my, the multiplicity of f at 0. For
a=(1,...,1), v(u;,0,a) equals m;, the multiplicity of f; at 0. Therefore,
(35) with a = (1,...,1) gives us the standard bound my > my ... m,,.

For a; rational, (35) is the known estimate of my via the multiplicities
of weighted homogeneous initial Taylor polynomials for f; (see e.g. [1], Th.
22.7). Indeed, due to the positive homogeneity of the directional Lelong
numbers, we can take a; € Z7. Then by (7), v(u;,0,a) is equal to the
multiplicity of the function f;a)(z) = fi(z%).

We also mention that (35) gives a lower bound for the Milnor number
w(F,0) of a singular point 0 of a holomorphic function F' (i.e. for the multi-
plicity of the isolated zero of the mapping f = grad F' at 0) in terms of the
indices I(F,0,a) (see (7)) of F. Since I(0F/0z,0,a) > I(F,0,a) — aj, we

have W(F.0) > H <M — 1>,

a
1<k<n k

Finally, it follows from (7) that the set R% \ &, is the Newton
polyhedron for the system (f1,..., f,) at 0 (see Introduction). Therefore,
n!V(O,,0) is the Newton number of (fi,..., f,) at 0, and (36) becomes
the bound for my due to A. G. Kouchnirenko (see [1], Th. 22.8). So, for
any plurisubharmonic function u, we will call the value N (u,z) the Newton
number of u at x.
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5. Indicators as logarithmic tangents. Let u € PSH(£2,0), u(0) =
—00. We will consider the following problem: under what conditions on w,
does its residual measure equal its Newton number?

Of course, the relation

o u(2)
37 1 =1
(37) 200 Wy 0(2)
is sufficient, but it seems to be too restrictive. On the other hand, as the
example u(z) = log(|z; + 22| + |22|*) shows, the condition

. u(A2)
lim —22)
220 Ty o(A2)
does not guarantee the equality 7(u,0) = N(u,0).

To weaken (37) we first give another description for the local indicators.
In [6], a compact family of plurisubharmonic functions

=1 VzeC"\{0}

ur(2) = u(rz) —sup{u(y) : [yl <r}, r>0,

was considered and the limit sets, as 7— 0, of such families were described.
In particular, the limit set need not consist of a single function, so a plurisub-
harmonic function can have several (and thus infinitely many) tangents. Here
we consider another family generated by a plurisubharmonic function wu.

Given m € N and z € C", write 2™ = (2]",...,2"") and set

Tru(z) = m™ tu(z™).
Clearly, T,,,u € PSH(2N D) and T,,u € PSH_(D,) for any r € R} N D*
(i.e. 0 <rg < 1) for all m > mg(r).
PROPOSITION 8. The family {Tmu}m>mq(r) is compact in Li, (D).

Proof. Let M(v, o) denote the mean value of a function v over the set
{2z )2kl = ok, 1 <k <n},0< op <rg. Then M(Ty,u, 0) = m~ 1M (u, o™).
The relation

(38) m M (u, 0™) / Wuo(0) asm — oo
implies M (Tu, 0) > M(Tp,u, 0). Since T,u < 0 in D,., this proves the
compactness.

THEOREM 8. (a) T,,u — W, 0 in Li _(D);

loc

(b) if u € PSH(£2,0) then (dd°T,,u)™ — 7(u,0)§(0).

Proof. Let g be a limit point of the sequence T, u, that is, T, . u — ¢
as s — oo for some sequence mg. For the function v(z) = sup{u(y) : |yx| <
|2k, 1 <k <n} and any r € R N D* we have, by (33),

Tu(z) < (Tv) (2) < W o(r™t - 2)
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and thus
(39) g9(z) <W,o(z) VzeD.

On the other hand, the convergence of T}, u to g in L implies M (T}, u,r)
— M(g,r) ([3], Prop. 4.1.10). By (38), M (T, u,7) — Wy 0(r), so M(g,r) =
Wy, 0(r) for every r € R N D*. Comparison with (39) gives us g = ¥, o, and
the statement (a) follows.

To prove (b) we observe that for each o € (0,1),

| (ddTu)" = | (ddu)" — 7(u,0)
aD am™D
asm — o0, and for 0 < a < 6 < 1,

m—00 m—0o0

BD\aD B8™D am™D

lim | (dd°Tu)" = lim [ | (dacwy — | (ddcu)"] = 0.

The theorem is proved.

So, Theorem 8 shows us that 7(u,0) = N(u,0) if and only if (dd°T},u)"
— (dd°¥,,)". Now we are going to find conditions for this convergence.

Recall the definition of the inner C,_;-capacity introduced in [17]: for
any Borel subset F of a domain w,

Cn—1(F,w) = sup { S(aldcv)"_1 ABy:vePSHw), 0<v< 1}.
E
It was shown in [17] that convergence of uniformly bounded plurisubhar-
monic functions v; to v in C,,_i-capacity implies (dd“v;)" — (dd°v)". In
our situation, neither 7,u nor ¥, are bounded, so we will modify the
construction from [17].
Set
Tmu(z)
W 0(2)

THEOREM 9. Let u € PSH(£2,0), o0 € (0,1/4), N > 0, and a sequence
ms € N be such that

E(u,m,é):{zeD\{O}: >1—|—5}, meN, 6 >0.

1) u(z) > —Nmg on a neighbourhood of the sphere 0Byms, for each s;
2) limg_ oo Cpi—1(B, N E(u,ms,6),D) =0 for all § > 0.
Then (dd°Tu)™ — (dd°W, )" on D.
Proof. Without loss of generality we can take v € PSH_(D,0). Con-
sider the functions vs(z) = max {1}, u(z), —N } and v = max {¥, o(z), —N}.

We have vy = T}, u and v = ¥, ¢ on a neighbourhood of 0B,, vs = v = —N
on a neighbourhood of 0, v; < v on B,, and vs > (1+6)v on B, \ E(u, ms, 6).
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We will prove that

(40) (dd°v)* A (ddv)' — (ddv)*
for k=1,...,n, Il =0,...,n — k. This will give us the statement of the
theorem. Indeed, by Theorem 8,

| (ddve)" = | (dd“Typ, )™ — 7(u,0)

B, B,
while

| (ddcv)™ = | (dd“W,0)" = N(u,0),

B, B,
and (40) with k£ = n proves the coincidence of the right-hand sides of these
relations and thus the convergence of (dd°T,,u)" to (dd“¥, )™.

We prove (40) by induction on k. Let k =1,0<1<n -1, > 0. For
any test form ¢ € D,,_;_1 —1—1(B,),

( [ddov, A (dd°v)' A ¢ — | (ddev)+ A ¢‘

< Cy | (v = v,)(ddv)" A By
BQ

:c¢[ i+ ](v—fus)(ddcv)l/\ﬂn,l:C¢[Il(s,6)+lg(s,6)],

Bo\Es,s Bo,NEs s

- ( (v —v,)(ddov)! A dd°o

where, for brevity, Es s = E(u, mg,J).
We have
I(s,6) <4 | [o[(dd°v)' A By < C6
BQ

with a constant C independent of s, and
L(s,6) <N | (ddv)' A By
BQQES,(;
<C(N,p0,1)-Ch1(ByNEgs5,D) — 0.

Since 0 > 0 is arbitrary, this proves (40) for k = 1.
Suppose that we have (40) for kK = j and 0 < [ < n — j. For ¢ €
Dri—jn-1(By),

S(dd%s)j“ A (dd°v)t A ¢ = S(ddcvs)j A (dd°v)F A ¢
+ {[(ddv, ) A (dd°v)! — (dd“v,)? A (dd°v)' T A 6.

The first integral on the right-hand side converges to S(aldcv)lﬂ”rl A ¢ by
the induction assumption. The second integral can be estimated similarly
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he case £k = 1:
( J(ddov, )7+ A (ddeo)t — (ddev,) A (ddov) 1) A ¢

§C¢[ i+ }(v—vs)(ddcvs)j(ddcv)l/\ﬂn,j,l
Bo\Es; s BoNE;;s

= Cy[I3(s,0) + 14(s,9)].

Since (dd°v,)? A (dd°v)! — (dd®v)I!, we have

{(dd“v,) (dd“v)' A Bp—jy < C Vs

and
I3(s,6) <6 | Jol(dd®v,)? (dd°v)" A Bn_j_1 < CNG.
B,
Similarly,
L(s,6) <N | (ddv,) (dd°v)" A By
BoNEss
< C(N,0,5,1) - Ch—1(B,NEs 5,D) — 0,

and (40) is proved.
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