ANNALES POLONICI MATHEMATICI LXXV.3 (2000)

Newton numbers and residual measures of plurisubharmonic functions

by Alexander Rashkovskii (Kharkov)

Abstract. We study the masses charged by $(dd^c u)^n$ at isolated singularity points of plurisubharmonic functions u. This is done by means of the local indicators of plurisubharmonic functions introduced in [15]. As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of u, and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of u as the logarithmic tangent to u.

1. Introduction. The principal information on local behaviour of a subharmonic function u in the complex plane can be obtained by studying its Riesz measure μ_u . If u has a logarithmic singularity at a point x, the main term of its asymptotics near x is $\mu_u(\{x\}) \log |z - x|$. For plurisubharmonic functions u in \mathbb{C}^n , n > 1, the situation is not so simple. The local properties of u are controlled by the current $dd^c u$ (we use the notation $d = \partial + \overline{\partial}$, $d^c = (\partial - \overline{\partial})/(2\pi i)$) which cannot charge isolated points. The trace measure $\sigma_u = dd^c u \wedge \beta_{n-1}$ of this current is precisely the Riesz measure of u; here $\beta_p = (p!)^{-1}(\pi/2)^p (dd^c |z|^2)^p$ is the volume element of \mathbb{C}^p . A significant role is played by the *Lelong numbers* $\nu(u, x)$ of the function u at points x:

$$\nu(u, x) = \lim_{r \to 0} (\tau_{2n-2} r^{2n-2})^{-1} \sigma_u[B^{2n}(x, r)],$$

where τ_{2p} is the volume of the unit ball $B^{2p}(0,1)$ of \mathbb{C}^p . If $\nu(u,x) > 0$ then $\nu(u,x) \log |z-x|$ gives an upper bound for u(z) near x; however, the difference between these two functions can be comparable to $\log |z-x|$.

Another important object generated by the current $dd^c u$ is the Monge– Ampère measure $(dd^c u)^n$. For the definition and basic facts on the complex Monge–Ampère operator $(dd^c)^n$ and Lelong numbers, we refer the reader to the books [12], [14] and [8], and for more advanced results, to [2]. Here we

²⁰⁰⁰ Mathematics Subject Classification: 32U05, 32U25, 32W20.

Key words and phrases: plurisubharmonic function, directional Lelong number, local indicator, Monge–Ampère operator, Newton polyhedron.

^[213]

mention that $(dd^c u)^n$ cannot be defined for all plurisubharmonic functions u, but if $u \in \text{PSH}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus K)$ with $K \subset \subset \Omega$, then $(dd^c u)^n$ is well defined as a positive closed current of bidimension (0,0) (or, which is the same, as a positive measure) on Ω . This measure cannot charge pluripolar subsets of $\Omega \setminus K$, and it can have positive masses at points of K, e.g. $(dd^c \log |z|)^n =$ $\delta(0)$, the Dirac measure at $0, |z| = (\sum |z_j|^2)^{1/2}$. More generally, if $f: \Omega \to$ $\mathbb{C}^N, N \geq n$, is a holomorphic mapping with isolated zeros at $x^{(k)} \in \Omega$ of multiplicities m_k , then $(dd^c \log |f|)^n|_{x^{(k)}} = m_k \delta(x^{(k)})$. So, the masses of $(dd^c u)^n$ at isolated singularity points of u (the residual measures of u) are of especial importance.

Let a plurisubharmonic function u belong to $L^{\infty}_{loc}(\Omega \setminus \{x\})$; its residual mass at the point x will be denoted by $\tau(u, x)$:

$$\tau(u,x) = (dd^{c}u)^{n}|_{\{x\}}$$

The problem under consideration is to estimate this value.

The following well known relation compares $\tau(u, x)$ with the Lelong number $\nu(u, x)$:

(1)
$$\tau(u,x) \ge [\nu(u,x)]^n.$$

Equality in (1) means that, roughly speaking, the function u(z) behaves near x as $\nu(u, x) \log |z - x|$. In many cases however relation (1) is not optimal; e.g. for

$$z) = \sup\{\log |z_1|^{k_1}, \log |z_2|^{k_2}\}, \quad k_1 > k_2,$$

we have $\tau(u,0) = k_1 k_2 > k_2^2 = [\nu(u,0)]^2$.

u(

As follows from the Comparison Theorem due to Demailly (see Theorem A below), the residual mass is determined by asymptotic behaviour of the function near its singularity, so one needs to find appropriate characteristics for the behaviour. To this end, a notion of local indicator was proposed in [15]. Note that $\nu(u, x)$ can be calculated as

$$\nu(u, x) = \lim_{r \to -\infty} r^{-1} \sup\{v(z) : |z - x| \le e^r\} = \lim_{r \to -\infty} r^{-1} \mathcal{M}(u, x, r),$$

where $\mathcal{M}(u, x, r)$ is the mean value of u over the sphere $|z - x| = e^r$ (see [4]). In [5], the *refined*, or *directional*, *Lelong numbers* were introduced as

(3)
$$\nu(u, x, a) = \lim_{r \to -\infty} r^{-1} \sup\{v(z) : |z_k - x_k| \le e^{ra_k}, \ 1 \le k \le n\}$$

= $\lim_{r \to -\infty} r^{-1}g(u, x, ra),$

where $a = (a_1, \ldots, a_n) \in \mathbb{R}^n_+$ and g(u, x, b) is the mean value of u over the set $\{z : |z_k - x_k| = \exp b_k, 1 \le k \le n\}$. For x fixed, the collection $\{\nu(u, x, a)\}_{a \in \mathbb{R}^n_+}$ gives a more detailed information about the function unear x than $\nu(u, x)$ does, so one can expect a more precise bound for $\tau(u, x)$ in terms of the directional Lelong numbers. It was noticed already in [5] that the mean value of u over $\{z : |z_k - x_k| = |\exp y_k|, 1 \le k \le n\}$ is a plurisubharmonic function of $y \in \mathbb{C}^n$, Re $y_k \ll 0$, so $a \mapsto \nu(u, x, a)$ is a concave function on \mathbb{R}^n_+ . The idea was developed in [15] where a *local indicator* $\Psi_{u,x}$ of the function u at x was constructed as a plurisubharmonic function in the unit polydisk $D = \{y \in \mathbb{C}^n : |y_k| < 1, 1 \le k \le n\}$, given by the formula

$$\Psi_{u,x}(y) = -\nu(u, x, (-\log|y_k|)).$$

It is the largest negative plurisubharmonic function in D whose directional Lelong numbers at 0 coincide with those of u at x, $(dd^c \Psi_{u,x})^n = \tau(\Psi_{u,x}, 0) \,\delta(0)$, and finally,

(4)
$$\tau(u,x) \ge \tau(\Psi_{u,x},0),$$

so the singularity of u at x is controlled by its indicator $\Psi_{u,x}$.

Since $\tau(\Psi_{u,x}, 0) \ge [\nu(\Psi_{u,x}, 0)]^n = [\nu(u,x)]^n$, (4) is a refinement of (1). For the function *u* defined by (2), $\tau(\Psi_{u,0}, 0) = k_1 k_2 = \tau(u,0) > [\nu(u,0)]^2$.

Being a function of quite a simple nature, the indicator can produce effective bounds for residual measures of plurisubharmonic functions. In Theorems 1–3 of the present paper we study the values $N(u, x) := \tau(\Psi_{u,x}, 0)$, the *Newton numbers* of u at x; the reason for this name is explained below. We obtain, in particular, the following bound for $\tau(u, x)$ (Theorem 4):

$$\tau(u,x) \ge \frac{[\nu(u,x,a)]^n}{a_1 \dots a_n} \quad \forall a \in \mathbb{R}^n_+$$

it reduces to (1) when $a_1 = \ldots = a_n = 1$. For *n* plurisubharmonic functions u_1, \ldots, u_n in general position (see the definition below), we estimate the measure $dd^c \Psi_{u_1,x} \wedge \ldots \wedge dd^c \Psi_{u_n,x}$ and prove a similar relation (Theorem 6):

(5)
$$dd^{c}u_{1} \wedge \ldots \wedge dd^{c}u_{n}|_{\{x\}} \geq \frac{\prod_{j}\nu(u_{j}, x, a)}{a_{1}\ldots a_{n}} \quad \forall a \in \mathbb{R}^{n}_{+}.$$

The main tool used to obtain these bounds is the Comparison Theorem due to Demailly. To formulate it we give the following

DEFINITION 1. A q-tuple of plurisubharmonic functions u_1, \ldots, u_q is said to be *in general position* if their unboundedness loci A_1, \ldots, A_q satisfy the following condition: for all choices of indices $j_1 < \ldots < j_k$, $k \leq q$, the (2q - 2k + 1)-dimensional Hausdorff measure of $A_{j_1} \cap \ldots \cap A_{j_k}$ equals zero.

THEOREM A (Comparison Theorem, [2], Th. 5.9). Let *n*-tuples of plurisubharmonic functions u_1, \ldots, u_n and v_1, \ldots, v_n be in general position on a neighbourhood of a point $x \in \mathbb{C}^n$. Suppose that $u_j(x) = -\infty$, $1 \leq j \leq n$, and

$$\limsup_{z \to x} \frac{v_j(z)}{u_j(z)} = l_j < \infty.$$

Then

$$dd^{c}v_{1}\wedge\ldots\wedge dd^{c}v_{n}|_{\{x\}}\leq l_{1}\ldots l_{n}\,dd^{c}u_{1}\wedge\ldots\wedge dd^{c}u_{n}|_{\{x\}}.$$

We also obtain a geometric interpretation for the value N(u, x) (Theorem 7). Let $\Theta_{u,x}$ be the set of points $b \in \overline{\mathbb{R}^n_+}$ such that $\nu(u, x, a) \ge \langle b, a \rangle$ for some $a \in \mathbb{R}^n_+$. Then

(6)
$$\tau(u, x) \ge N(u, x) = n! \operatorname{Vol}(\Theta_{u, x}).$$

In many cases the volume of $\Theta_{u,x}$ can be easily calculated, so (6) gives an effective formula for N(u,x).

To illustrate these results, consider functions $u = \log |f|$, $f = (f_1, \ldots, f_n)$ being an equidimensional holomorphic mapping with an isolated zero at a point x. It is probably the only class of functions whose residual measures were studied in detail before. In this case, $\tau(u, x)$ equals m, the multiplicity of f at x, and

(7)
$$\nu(\log |f|, x, a) = I(f, x, a) := \inf\{\langle a, p \rangle : p \in \omega_x\}$$

where

$$\omega_x = \left\{ p \in \mathbb{Z}_+^n : \sum_j \left| \frac{\partial^p f_j}{\partial z^p}(x) \right| \neq 0 \right\}$$

(see [13]). For polynomials $F : \mathbb{C}^n \to \mathbb{C}$, the value I(F, x, a) is a known object (the *index* of F at x with respect to the weight a) used in number theory (see e.g. [11]).

Relation (4) gives us $m = \tau(\log |f|, x) \ge N(\log |f|, x)$. In general, the value $N(\log |f|, x)$ is not comparable to $m_1 \dots m_n$ with m_j the multiplicity of the function f_j : for $f(z) = (z_1^2 + z_2, z_2)$ and x = 0, $m_1m_2 = 1 < 2 = N(\log |f|, x) = m$ while for $f(z) = (z_1^2 + z_2, z_2^3)$, $N(\log |f|, x) = 2 < 3 = m_1m_2 < 6 = m$. A sharper bound for m can be obtained from (5) with $u_j = \log |f_j|, 1 \le j \le n$. In this case, the left-hand side of (5) equals m, and its right-hand side with $a_1 = \dots = a_n$ equals $m_1 \dots m_n$. For both the above examples of the mapping f, the supremum of the right-hand side of (5) over $a \in \mathbb{R}^n_+$ equals m. For a_1, \dots, a_n rational, relation (5) is a known bound for m via the multiplicities of weighted homogeneous initial Taylor polynomials of f_j with respect to the weights (a_1, \dots, a_n) ([1], Th. 22.7).

Recall that the convex hull $\Gamma_+(f,x)$ of the set $\bigcup_p \{p + \mathbb{R}^n_+\}, p \in \omega_x$, is called the *Newton polyhedron* of (f_1, \ldots, f_n) at x, the union $\Gamma(f, x)$ of the compact faces of the boundary of $\Gamma_+(f, x)$ is called the *Newton boundary* of (f_1, \ldots, f_n) at x, and the value $N_{f,x} = n! \operatorname{Vol}(\Gamma_-(f, x))$ with $\Gamma_-(f, x) =$ $\{\lambda t : t \in \Gamma(f, x), 0 \leq \lambda \leq 1\}$ is called the *Newton number* of (f_1, \ldots, f_n) at x (see [10], [1]). The relation

(8)
$$m \ge N_{f,}$$

was established by A. G. Kouchnirenko [9] (see also [1], Th. 22.8). Since $\Theta_{\log |f|,x} = \Gamma_{-}(f,x)$, (8) is a particular case of (6). It is the reason for calling N(u,x) the Newton number of u at x.

These observations show that the technique of plurisubharmonic functions (and local indicators in particular) is quite a powerful tool to produce, in a unified and simple way, sharp bounds for the multiplicities of holomorphic mappings.

Finally, we obtain a description for the indicator $\Psi_{u,x}(z)$ as the weak limit of the functions $m^{-1}u(x_1 + z_1^m, \ldots, x_n + z_n^m)$ as $m \to \infty$ (Theorem 8), so $\Psi_{u,x}$ can be viewed as the tangent (in the logarithmic coordinates) for the function u at x. Using this approach we obtain a sufficient condition, in terms of \mathcal{C}_{n-1} -capacity, for the residual mass $\tau(u, x)$ to coincide with the Newton number of u at x (Theorem 9).

2. Indicators and their masses. We will use the following notations. For a domain Ω of \mathbb{C}^n , $\mathrm{PSH}(\Omega)$ will denote the class of all plurisubharmonic functions on Ω , $\mathrm{PSH}_{-}(\Omega)$ the subclass of nonpositive functions, and $\mathrm{PSH}(\Omega, x) = \mathrm{PSH}(\Omega) \cap L^{\infty}_{\mathrm{loc}}(\Omega \setminus \{x\})$ with $x \in \Omega$.

Let $D = \{z \in \mathbb{C}^n : |z_k| < 1, 1 \leq k \leq n\}$ be the unit polydisk, $D^* = \{z \in D : z_1 \cdot \ldots \cdot z_n \neq 0\}$, and $\mathbb{R}^n_{\pm} = \{t \in \mathbb{R}^n : \pm t_k > 0\}$. By $\text{CNVI}_{-}(\mathbb{R}^n_{-})$ we denote the collection of all nonpositive convex functions on \mathbb{R}^n_{-} increasing in each variable t_k . The mapping $\text{Log} : D^* \to \mathbb{R}^n_{-}$ is defined as $\text{Log}(z) = (\log |z_1|, \ldots, \log |z_n|)$, and $\text{Exp} : \mathbb{R}^n_{-} \to D^*$ is given by $\text{Exp}(t) = (\exp t_1, \ldots, \exp t_n)$.

A function u on D^* is called *n*-circled if

(9)
$$u(z) = u(|z_1|, \dots, |z_n|),$$

i.e. if $\text{Log}^* \text{Exp}^* u = u$. Any *n*-circled function $u \in \text{PSH}_-(D^*)$ has a unique extension to the whole polydisk D keeping the property (9). The class of such functions will be denoted by $\text{PSH}^c_-(D)$. The cones $\text{CNVI}_-(\mathbb{R}^n_-)$ and $\text{PSH}^c_-(D)$ are isomorphic: $u \in \text{PSH}^c_-(D) \Leftrightarrow \text{Exp}^* u \in \text{CNVI}_-(\mathbb{R}^n_-), h \in \text{CNVI}_-(\mathbb{R}^n_-) \Leftrightarrow \text{Log}^* h \in \text{PSH}^c_-(D)$.

DEFINITION 2 (see [15]). A function $\Psi \in \text{PSH}^c_-(D)$ is called an *indicator* if its convex image $\text{Exp}^* \Psi$ satisfies

(10)
$$\operatorname{Exp}^{*} \Psi(ct) = c \operatorname{Exp}^{*} \Psi(t) \quad \forall c > 0, \ \forall t \in \mathbb{R}^{n}_{-}$$

The collection of all indicators will be denoted by I. It is a convex subcone of $\text{PSH}^c_-(D)$, closed in \mathcal{D}' (or equivalently, in $L^1_{\text{loc}}(D)$). Moreover, if Ψ_1 , $\Psi_2 \in I$ then also $\sup\{\Psi_1, \Psi_2\} \in I$.

Every indicator is locally bounded in D^* . In what follows we will often consider indicators locally bounded in $D \setminus \{0\}$; the class of such indicators will be denoted by $I_0: I_0 = I \cap \text{PSH}(D, 0)$. An example of indicators can be given by the functions

$$\varphi_a(z) = \sup_k a_k \log |z_k|, \quad a_k \ge 0,$$

("simple" indicators). If all $a_k > 0$, then $\varphi_a \in I_0$.

PROPOSITION 1. Let $\Psi \in I_0$, $\Psi \not\equiv 0$. Then

(a) there exist reals $\nu_1, \ldots, \nu_n > 0$ such that

(11)
$$\Psi(z) \ge \varphi_{\nu}(z) \quad \forall z \in D$$

with φ_{ν} the simple indicator corresponding to $\nu = (\nu_1, \ldots, \nu_n);$

(b) $\Psi \in C(\overline{D} \setminus \{0\}), \ \Psi|_{\partial D} = 0;$

(c) the directional Lelong numbers $\nu(\Psi, 0, a)$ of Ψ at the origin with respect to $a \in \mathbb{R}^n_+$ (see (3)) are

(12)
$$\nu(\Psi, 0, a) = -\Psi(\operatorname{Exp}(-a)),$$

and its Lelong number is $\nu(\Psi, 0) = -\Psi(e^{-1}, \dots, e^{-1});$ (d) $(dd^c\Psi)^n = 0$ on $D \setminus \{0\}.$

Proof. Let $\Psi_k(z_k)$ denote the restriction of the indicator $\Psi(z)$ to the disk $D^{(k)} = \{z \in D : z_j = 0 \ \forall j \neq k\}$. By monotonicity of $\operatorname{Exp}^* \Psi, \Psi(z) \geq \Psi_k(z_k)$. Since Ψ_k is a nonzero indicator in the disk $D^{(k)} \subset \mathbb{C}, \ \Psi_k(z_k) = \nu_k \log |z_k|$ with some $\nu_k > 0$, and (a) follows.

As $\operatorname{Exp}^* \Psi \in C(\mathbb{R}^n_{-})$, we have $\Psi \in C(D^*)$. Its continuity in $D \setminus \{0\}$ can be shown by induction on n. For n = 1 it is obvious, so assuming it for $n \leq l$, consider any point $z^0 \neq 0$ with $z_j^0 = 0$. Let $z^s \to z^0$; then the points \tilde{z}^s with $\tilde{z}_j^s = 0$ and $\tilde{z}_m^s = z_m^s$, $m \neq j$, also tend to z^0 , and by the induction hypothesis, $\Psi(\tilde{z}^s) \to \Psi(\tilde{z}^0) = \Psi(z^0)$. So, $\liminf_{s\to\infty} \Psi(z^s) \geq \lim_{s\to\infty} \Psi(\tilde{z}^s) = \Psi(z^0)$, i.e. Ψ is lower semicontinuous and hence continuous at z^0 . Continuity of Ψ up to ∂D and the boundary condition follow from (11).

Equality (12) is an immediate consequence of the definition of the directional Lelong numbers (3) and the homogeneity condition (10). The relation $\nu(u, x) = \nu(u, x, (1, ..., 1))$ [5] gives us the desired expression for $\nu(\Psi, 0)$.

Finally, statement (d) follows from the homogeneity condition (10) (see [15], Proposition 4).

For functions $\Psi \in I_0$, the complex Monge–Ampère operator $(dd^c\Psi)^n$ is well defined and gives a nonnegative measure on D. By Proposition 1,

$$(dd^c\Psi)^n = \tau(\Psi)\delta(0)$$

with some constant $\tau(\Psi) \ge 0$ which is strictly positive unless $\Psi \equiv 0$. In this section, we will study the value $\tau(\Psi)$.

An upper bound for $\tau(\Psi)$ is given by

PROPOSITION 2. For every $\Psi \in I_0$,

(13)
$$\tau(\Psi) \le \nu_1 \dots \nu_n$$

with ν_1, \ldots, ν_n as in Proposition 1(a).

Proof. Since all $\nu_k > 0$, the simple indicator φ_{ν} is in I_0 , and (11) implies $\Psi(z)$

$$\limsup_{z \to 0} \frac{\Psi(z)}{\varphi_{\nu}(z)} \le 1,$$

so (13) follows by Theorem A.

To obtain a lower bound for $\tau(\Psi)$, we need a relation between $\Psi(z)$ and $\Psi(z^0)$ for $z, z^0 \in D$. Define

$$\Phi(z, z^0) = \sup_k \frac{\log |z_k|}{|\log |z_k^0||}, \quad z \in D, \ z^0 \in D^*.$$

When considered as a function of z with z^0 fixed, $\Phi(z, z^0)$ is in I_0 .

PROPOSITION 3. For any $\Psi \in I$, we have $\Psi(z) \leq |\Psi(z^0)| \Phi(z, z^0)$ for all $z \in D, z^0 \in D^*$.

Proof. For a fixed $z^0 \in D^*$ and $t^0 = \text{Log}(z^0)$, define $u = |\Psi(z^0)|^{-1} \text{Exp}^* \Psi$ and $v = \text{Exp}^* \Phi = \sup_k t_k / |t_k^0|$. It suffices to establish the inequality $u(t) \leq v(t)$ for all $t \in \mathbb{R}^n_-$ with $t_k^0 < t_k < 0$, $1 \leq k \leq n$. Given such a t, define $\lambda_0 = [1 + v(t)]^{-1}$. Since $\{t^0 + \lambda(t - t^0) : 0 \leq \lambda \leq \lambda_0\} \subset \overline{\mathbb{R}^n_-}$, the functions $u_t(\lambda) := u(t^0 + \lambda(t - t^0))$ and $v_t(\lambda) := v(t^0 + \lambda(t - t^0))$ are well defined on $[0, \lambda_0]$. Furthermore, u_t is convex and v_t is linear there, $u_t(0) = v_t(0) = -1$, $u_t(\lambda_0) \leq v_t(\lambda_0) = 0$. This implies $u_t(\lambda) \leq v_t(\lambda)$ for all $\lambda \in [0, \lambda_0]$. In particular, as $\lambda_0 > 1$, $u(t) = u_t(1) \leq v_t(1) = v(t)$, which completes the proof.

Consider now the function

(14)
$$P(z) = -\prod_{1 \le k \le n} |\log |z_k||^{1/n} \in I.$$

THEOREM 1. The Monge–Ampère mass $\tau(\Psi)$ of any indicator $\Psi \in I_0$ has the bound

(15)
$$\tau(\Psi) \ge \left|\frac{\Psi(z^0)}{P(z^0)}\right|^n \quad \forall z^0 \in D^*$$

where the function P is defined by (14).

Proof. By Proposition 3,

$$\frac{\Psi(z)}{\Phi(z,z^0)} \le |\Psi(z^0)| \quad \forall z \in D, \ z^0 \in D^*.$$

By Theorem A,

$$(dd^c\Psi)^n \le |\Psi(z^0)|^n (dd^c\Phi(z,z^0))^n,$$

and the statement follows from the fact that

$$(dd^{c}\Phi(z,z^{0}))^{n} = \prod_{1 \le k \le n} |\log |z_{k}^{0}||^{-1} = |P(z^{0})|^{-n}.$$

REMARKS. 1. One can consider the value

(16)
$$A_{\Psi} = \sup_{z \in D} \left| \frac{\Psi(z)}{P(z)} \right|^n;$$

by Theorem 1,

(17)
$$\tau(\Psi) \ge A_{\Psi}$$

2. Let $I_{0,M} = \{ \Psi \in I_0 : \tau(\Psi) \leq M \}$, M > 0. Then (15) gives a lower bound for the class $I_{0,M}$:

$$\Psi(z) \ge M^{1/n} P(z) \quad \forall z \in D, \ \forall \Psi \in I_{0,M}.$$

Let now $\Psi_1, \ldots, \Psi_n \in I$ be in general position in the sense of Definition 1. Then the current $\bigwedge_k dd^c \Psi_k$ is well defined, as is $(dd^c \Psi)^n$ with $\Psi = \sup_k \Psi_k$. Moreover, we have

PROPOSITION 4. If $\Psi_1, \ldots, \Psi_n \in I$ are in general position, then

(18)
$$\bigwedge_{k} dd^{c} \Psi_{k} = 0 \quad on \ D \setminus \{0\}.$$

Proof. For $\Psi_1, \ldots, \Psi_n \in I_0$, the statement follows from Proposition 1(d) and the polarization formula

(19)
$$\bigwedge_{k} dd^{c} \Psi_{k} = \frac{(-1)^{n}}{n!} \sum_{j=1}^{n} (-1)^{j} \sum_{1 \le i_{1} < \dots < i_{j} \le n} \left(dd^{c} \sum_{k=1}^{j} \Psi_{j_{k}} \right)^{n}.$$

When the only condition on $\{\Psi_k\}$ is to be in general position, we can replace $\Psi_k(z)$ with $\Psi_{k,N}(z) = \sup\{\Psi_k(z), N \sup_j \log |z_j|\} \in I_0$ for which $\bigwedge_k dd^c \Psi_{k,N} = 0$ on $D \setminus \{0\}$. Since $\Psi_{k,N} \searrow \Psi_k$ as $N \to \infty$, this gives us (18).

The mass of $\bigwedge_k dd^c \Psi_k$ will be denoted by $\tau(\Psi_1, \ldots, \Psi_n)$.

THEOREM 2. Let $\Psi_1, \ldots, \Psi_n \in I$ be in general position, $\Psi = \sup_k \Psi_k$. Then

(a) $\tau(\Psi) \leq \tau(\Psi_1, \ldots, \Psi_n);$

(b) $\tau(\Psi_1, \ldots, \Psi_n) \ge |P(z^0)|^{-n} \prod_k |\Psi_k(z^0)|$ for all $z^0 \in D^*$, the function P being defined by (14).

Proof. Since

$$\frac{\Psi(z)}{\Psi_k(z)} \le 1 \quad \forall z \neq 0,$$

statement (a) follows from Theorem A.

Statement (b) results from Proposition 3 exactly as the statement of Theorem 1 does.

3. Geometric interpretation. In this section we study the masses $\tau(\Psi)$ of indicators $\Psi \in I_0$ by means of their convex images $\operatorname{Exp}^* \Psi \in \operatorname{CNVI}_{-}(\mathbb{R}^n_{-})$.

Let $V \in \text{PSH}^c_(rD) \cap C^2(rD)$, r < 1, and $v = \text{Exp}^* V \in \text{CNVI}_((\mathbb{R}_+ \log r)^n)$. Since

$$\frac{\partial^2 V(z)}{\partial z_j \partial \overline{z}_k} = \frac{1}{4z_j \overline{z}_k} \cdot \frac{\partial^2 v(t)}{\partial t_j \partial t_k} \bigg|_{t = \text{Log}(z)}, \quad z \in rD^*,$$

we have

$$\det\left(\frac{\partial^2 V(z)}{\partial z_j \partial \overline{z}_k}\right) = 4^{-n} |z_1 \dots z_n|^{-2} \det\left(\frac{\partial^2 v(t)}{\partial t_j \partial t_k}\right)\Big|_{t=\operatorname{Log}(z)}.$$

By setting $z_j = \exp\{t_j + i\theta_j\}, \ 0 \le \theta \le 2\pi$, we get $\beta_n(z) = |z_1 \dots z_n|^2 dt d\theta$, so

(20)
$$(dd^c V)^n = n! \left(\frac{2}{\pi}\right)^n \det\left(\frac{\partial^2 V}{\partial z_j \partial \overline{z}_k}\right) \beta_n = \frac{n!}{(2\pi)^n} \det\left(\frac{\partial^2 v}{\partial t_j \partial t_k}\right) dt d\theta.$$

Every function $U \in \text{PSH}^{c}_{-}(D) \cap L^{\infty}(D)$ is the limit of a decreasing sequence of functions $U_{l} \in \text{PSH}^{c}_{-}(E) \cap C^{2}(E)$ on an *n*-circled domain $E \subset D$, and by the convergence theorem for the complex Monge–Ampère operators,

(21)
$$(dd^c U_l)^n|_E \to (dd^c U)^n|_E.$$

On the other hand, for $u_l = \operatorname{Exp}^* U_l$ and $u = \operatorname{Exp}^* U$,

(22)
$$\det\left(\frac{\partial^2 u_l}{\partial t_j \partial t_k}\right) dt \bigg|_{\operatorname{Log}(D^* \cap E)} \to \mathcal{MA}[u]\bigg|_{\operatorname{Log}(D^* \cap E)},$$

the real Monge–Ampère operator of u (see [16]).

Since $(dd^c U_l)^n$ and $(dd^c U)^n$ cannot charge pluripolar sets, (20) with $V = U_l$ and (21), (22) imply

$$(dd^{c}U)^{n}(E) = n! (2\pi)^{-n} \mathcal{MA}[u] d\theta \left(\operatorname{Log}(E) \times [0, 2\pi]^{n} \right)$$

for any *n*-circled Borel set $E \subset D$, i.e.

(23)
$$(dd^{c}U)^{n}(E) = n! \mathcal{MA}[u](\mathrm{Log}(E)).$$

This relation allows us to calculate $\tau(\Psi)$ by using the technique of real Monge–Ampère operators in \mathbb{R}^n (see [16]).

Let $\Psi \in I$. Consider the set

(24)
$$B_{\Psi} = \{ a \in \mathbb{R}^n_+ : \langle a, t \rangle \le \operatorname{Exp}^* \Psi(t) \; \forall t \in \mathbb{R}^n_- \}$$

and define

(25)
$$\Theta_{\Psi} = \overline{\mathbb{R}^n_+ \setminus B_{\Psi}}$$

Clearly, the set B_{Ψ} is convex, so $\operatorname{Exp}^* \Psi$ is the restriction of its support function to \mathbb{R}^n_- . If $\Psi \in I_0$, the set Θ_{Ψ} is bounded. Indeed, $a \in \Theta_{\Psi}$ if and only if $\langle a, t^0 \rangle \geq \operatorname{Exp}^* \Psi(t^0)$ for some $t^0 \in \mathbb{R}^n_-$, which implies $|a_j| \leq |\operatorname{Exp}^* \Psi(t^0)/t_j^0|$ for all j. By Proposition 1(a), $|\operatorname{Exp}^* \Psi(t^0)| \leq \nu_j |t_j|$ and therefore $|a_j| \leq \nu_j$ for all j.

Given a set $F \subset \mathbb{R}^n$, we denote its Euclidean volume by $\operatorname{Vol}(F)$.

THEOREM 3. For any indicator $\Psi \in I_0$, we have the relation

(26)
$$\tau(\Psi) = n! \operatorname{Vol}(\Theta_{\Psi})$$

with the set Θ_{Ψ} given by (24) and (25).

Proof. Define $U(z) = \sup \{\Psi(z), -1\} \in PSH^c_{-}(D) \cap C(D), u = Exp^* U \in CNVI_{-}(\mathbb{R}^n_{-})$. Since $U(z) = \Psi(z)$ near ∂D ,

$$\tau(\Psi) = \int_{D} (dd^{c}U)^{n}.$$

Furthermore, as $(dd^c U)^n = 0$ outside the set $E = \{z \in D : \Psi(z) = -1\},\$

(27)
$$\tau(\Psi) = \int_E (dd^c U)^n.$$

In view of (23),

(28)
$$\int_{E} (dd^{c}U)^{n} = n! \int_{\text{Log}(E)} \mathcal{MA}[u].$$

As was shown in [16], for any convex function v in a domain $\Omega \subset \mathbb{R}^n$,

(29)
$$\int_{F} \mathcal{M}\mathcal{A}[v] = \operatorname{Vol}(\omega(F, v)) \quad \forall F \subset \Omega,$$

where

$$\omega(F,v) = \bigcup_{t^0 \in F} \{ a \in \mathbb{R}^n : v(t) \ge v(t^0) + \langle a, t - t^0 \rangle \; \forall t \in \Omega \}$$

is the gradient image of the set F for the surface $\{y = v(x) : x \in \Omega\}$. We claim that

$$\Theta_{\Psi} = \omega(\operatorname{Log}(E), u).$$

Observe that

$$\Theta_{\Psi} = \{ a \in \overline{\mathbb{R}^n_+} : \sup_{\psi(t) = -1} \langle a, t \rangle \ge -1 \} \quad \text{where} \quad \psi = \operatorname{Exp}^* \Psi.$$

If $a \in \omega(\operatorname{Log}(E), u)$, then for some $t^0 \in \mathbb{R}^n_-$ with $\psi(t^0) = 1$ we have $\langle a, t^0 \rangle \geq \langle a, t \rangle$ for all $t \in \mathbb{R}^n_-$ such that $\psi(t) < -1$. Taking here $t_j \to -\infty$ we get $a_j \geq 0$, i.e. $a \in \overline{\mathbb{R}^n_+}$. Moreover, $\langle a, t^0 \rangle \geq \langle a, t \rangle - 1 - \psi(t)$ for all $t \in \mathbb{R}^n_-$ with $\psi(t) > -1$, and letting $t \to 0$ we derive $\langle a, t^0 \rangle \geq -1$. Therefore, $a \in \Theta_{\Psi}$ and $\Theta_{\Psi} \supset \omega(\operatorname{Log}(E), u)$.

Now we prove the converse inclusion. If $a \in \Theta_{\Psi} \cap \mathbb{R}^n_+$, then

$$\sup\{\langle a, t^0 \rangle : t^0 \in \operatorname{Log}(E)\} \ge -1.$$

Let t be such that $\psi(t) = -\delta > -1$. Then $t/\delta \in \text{Log}(E)$ and thus

$$\begin{split} \langle a,t\rangle - 1 - \psi(t) &= \delta \langle a,t/\delta \rangle - 1 + \delta \le \delta \sup_{t^0 \in \operatorname{Log}(E)} \langle a,t^0 \rangle - 1 + \delta \\ &\le \sup_{t^0 \in \operatorname{Log}(E)} \langle a,t^0 \rangle = \sup_{z^0 \in E} \langle a,\operatorname{Log}(z^0) \rangle. \end{split}$$

Since E is compact, the latter supremum is attained at some point \hat{z}^0 . Furthermore, $\hat{z}^0 \in E \cap D^*$ because $a_k \neq 0$, $1 \leq k \leq n$. Hence $\sup_{t^0 \in \text{Log}(E)} \langle a, t^0 \rangle$ = $\langle a, \hat{t}^0 \rangle$ with $\hat{t}^0 = \text{Log}(z^0) \in \mathbb{R}^n_-$, so that $a \in \omega(\text{Log}(E), u)$ and $\Theta_{\Psi} \cap \mathbb{R}^n_+ \subset \omega(\text{Log}(E), u)$. Since $\omega(\text{Log}(E), u)$ is closed, this implies $\Theta_{\Psi} = \omega(\text{Log}(E), u)$, and (30) follows.

Now relation (26) is a consequence of (27)–(30). The theorem is proved.

Note that the value $\tau(\Psi_1, \ldots, \Psi_n)$ can also be expressed in geometric terms. Namely, if $\Psi_1, \ldots, \Psi_n \in I_0$, the polarization formula (19) gives us, by Theorem 3,

$$\tau(\Psi_1, \dots, \Psi_n) = (-1)^n \sum_{j=1}^n (-1)^j \sum_{1 \le i_1 < \dots < i_j \le n} \operatorname{Vol}(\Theta_{\sum_k \Psi_{j_k}}).$$

We can also give an interpretation for the bound (17). Write A_{Ψ} from (16) as

(31)
$$A_{\Psi} = \sup_{a \in \mathbb{R}^n_+} \frac{|\psi(-a)|^n}{a_1 \dots a_n} = \sup_{a \in \mathbb{R}^n_+} |\psi(-a/a_1) \dots \psi(-a/a_n)|,$$

where $\psi = \operatorname{Exp}^* \Psi$. For any $a \in \mathbb{R}^n_+$, the point $a^{(j)}$ whose *j*th coordinate equals $|\psi(-a/a_j)|$ and the others are zero, has the property $\langle a^{(j)}, -a \rangle = \psi(-a)$. This remains true for every convex combination $\sum \varrho_j a^{(j)}$, and thus $r \sum \varrho_j a^{(j)} \in \Theta_{\Psi}$ with any $r \in [0, 1]$. Since $(n!)^{-1} |\psi(-a/a_1) \dots \psi(-a/a_n)|$ is the volume of the simplex generated by the points $0, a^{(1)}, \dots, a^{(n)}$, we see from (31) that $(n!)^{-1}A_{\Psi}$ is the supremum of the volumes of all simplices contained in Θ_{Ψ} .

Moreover, $(n!)^{-1}[\nu(\Psi, 0)]^n$ is the volume of the simplex

$$\{a \in \overline{\mathbb{R}^n_+} : \langle a, (1, \dots, 1) \rangle \le \nu(\Psi, 0)\} \subset \Theta_{\Psi}.$$

This is a geometric description for the "standard" bound $\tau(\Psi) \ge [\nu(\Psi, 0)]^n$.

4. Singularities of plurisubharmonic functions. Let u be a plurisubharmonic function in a domain $\Omega \subset \mathbb{C}^n$, and $\nu(u, x, a)$ be its directional Lelong number (3) at $x \in \Omega$ with respect to $a \in \mathbb{R}^n_+$. Fix a point x. It is

known [5] that the function $a \mapsto \nu(u, x, a)$ is concave on \mathbb{R}^n_+ . So, the function

$$\psi_{u,x}(t) := -\nu(u, x, -t), \quad t \in \mathbb{R}^n_-,$$

belongs to $\text{CNVI}_{-}(\mathbb{R}^{n}_{-})$ and thus

 $\Psi_{u,x} := \operatorname{Log}^* \psi_{u,x} \in \operatorname{PSH}^c_{-}(D).$

Moreover, due to the positive homogeneity of $\nu(u, x, a)$ in $a, \Psi_{u,x} \in I$. The function $\Psi_{u,x}$ was introduced in [15] and called the (*local*) indicator of u at x. According to (3),

$$\Psi_{u,x}(z) = \lim_{R \to \infty} R^{-1} \sup\{u(y) : |y_k - x_k| \le |z_k|^R, \ 1 \le k \le n\}$$

=
$$\lim_{R \to \infty} R^{-1} \frac{1}{(2\pi)^n} \int_{[0,2\pi]^n} u(x_k + |z_k|^R e^{i\theta_k}) \, d\theta_1 \dots d\theta_n.$$

Clearly, $\Psi_{u,x} \equiv 0$ if and only if $\nu(u,x) = 0$. It is easy to see that $\Psi_{\Phi,0} = \Phi$ for any $\Phi \in I$. In particular,

(32)
$$\nu(u, x, a) = \nu(\Psi_{u, x}, 0, a) = -\Psi_{u, x}(\operatorname{Exp}(-a)) \quad \forall a \in \mathbb{R}^n_+$$

So, the results of the previous sections can be applied to study directional Lelong numbers of arbitrary plurisubharmonic functions.

PROPOSITION 5 (cf. [7], Prop. 5.3). For any $u \in PSH(\Omega)$,

$$\nu(u, x, a) \ge \nu(u, x, b) \min_{k} \frac{a_{k}}{b_{k}} \quad \forall x \in \Omega, \ \forall a, b \in \mathbb{R}^{n}_{+}.$$

Proof. In view of (32), this follows from Proposition 3.

For $r \in \mathbb{R}^n_+$ and $z \in \mathbb{C}^n$, we set $r^{-1} = (r_1^{-1}, \ldots, r_n^{-1})$ and $r \cdot z = (r_1 z_1, \ldots, r_n z_n)$.

PROPOSITION 6 ([15]). Any function $u \in PSH(\Omega)$ has the bound

(33)
$$u(z) \le \Psi_{u,x}(r^{-1} \cdot z) + \sup \{u(y) : y \in D_r(x)\}$$

for all $z \in D_r(x) = \{y : |y_k - x_k| \le r_k, 1 \le k \le n\} \subset \Omega$.

Proof. Assume for simplicity x = 0, $D_r(0) = D_r$.

Consider the function $v(z) = u(r \cdot z) - \sup\{u(y) : y \in D_r\} \in PSH_(D)$. The function $g_v(R, t) := \sup\{v(z) : |z_k| \le \exp\{Rt_k\}, 1 \le k \le n\}$ is convex in R > 0 and $t \in \mathbb{R}^n_-$, so as $R \to \infty$,

(34)
$$\frac{g_v(R,t) - g_v(R_1,t)}{R - R_1} \nearrow \psi_{v,0}(t),$$

where $\psi_{v,0} = \operatorname{Exp}^* \Psi_{v,0}$.

For R = 1 and $R_1 \to 0$, (34) gives us $g_v(1,t) \leq \psi_{v,0}(t)$ and thus (33). The proposition is proved.

224

Let $\Omega_k(x)$ be the connected component of the set $\Omega \cap \{z \in \mathbb{C}^n : z_j = x_j \\ \forall j \neq k\}$ containing the point x. If for some $x \in \Omega$, $u|_{\Omega_k(x)} \neq -\infty$ for all k, then $\Psi_{u,x} \in I_0$. For example, this is fulfilled for $u \in \text{PSH}(\Omega, x)$.

If $u \in PSH(\Omega, x)$, the measure $(dd^c u)^n$ is defined on Ω . Its residual mass at x will be denoted by $\tau(u, x)$:

$$\tau(u,x) = (dd^c u)^n|_{\{x\}}$$

The indicator $\Psi_{u,x}$ of such a function belongs to the class I_0 . Define

$$N(u,x) = \tau(\Psi_{u,x}).$$

PROPOSITION 7 ([15], Th. 1). If $u \in PSH(\Omega, x)$, then $\tau(u, x) \ge N(u, x)$.

Proof. Inequality (33) implies

$$\limsup_{z \to x} \frac{\Psi_{u,x}(r^{-1} \cdot (z-x))}{u(z)} \le 1,$$

and since

$$\lim_{y \to 0} \frac{\Psi_{u,x}(r^{-1} \cdot y))}{\Psi_{u,x}(y)} = 1 \quad \forall r \in \mathbb{R}^n_+,$$

the statement follows from Theorem A.

So, to estimate $\tau(u, x)$ we may apply the bounds for $\tau(\Psi_{u,x})$ from the previous section.

THEOREM 4. If $u \in PSH(\Omega, x)$, then

$$\tau(u,x) \ge \frac{[\nu(u,x,a)]^n}{a_1 \dots a_n} \quad \forall a \in \mathbb{R}^n_+;$$

in other words, $\tau(u, x) \ge A_{u,x}$ where $A_{u,x} = A_{\Psi_{u,x}}$ is defined by (16).

Proof. The result follows from Theorem 1 and Proposition 7.

Let now $u_1, \ldots, u_n \in \text{PSH}(\Omega)$ be in general position in the sense of Definition 1. Then the current $\bigwedge_k dd^c u_k$ is defined on Ω ([2], Th. 2.5); denote its residual mass at a point x by $\tau(u_1, \ldots, u_n; x)$. Moreover, the *n*-tuple of their indicators $\Psi_{u_k,x}$ is also in general position, which implies

$$\bigwedge_{k} dd^{c} \Psi_{u_{k},x} = \tau(\Psi_{u_{1},x},\ldots,\Psi_{u_{n},x})\,\delta(0)$$

(Proposition 4).

In view of Theorem A and Proposition 6 we have

THEOREM 5. The residual mass $\tau(u_1, \ldots, u_n; x)$ of the current $\bigwedge_k dd^c u_k$ has the bound $\tau(u_1, \ldots, u_n; x) \geq \tau(\Psi_{u_1, x}, \ldots, \Psi_{u_n, x})$.

Now Theorems 2 and 5 give us

THEOREM 6.

(35)
$$\tau(u_1,\ldots,u_n;x) \ge \frac{\prod_j \nu(u_j,x,a)}{a_1\ldots a_n} \quad \forall a \in \mathbb{R}^n_+.$$

REMARK. For $a_1 = \ldots = a_n$, inequality (35) is proved in [2], Cor. 5.10.

Finally, by combination of Proposition 7 and Theorem 3 we get

THEOREM 7. For any function $u \in PSH(\Omega, x)$,

(36)
$$\tau(u,x) \ge N(u,x) = n! V(\Theta_{u,x})$$

with

$$\Theta_{u,x} = \{ b \in \mathbb{R}^n_+ : \sup_{\sum a_k = 1} [\nu(u, x, a) - \langle b, a \rangle] \ge 0 \}.$$

Remark on holomorphic mappings. Let $f = (f_1, \ldots, f_n)$ be a holomorphic mapping of a neighbourhood Ω of the origin into \mathbb{C}^n and f(0) = 0 be its isolated zero. Then in a subdomain $\Omega' \subset \Omega$ the zero sets A_j of the functions f_j satisfy the conditions

$$A_1 \cap \ldots \cap A_n \cap \Omega' = \{0\}, \quad \operatorname{codim} A_{j_1} \cap \ldots \cap A_{j_k} \cap \Omega' \ge k$$

for all choices of indices $j_1 < \ldots < j_k$, $k \le n$. Set $u = \log |f|$, $u_j = \log |f_j|$. It is known that $\tau(u, 0) = \tau(u_1, \ldots, u_n; 0) = m_f$, the multiplicity of f at 0. For $a = (1, \ldots, 1), \nu(u_j, 0, a)$ equals m_j , the multiplicity of f_j at 0. Therefore, (35) with $a = (1, \ldots, 1)$ gives us the standard bound $m_f \ge m_1 \ldots m_n$.

For a_j rational, (35) is the known estimate of m_f via the multiplicities of weighted homogeneous initial Taylor polynomials for f_j (see e.g. [1], Th. 22.7). Indeed, due to the positive homogeneity of the directional Lelong numbers, we can take $a_j \in \mathbb{Z}_+^n$. Then by (7), $\nu(u_j, 0, a)$ is equal to the multiplicity of the function $f_j^{(a)}(z) = f_j(z^a)$.

We also mention that (35) gives a lower bound for the Milnor number $\mu(F,0)$ of a singular point 0 of a holomorphic function F (i.e. for the multiplicity of the isolated zero of the mapping $f = \operatorname{grad} F$ at 0) in terms of the indices I(F,0,a) (see (7)) of F. Since $I(\partial F/\partial z_k, 0, a) \geq I(F,0,a) - a_k$, we have

$$\mu(F,0) \ge \prod_{1 \le k \le n} \left(\frac{I(F,0,a)}{a_k} - 1 \right).$$

Finally, it follows from (7) that the set $\mathbb{R}^n_+ \setminus \overline{\Theta_{u,0}}$ is the Newton polyhedron for the system (f_1, \ldots, f_n) at 0 (see Introduction). Therefore, $n! V(\Theta_{u,0})$ is the Newton number of (f_1, \ldots, f_n) at 0, and (36) becomes the bound for m_f due to A. G. Kouchnirenko (see [1], Th. 22.8). So, for any plurisubharmonic function u, we will call the value N(u, x) the Newton number of u at x.

226

5. Indicators as logarithmic tangents. Let $u \in PSH(\Omega, 0)$, $u(0) = -\infty$. We will consider the following problem: under what conditions on u, does its residual measure equal its Newton number?

Of course, the relation

(37)
$$\lim_{z \to 0} \frac{u(z)}{\Psi_{u,0}(z)} = 1$$

is sufficient, but it seems to be too restrictive. On the other hand, as the example $u(z) = \log(|z_1 + z_2|^2 + |z_2|^4)$ shows, the condition

$$\lim_{\lambda \to 0} \frac{u(\lambda z)}{\Psi_{u,0}(\lambda z)} = 1 \quad \forall z \in \mathbb{C}^n \setminus \{0\}$$

does not guarantee the equality $\tau(u, 0) = N(u, 0)$.

To weaken (37) we first give another description for the local indicators. In [6], a compact family of plurisubharmonic functions

$$u_r(z) = u(rz) - \sup\{u(y) : |y| < r\}, \quad r > 0,$$

was considered and the limit sets, as $r \to 0$, of such families were described. In particular, the limit set need not consist of a single function, so a plurisubharmonic function can have several (and thus infinitely many) tangents. Here we consider another family generated by a plurisubharmonic function u.

Given $m \in \mathbb{N}$ and $z \in \mathbb{C}^n$, write $z^m = (z_1^m, \dots, z_n^m)$ and set

$$T_m u(z) = m^{-1} u(z^m).$$

Clearly, $T_m u \in \text{PSH}(\Omega \cap D)$ and $T_m u \in \text{PSH}_-(\overline{D}_r)$ for any $r \in \mathbb{R}^n_+ \cap D^*$ (i.e. $0 < r_k < 1$) for all $m \ge m_0(r)$.

PROPOSITION 8. The family $\{T_m u\}_{m \ge m_0(r)}$ is compact in $L^1_{loc}(D_r)$.

Proof. Let $M(v, \varrho)$ denote the mean value of a function v over the set $\{z : |z_k| = \varrho_k, 1 \le k \le n\}, 0 < \varrho_k \le r_k$. Then $M(T_m u, \varrho) = m^{-1}M(u, \varrho^m)$. The relation

(38)
$$m^{-1}M(u,\varrho^m) \nearrow \Psi_{u,0}(\varrho) \quad \text{as } m \to \infty$$

implies $M(T_m u, \varrho) \ge M(T_{m_0} u, \varrho)$. Since $T_m u \le 0$ in D_r , this proves the compactness.

THEOREM 8. (a)
$$T_m u \to \Psi_{u,0}$$
 in $L^1_{\text{loc}}(D)$;
(b) if $u \in \text{PSH}(\Omega, 0)$ then $(dd^c T_m u)^n \to \tau(u, 0) \,\delta(0)$

Proof. Let g be a limit point of the sequence $T_m u$, that is, $T_{m_s} u \to g$ as $s \to \infty$ for some sequence m_s . For the function $v(z) = \sup\{u(y) : |y_k| \le |z_k|, 1 \le k \le n\}$ and any $r \in \mathbb{R}^n_+ \cap D^*$ we have, by (33),

$$T_m u(z) \le (T_m v)(z) \le \Psi_{u,0}(r^{-1} \cdot z)$$

and thus

(39)
$$g(z) \le \Psi_{u,0}(z) \quad \forall z \in D$$

On the other hand, the convergence of $T_{m_s}u$ to g in L^1 implies $M(T_{m_s}u,r) \to M(g,r)$ ([3], Prop. 4.1.10). By (38), $M(T_{m_s}u,r) \to \Psi_{u,0}(r)$, so $M(g,r) = \Psi_{u,0}(r)$ for every $r \in \mathbb{R}^n_+ \cap D^*$. Comparison with (39) gives us $g \equiv \Psi_{u,0}$, and the statement (a) follows.

To prove (b) we observe that for each $\alpha \in (0, 1)$,

$$\int_{\alpha D} (dd^c T_m u)^n = \int_{\alpha^m D} (dd^c u)^n \to \tau(u, 0)$$

as $m \to \infty$, and for $0 < \alpha < \beta < 1$,

$$\lim_{m \to \infty} \int_{\beta D \setminus \alpha D} (dd^c T_m u)^n = \lim_{m \to \infty} \left[\int_{\beta^m D} (dd^c u)^n - \int_{\alpha^m D} (dd^c u)^n \right] = 0.$$

The theorem is proved.

So, Theorem 8 shows us that $\tau(u,0) = N(u,0)$ if and only if $(dd^c T_m u)^n \to (dd^c \Psi_{u,0})^n$. Now we are going to find conditions for this convergence.

Recall the definition of the inner C_{n-1} -capacity introduced in [17]: for any Borel subset E of a domain ω ,

$$\mathcal{C}_{n-1}(E,\omega) = \sup \left\{ \int_E (dd^c v)^{n-1} \wedge \beta_1 : v \in \mathrm{PSH}(\omega), \ 0 < v < 1 \right\}.$$

It was shown in [17] that convergence of uniformly bounded plurisubharmonic functions v_j to v in \mathcal{C}_{n-1} -capacity implies $(dd^c v_j)^n \to (dd^c v)^n$. In our situation, neither $T_m u$ nor $\Psi_{u,0}$ are bounded, so we will modify the construction from [17].

Set

$$E(u,m,\delta) = \left\{ z \in D \setminus \{0\} : \frac{T_m u(z)}{\Psi_{u,0}(z)} > 1 + \delta \right\}, \quad m \in \mathbb{N}, \ \delta > 0.$$

THEOREM 9. Let $u \in PSH(\Omega, 0)$, $\varrho \in (0, 1/4)$, N > 0, and a sequence $m_s \in \mathbb{N}$ be such that

1) $u(z) > -Nm_s$ on a neighbourhood of the sphere $\partial B_{\varrho^{m_s}}$, for each s;

2) $\lim_{s\to\infty} C_{n-1}(B_{\varrho} \cap E(u, m_s, \delta), D) = 0$ for all $\delta > 0$.

Then $(dd^cT_mu)^n \to (dd^c\Psi_{u,0})^n$ on D.

Proof. Without loss of generality we can take $u \in \text{PSH}_{-}(D, 0)$. Consider the functions $v_s(z) = \max \{T_{m_s}u(z), -N\}$ and $v = \max \{\Psi_{u,0}(z), -N\}$. We have $v_s = T_{m_s}u$ and $v = \Psi_{u,0}$ on a neighbourhood of ∂B_{ϱ} , $v_s = v = -N$ on a neighbourhood of $0, v_s \leq v$ on B_{ρ} , and $v_s \geq (1+\delta)v$ on $B_{\rho} \setminus E(u, m_s, \delta)$. We will prove that

(40)
$$(dd^c v_s)^k \wedge (dd^c v)^l \to (dd^c v)^{k+l}$$

for k = 1, ..., n, l = 0, ..., n - k. This will give us the statement of the theorem. Indeed, by Theorem 8,

$$\int_{B_{\varrho}} (dd^c v_s)^n = \int_{B_{\varrho}} (dd^c T_{m_s} u)^n \to \tau(u, 0)$$

while

$$\int_{B_{\varrho}} (dd^c v)^n = \int_{B_{\varrho}} (dd^c \Psi_{u,0})^n = N(u,0),$$

and (40) with k = n proves the coincidence of the right-hand sides of these relations and thus the convergence of $(dd^c T_m u)^n$ to $(dd^c \Psi_{u,0})^n$.

We prove (40) by induction on k. Let $k = 1, 0 \leq l \leq n - 1, \delta > 0$. For any test form $\phi \in \mathcal{D}_{n-l-1,n-l-1}(B_{\varrho})$,

$$\begin{split} \left| \int dd^{c} v_{s} \wedge (dd^{c} v)^{l} \wedge \phi - \int (dd^{c} v)^{l+1} \wedge \phi \right| \\ &= \left| \int (v - v_{s}) (dd^{c} v)^{l} \wedge dd^{c} \phi \right| \leq C_{\phi} \int_{B_{\varrho}} (v - v_{s}) (dd^{c} v)^{l} \wedge \beta_{n-l} \\ &= C_{\phi} \Big[\int_{B_{\varrho} \setminus E_{s,\delta}} + \int_{B_{\varrho} \cap E_{s,\delta}} \Big] (v - v_{s}) (dd^{c} v)^{l} \wedge \beta_{n-l} = C_{\phi} [I_{1}(s,\delta) + I_{2}(s,\delta)], \end{split}$$

where, for brevity, $E_{s,\delta} = E(u, m_s, \delta)$.

We have

$$I_1(s,\delta) \le \delta \int_{B_{\varrho}} |v| (dd^c v)^l \wedge \beta_{n-l} \le C\delta$$

with a constant C independent of s, and

$$I_{2}(s,\delta) \leq N \int_{B_{\varrho} \cap E_{s,\delta}} (dd^{c}v)^{l} \wedge \beta_{n-l}$$

$$\leq C(N,\varrho,l) \cdot \mathcal{C}_{n-1}(B_{\varrho} \cap E_{s,\delta},D) \to 0.$$

Since $\delta > 0$ is arbitrary, this proves (40) for k = 1.

Suppose that we have (40) for k = j and $0 \leq l \leq n - j$. For $\phi \in \mathcal{D}_{n-l-j,n-l}(B_{\varrho})$,

$$\begin{split} \int (dd^c v_s)^{j+1} \wedge (dd^c v)^l \wedge \phi &= \int (dd^c v_s)^j \wedge (dd^c v)^{l+1} \wedge \phi \\ &+ \int [(dd^c v_s)^{j+1} \wedge (dd^c v)^l - (dd^c v_s)^j \wedge (dd^c v)^{l+1}] \wedge \phi. \end{split}$$

The first integral on the right-hand side converges to $\int (dd^c v)^{l+j+1} \wedge \phi$ by the induction assumption. The second integral can be estimated similarly to the case k = 1:

$$\begin{split} \left| \int [(dd^{c}v_{s})^{j+1} \wedge (dd^{c}v)^{l} - (dd^{c}v_{s})^{j} \wedge (dd^{c}v)^{l+1}] \wedge \phi \right| \\ & \leq C_{\phi} \Big[\int_{B_{\varrho} \setminus E_{s,\delta}} + \int_{B_{\varrho} \cap E_{s,\delta}} \Big] (v - v_{s}) (dd^{c}v_{s})^{j} (dd^{c}v)^{l} \wedge \beta_{n-j-l} \\ & = C_{\phi} [I_{3}(s,\delta) + I_{4}(s,\delta)]. \end{split}$$

Since $(dd^cv_s)^j \wedge (dd^cv)^l \rightarrow (dd^cv)^{j+l}$, we have

$$\int (dd^c v_s)^j (dd^c v)^l \wedge \beta_{n-j-l} \le C \quad \forall s$$

and

$$I_3(s,\delta) \le \delta \int_{B_a} |v| (dd^c v_s)^j (dd^c v)^l \wedge \beta_{n-j-l} \le CN\delta.$$

Similarly,

$$I_4(s,\delta) \le N \int_{B_{\varrho} \cap E_{s,\delta}} (dd^c v_s)^j (dd^c v)^l \wedge \beta_{n-j-l}$$

$$\le C(N,\varrho,j,l) \cdot \mathcal{C}_{n-1}(B_{\varrho} \cap E_{s,\delta}, D) \to 0,$$

and (40) is proved.

References

- L. A. Aĭzenberg and Yu. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Nauka, Novosibirsk, 1979 (in Russian); English transl.: AMS, Providence, RI, 1983.
- [2] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, V. Ancona and A. Silva (eds.), Plenum Press, New York, 1993, 115–193.
- [3] L. Hörmander, Notions of Convexity, Progr. Math. 127, Birkhäuser, 1994.
- C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), 295–304.
- [5] —, Un nombre de Lelong raffiné, in: Séminaire d'Analyse Complexe et Géométrie 1985-87, Fac. Sci. Monastir, 1987, 61–70.
- [6] —, Tangents of plurisubharmonic functions, in: International Symposium in Memory of Hua Loo Keng, Vol. II, Science Press and Springer, 1991, 157–167.
- [7] —, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994), 173–197.
- [8] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.
- [9] A. G. Kouchnirenko, Newton polyhedron and the number of solutions of a system of k equations with k indeterminates, Uspekhi Mat. Nauk 30 (1975), no. 2, 266–267 (in Russian).
- [10] —, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1–31.
- [11] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983.

230

- [12] P. Lelong, Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, New York, and Dunod, Paris, 1969.
- [13] —, Remarks on pointwise multiplicities, Linear Topol. Spaces Complex Anal. 3 (1997), 112–119.
- [14] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer, Berlin, 1986.
- P. Lelong and A. Rashkovskii, Local indicators for plurisubharmonic functions, J. Math. Pures Appl. 78 (1999), 233-247.
- [16] J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345–364.
- Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457–467.

Mathematical Division Institute for Low Temperature Physics 47 Lenin Ave. Kharkov 310164, Ukraine E-mail: rashkovskii@ilt.kharkov.ua

> Reçu par la Rédaction le 20.7.1999 Révisé le 4.4.2000