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The existence of solution for boundary
value problems for differential equations
with deviating arguments and p-Laplacian

by BING Liu and JIANSHE YU (Changsha)

Abstract. We consider a boundary value problem for a differential equation with
deviating arguments and p-Laplacian: —(¢pp(z')) + % grad F'(z) + g(t, z(t),z(6(t)), 2’ (t),
2 (1)) =0, t € [0,1]; x(t) = ¢(t), t < 0; x(t) = P(t), t > 1. An existence result is
obtained with the help of the Leray—Schauder degree theory, with no restriction on the
damping forces % grad F'(x).

1. Introduction. The main purpose of the present paper is to get the
solvability of the following boundary value problem (BVP for short) for a
differential equation with deviating arguments and p-Laplacian:

(1)~ (6pla)) + - grad F(a)

+g(t z(t), 2(6(t)), 2’ (1), 2 (7(t))) =0, ¢t €[0,1],
z(t) = »(1),

) z(t) =o(), t=1,

where F': R™ — R is a twice continuously differentiable function, g : [0, 1] x
(R™)* — R™ is a Carathéodory function, &, 7 : [0,1] — R are differentiable
functions such that {t € [0,1] : 6(¢) = 0 or 7(¢) = 1} is finite and ¢, : R” —
R™ is defined by

¢p(x) - ¢p($1, e ,ZL‘n) = (|$1|p72$1’ B |$n|p72$n)

where 1 < p < oo. Note that ¢, is a homeomorphism of R"™ with inverse ¢,
(1/¢+ 1/p =1). Moreover, we suppose that
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—o00 < —r = min {0(¢),7(t)} <0 and 1< max{d(t),7(t)} =d < oo,
te[0,1] te[0,1]

and ¢ : [-r,0] — R™ and ¥ : [1,d] — R™ are continuously differentiable

functions.

By a solution = of the BVP (1), (2) we mean that z € C*([-r,d],R")
and ¢, (z") is absolutely continuous on [0, 1], x|y 1) satisfies the equation (1)
and l‘|[,r70] =¥, $|[1,d] = .

When p = 2 or ¢,(z) = =, the above BVP was recently studied by
Tsamatos and Ntouyas [5] by using the Topological Transversality Method.
However, the existence results in [5] mainly depend upon a strict damping
force condition, i.e., there exists a nonnegative constant ) such that

(A(u)v,v) < Qv[*  for all u,v in R

where A is the Hessian matrix of F', and |- | and (-, -) denote the Euclidean
norm and Euclidean inner product on R" respectively. When no damping is
present in (1), i.e., F'(z) =0 and p = 2, the above BVP (1), (2) is also con-
sidered by Tsamatos and Ntouyas [6]. It is therefore natural to ask whether
one can obtain an existence result with no restriction on the damping forces
% grad F'(z). In this paper, we establish an existence result which can be
applied to any damping forces without imposing more conditions on g. More-
over, the general exponent p is allowed, and our results seem to be new even
if p=2.

We remark that a number of studies are concerned with boundary value
problems for differential equations with deviating argument by means of the
Leray—Schauder Alternative Theorem (see for example [1-4]). The key tool
in our approach is the Leray—Schauder degree theory. This method reduces
the problems of existence of a solution for the BVP (1), (2) to establishing
suitable a priori bounds for the solutions.

Throughout this paper, we assume that

#(0) =(1) =0,
but this restriction is no loss of generality, since an appropriate change of
variables reduces the problem with ©(0)%@(1) # 0 to this case.

Furthermore, the function g : [0,1] x (R")* — R" is a Carathéodory
function, which means:

(i) for almost every t € [0,1] the function g(t,-,-,-,-) is continuous;
(ii) for every (x,y,u,v) € (R™)* the function f(-,z,y,u,v) is measurable
on [0,1];
(iii) for each ¢ > 0 there is g, € L'([0,1],R) such that, for almost every
t € 0,1] and [z,y,u,v] € (R™)* with |z| < o, |y| < o, |u| < o, |v] < o, one
has
lg(t, z,y,u,v)| <G,(t).
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2. Main results. In what follows, we denote the Euclidean inner product
in R™ by (-, ), and the [P-norm in R™ by |- |, i.e.

n /
ol = (1)l = (3 fal?)
i=1

The corresponding LP-norm in L?([0,1],R™) is defined by

n 1 1/p
o, = (D lattyir at) .
1=10

The L*°-norm in L*°([0,1],R™) is

Ielloo = o il = s sup (t)

Now, we introduce the space
X =C([-r,d),R") nC"([-r,0] U [1,d],R™) N C4([0,1],R")

with the norm

2]l = max{||z]loo, |2/l ]I+, [l |- 2"l 2]l oo }
where
Co([0,1],R™) = {z € C'([0,1],R"™) : z(0) = =(1) = 0},
ol = max |zl = = 2, S |z ()],
ll+ = max |lz;fl+ = max sup |x;(t)].
1<i< 1<z<nt€[1 d]
Moreover

Z = L}([0,1],R").
Define the p-Laplacian A, :dom A, C X — Z by
(Apz)(t) = (Sp(2' (1))

where dom A, = {x € X : ¢,(2’) is absolutely continuous on [0, 1]}.
Let N : X — Z be the Nemytskii operator associated with g:

(Na)(t) = — < awad F(z) — g(t,2(0), 2(5(0)), o' (8, ' (7(1)).

Since the operator A, : dom A, — Z is invertible [7], we can define A :
X — X as follows:

f( ) te [_Tv 0]7
(Az)(t) = § (=4,) " (Na)(t), te(0,1],
B(t), € [1,d].

Thus, the BVP (1), (2) is equivalent to solving the fixed point problem
(3) x=Azx, xz€X.
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Now, by using the same methods as in the proof of Lemmas 1 and 2 of
[7], we can show

LEMMA 1. The mapping A : X — X is completely continuous, i.e. A is
continuous and maps bounded sets to relatively compact sets.

Next, let W1P([0,1],R™) be the Sobolev space.
LEMMA 2 (see [7]). If z € WP([0,1],R") and z(0) = z(1) = 0, then
lzllp < 7, 2l and |z < 27912,

where 1/p+1/qg =1 and

(p—1)'/?
d 2m(p — 1)1/P
W o=z | | = e

o (L=sr/(p—1)Vr  psin(n/p)

THEOREM 1. Let p > 1 be an integer. Assume that there exist constants
do, To such that

16 (t)] > 60 >0 and |7'(t)] > 70 >0 foralltel0,1].

Furthermore, suppose that:

(Hy) There exist nonnegative integers my (< p), maz (< p), nonnegative
constants my (< p), 0 (< p), @, b; (i =1,2,3), and real functions b; (i =
1,2,3), ¢ defined on [0, 1] with

a@Wl<a @<k (=123
for all t € [0,1], c € L*([0,1],R) and such that

ug|™ + c(t)|x|9

3
<$,g(t,$,U1,UQ,U3)> > a(t)|ﬂj‘|p + Z bi(t)|$|p7'mi

i=1
for all x,uy,us,us € R™ and almost t € [0, 1].

(Hz) There exist constants o > 0, § > 0, a nonnegative integer ny (< p),
h € L'([0,1],R,), and a Carathéodory function G : [0,1] x (R™)? — R™ such
that

l9(t, z, w0, w)| <Gt 2, u)| + oo + BlofP" [w]™ + h(t)
for all x,u,v,w € R™ and almost all t € [0, 1].
Then the BVP (1),(2) has at least one solution provided that
T+ 18y ™+ bpm2 + by " P <

where m, is defined by (4).
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Proof. Consider the auxiliary BVP

—(pp(x")) + /\% grad F'(z)

(5) + Ag(t, z(t), 2(6(2)), 2" (t), ' (7(t))) = 0, ¢ €[0,1],
z(t) = Ap(t), te[-r0],
o(t) = Np(t), te[1,d)
where A € [0,1]. In view of the reduction from (1), (2) to (3), the BVP (5)
is equivalent to the equation

(6) x=A(z,\), zelX,
where
Ap(t), te[-r0],
(7) Az, M)(t) = { (—A,)'(ANz)(t), tel0,1],
g (t), te[l,d.

First, we verify that the set of all possible solutions of the family (5)
of BVPs, A € [0,1], is a priori bounded by a constant independent of A.
In fact, suppose x € X is a solution of (5) for some A € [0,1]. Note that
2(0) = z(1) = 0. Then we get
1

(®) 1217 = { (&, —(¢p(2"))') da

0

1 1 1
9) S <x, L grad F(a;)> dt = S i(x, grad F'(x)) dt — S iF(m) dt = 0.
) dt 5 dt o dt
Thus, in view of (Hy), Holder’s inequality, and (8), (9), we have
1 1 d
(10) 0= S (z, —(¢pp(z"))") da + )\S <a:(t), 7 grad F(x)> dt

0 0
1

A (@, gl 2(8), 2(5(), ' (1), 2/ (v(1)))) dt
0

= [|2'l[} + A (2, g(t, 2(8), 2'((2)), 2" (£), 2" (7(£)))) dt

1
a(®)|a ()P dt + A Jor ()| ()P ™ 2(5(t)|™ di
0

> |||l + A

O e = O ey

+ A b ()| (t) P2 (1) dt
0
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+ A\ b)) P72 (2 ()™ dt + A\ e(t)](1)|° dt
0 0
> ||/ |Ip = a(®)] - [« (@)[7 dt =\ [br ()] - Jo(6) [P~ |2 (8(2)) ™ di
0 0

b2 (£)] - |(8) [P~ [ (2)| ™2 dt

1

[03(8)] - ()P~ | (r ()| dt — |21 | le(t)] dt

O ey = O ey

0
1 1
> |la/|[p —a\ |a(6)[7 dt — by § ()P~ 2 (5()|™ dt
0 0

()P~ |2 (2)| ™ dt
()P~ o’ (r ()™ dt — [l2]|3 el

me —gllzll? — p—ma 1 p /e
> |2’ 5~ allells — Bille s~ (§ (o) dt)
0
—Balla e
1

7 —m ms/p
~Tsllzly (§ 12 (e de) ™" = el

: 1
S IECRIEET

m1/p

m1/p
d(é(t))} = 50m1/p[5([0§,1]) |x(8)|pd8}

1 0 d m1/p
zagml/P[§|;p(s)|pdt+ | |x<s)|pds+§|a:(s)|pds}
0 —r
d

0
=" llzllp + | el ds+ | [pLe)P as| "'

—-Tr

— 6, ™ P (||| + AT < 5y ”“/pm:cnp + A™

—mi m — ml mq—
=5 el 3 (74 el ]
k=1

m1/p
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where Ay = (S(ir lo(s)|P ds + S(li [B(s)[P ds)*/P. Similarly

ms3
— m
<7 " [nx'u;@?’ +> ( k) ||w’u;13—’m’5}
k=1

where Ay = (SO_T ¢’ (5)|P ds + Sil |2’ (s)|P ds)'/P. From (10)-(12) and Lemma
2, we obtain

a2 (§irea)™”
0

ma

= T s my _
02 oI} ~ el ~ ity ™ [laly + 3 () e+t
k=1

= bl [l 15

k
= amy ™ P el e 4 D A5 |~ fall el
k=1

> ||'|[f, — am, Il ||} — Bady ™ Py P2’ ) — By P

mi
- - m
o b37’0 m3/10ﬂ_;;n37p‘|$/”£ o b150 m1/p Z < k1>A,1€7T’;p||33/H£k
k=1

ms
T - - ms3 — _
By e S () Al - 2 el
k=1

which yields

17 <L /m _ _
(13) o'l < 5 [ S () ) bty
k=1
_ ms m
by "y ( k) A’ 5~
k=1

n 2-1/quculux'uz}

where
A=1—[a+b18 ™ 4+ bort2 4 byry ™/ PP > 0.

Since my < p, m3 < p, 0 < p, from (13) we see that there exists a constant
M > 0 such that

(14) [l < M.
Hence by Lemma 2, there exists a constant M; = 2~'/9M such that
(15) [#]loc < M.

By (15), |z(t)] = (3, |z:(t)[?)'/? is bounded, thus since F' € C?(R™,R),
32’;(2I)| < Ms. Therefore, from

there exists a constant M5 > 0 such that ‘
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(H2) and (15), we have
1 1

(16) | |(gp(2")dt = A\
0 0

< |

%grad F(x)+ g(t,x(6(t)),2' (t),2' (7(t)))| dt

1
o’ dt + § |Gt 2(1)), 2(5(1)))| dt
0

0?F(7)
Ox?

+a\ |2'(t) P dt

' (8)[P 7 | (r ()™ dt + | A(t) dt
0

+ 8

O e = O ey

—_

< VGo(t)dt + M|’ |, + a2’}
0

—_

nl/
+ Al (V1 (e )™ + il
0

where ¢ = max{Mj, [l¢||-, l¢|l+}, and G, € L*([0,1],R) is such that
|G(t7$7y)| é a@(t)

when |z| < g, |y| < o. The existence of G, is guaranteed by the fact that G
is of Carathéodory type.
Similarly to (13), we have

1 ni
na/p —-n n n ni—
an  (§lrenra) " < “p[um'||p1+2< ,j)llw’\lpl A}
k=1

0
Thus from (14), (16), (17) one has

1 1
VI@p@)ldt < \@,(t) dt + Mo + ald?
0 0

ni
o 35 () s
k=1

Again for each i = 1,...,n, as x;(0) = x;(1) = 0, we have z/(t;) = 0 for
some t; € (0,1). Thus for any ¢ € [0, 1], we obtain

BN = (1) — byt (t:))] = | [l ())) ds| < M

Hence for all i € {1,...,n} and t € [0,1], one has |z}(t)| < ¢4(M3), which
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yields [|2'[|oc < ¢q(M3). Thus, from (15) we have

s = max{|lzfloo [zl - 1]+ llz"l- 12"+, 12" lloc }
< max{My, [loll-, [@ll+, 1¢/ll- @[l +, ¢q(Ms)} = Ma,

which implies ||z||, is bounded.
Next, taking r > My, set
R={zeX:|z|]. <r}

From the above argument, (6) does not have a solution for (x,\) € 92 x
[0,1]. Thus for each A € [0, 1], the Leray—Schauder degree deg; o[ — A(, \),
2,0] is well defined and by the properties of that degree,

(18) degLS [I - A(7 1)7 ‘Qa 0] = degLS [I - A(7 0)7 ‘Qa 0]
Now it is clear that the problem

is equivalent to (3). Since A(x,0) =0 for all z € (2, from (18) we have
degLS[I - A(v 1)7 070] = degLSUa 'Qa 0] 7& 07

which yields that the problem (19), and hence (3), has a solution, so that
the BVP (1), (2) has at least one solution. This completes the proof.

REMARK 1. Similar results can be obtained for the BVP

(—(0p(a)) + - arad () + glt, 2(1),2(51 (1), 2(5x(1))
' (t), ' (11(t)),..., 2" (n(t))) =0, tel0,1],

z(t) = p(t), <0,
o(t) =p(t), t>1.

REMARK 2. The BVP

(6p(&)) + & grad F()
Folt,a(0), 2(5(0)), 2" (1), 2/ (r(0) =0, € [0,1],
o(t) = plt), <0,

x(t) =), t=1,
can also be studied by the methods of this paper.
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