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The existence of solution for boundary

value problems for differential equations

with deviating arguments and p-Laplacian

by Bing Liu and Jianshe Yu (Changsha)

Abstract. We consider a boundary value problem for a differential equation with
deviating arguments and p-Laplacian: −(φp(x

′))′+ d
dt
gradF (x)+ g(t, x(t), x(δ(t)), x′(t),

x′(τ (t))) = 0, t ∈ [0, 1]; x(t) = ϕ(t), t ≤ 0; x(t) = ϕ(t), t ≥ 1. An existence result is
obtained with the help of the Leray–Schauder degree theory, with no restriction on the
damping forces d

dt
gradF (x).

1. Introduction. The main purpose of the present paper is to get the
solvability of the following boundary value problem (BVP for short) for a
differential equation with deviating arguments and p-Laplacian:

(1) − (φp(x
′))′ +

d

dt
grad F (x)

+ g(t, x(t), x(δ(t)), x′(t), x′(τ(t))) = 0, t ∈ [0, 1],

(2)
x(t) = ϕ(t), t ≤ 0,

x(t) = ϕ(t), t ≥ 1,

where F : R
n → R is a twice continuously differentiable function, g : [0, 1]×

(Rn)4 → R
n is a Carathéodory function, δ, τ : [0, 1] → R are differentiable

functions such that {t ∈ [0, 1] : δ(t) = 0 or τ(t) = 1} is finite and φp : R
n →

R
n is defined by

φp(x) = φp(x1, . . . , xn) = (|x1|
p−2x1, . . . , |xn|

p−2xn)

where 1 < p < ∞. Note that φp is a homeomorphism of R
n with inverse φq

(1/q + 1/p = 1). Moreover, we suppose that
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−∞ < −r = min
t∈[0,1]

{δ(t), τ(t)} < 0 and 1 < max
t∈[0,1]

{δ(t), τ(t)} = d < ∞,

and ϕ : [−r, 0] → R
n and ϕ : [1, d] → R

n are continuously differentiable
functions.

By a solution x of the BVP (1), (2) we mean that x ∈ C1([−r, d], Rn)
and φp(x

′) is absolutely continuous on [0, 1], x|[0,1] satisfies the equation (1)
and x|[−r,0] = ϕ, x|[1,d] = ϕ.

When p = 2 or φp(x) = x, the above BVP was recently studied by
Tsamatos and Ntouyas [5] by using the Topological Transversality Method.
However, the existence results in [5] mainly depend upon a strict damping
force condition, i.e., there exists a nonnegative constant Q such that

〈A(u)v, v〉 ≤ Q|v|2 for all u, v in R
n

where A is the Hessian matrix of F , and | · | and 〈·, ·〉 denote the Euclidean
norm and Euclidean inner product on R

n respectively. When no damping is
present in (1), i.e., F (x) ≡ 0 and p = 2, the above BVP (1), (2) is also con-
sidered by Tsamatos and Ntouyas [6]. It is therefore natural to ask whether
one can obtain an existence result with no restriction on the damping forces
d
dt grad F (x). In this paper, we establish an existence result which can be
applied to any damping forces without imposing more conditions on g. More-
over, the general exponent p is allowed, and our results seem to be new even
if p = 2.

We remark that a number of studies are concerned with boundary value
problems for differential equations with deviating argument by means of the
Leray–Schauder Alternative Theorem (see for example [1–4]). The key tool
in our approach is the Leray–Schauder degree theory. This method reduces
the problems of existence of a solution for the BVP (1), (2) to establishing
suitable a priori bounds for the solutions.

Throughout this paper, we assume that

ϕ(0) = ϕ(1) = 0,

but this restriction is no loss of generality, since an appropriate change of
variables reduces the problem with ϕ(0)ϕ(1) 6= 0 to this case.

Furthermore, the function g : [0, 1] × (Rn)4 → R
n is a Carathéodory

function, which means:

(i) for almost every t ∈ [0, 1] the function g(t, ·, ·, ·, ·) is continuous;
(ii) for every (x, y, u, v) ∈ (Rn)4 the function f(·, x, y, u, v) is measurable

on [0,1];
(iii) for each ̺ > 0 there is g̺ ∈ L1([0, 1], R) such that, for almost every

t ∈ [0, 1] and [x, y, u, v] ∈ (Rn)4 with |x| ≤ ̺, |y| ≤ ̺, |u| ≤ ̺, |v| ≤ ̺, one
has

|g(t, x, y, u, v)| ≤ g̺(t).
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2.Main results. In what follows, we denote the Euclidean inner product
in R

n by 〈·, ·〉, and the lp-norm in R
n by | · |, i.e.

|x| = |(x1, . . . , xn)| =
(

n
∑

i=1

|xi|
p
)1/p

.

The corresponding Lp-norm in Lp([0, 1], Rn) is defined by

‖x‖p =
(

n
∑

i=1

1\
0

|xi(t)|
p dt

)1/p

.

The L∞-norm in L∞([0, 1], Rn) is

‖x‖∞ = max
1≤i≤n

‖xi‖∞ = max
1≤i≤n

sup
t∈[0,1]

|xi(t)|.

Now, we introduce the space

X = C([−r, d], Rn) ∩ C1([−r, 0] ∪ [1, d], Rn) ∩ C1
0 ([0, 1], Rn)

with the norm

‖x‖∗ = max{‖x‖∞, ‖x‖−, ‖x‖+, ‖x′‖−, ‖x′‖+, ‖x′‖∞}

where

C1
0 ([0, 1], Rn) = {x ∈ C1([0, 1], Rn) : x(0) = x(1) = 0},

‖x‖− = max
1≤i≤n

‖xi‖− = max
1≤i≤n

sup
t∈[−r,0]

|xi(t)|,

‖x‖+ = max
1≤i≤n

‖xi‖+ = max
1≤i≤n

sup
t∈[1,d]

|xi(t)|.

Moreover
Z = L1([0, 1], Rn).

Define the p-Laplacian ∆p : dom ∆p ⊂ X → Z by

(∆px)(t) = (φp(x
′(t)))′

where dom ∆p = {x ∈ X : φp(x
′) is absolutely continuous on [0, 1]}.

Let N : X → Z be the Nemytskĭı operator associated with g:

(Nx)(t) = −
d

dt
grad F (x) − g(t, x(t), x(δ(t)), x′(t), x′(τ(t))).

Since the operator ∆p : dom ∆p → Z is invertible [7], we can define A :
X → X as follows:

(Ax)(t) =







ϕ(t), t ∈ [−r, 0],

(−∆p)
−1(Nx)(t), t ∈ [0, 1],

ϕ(t), t ∈ [1, d].

Thus, the BVP (1), (2) is equivalent to solving the fixed point problem

(3) x = Ax, x ∈ X.
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Now, by using the same methods as in the proof of Lemmas 1 and 2 of
[7], we can show

Lemma 1. The mapping A : X → X is completely continuous, i.e. A is

continuous and maps bounded sets to relatively compact sets.

Next, let W 1,p([0, 1], Rn) be the Sobolev space.

Lemma 2 (see [7]). If x ∈ W 1,p([0, 1], Rn) and x(0) = x(1) = 0, then

‖x‖p ≤ π−1
p ‖x′‖p and ‖x‖∞ ≤ 2−1/q‖x′‖p

where 1/p + 1/q = 1 and

(4) πp = 2

(p−1)1/p\
0

ds

(1 − sp/(p − 1))1/p
=

2π(p − 1)1/p

p sin(π/p)
.

Theorem 1. Let p > 1 be an integer. Assume that there exist constants

δ0, τ0 such that

|δ′(t)| ≥ δ0 > 0 and |τ ′(t)| ≥ τ0 > 0 for all t ∈ [0, 1].

Furthermore, suppose that :

(H1) There exist nonnegative integers m1 (< p), m3 (< p), nonnegative

constants m2 (< p), θ (< p), a, bi (i = 1, 2, 3), and real functions bi (i =
1, 2, 3), c defined on [0, 1] with

|a(t)| ≤ a, |bi(t)| ≤ bi (i = 1, 2, 3)

for all t ∈ [0, 1], c ∈ L1([0, 1], R) and such that

〈x, g(t, x, u1, u2, u3)〉 ≥ a(t)|x|p +

3
∑

i=1

bi(t)|x|
p−mi |ui|

mi + c(t)|x|θ

for all x, u1, u2, u3 ∈ R
n and almost t ∈ [0, 1].

(H2) There exist constants α ≥ 0, β ≥ 0, a nonnegative integer n1 (< p),
h ∈ L1([0, 1], R+), and a Carathéodory function G : [0, 1]×(Rn)2 → R

n such

that

|g(t, x, u, v, w)| ≤ |G(t, x, u)| + α|v|p + β|v|p−n1 |w|n1 + h(t)

for all x, u, v, w ∈ R
n and almost all t ∈ [0, 1].

Then the BVP (1), (2) has at least one solution provided that

a + b1δ
−m1/p
0 + b2π

m2

p + b3τ
−m3/p
0 πm3

p < πp
p

where πp is defined by (4).
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P r o o f. Consider the auxiliary BVP

(5)























−(φp(x
′))′ + λ

d

dt
grad F (x)

+ λg(t, x(t), x(δ(t)), x′(t), x′(τ(t))) = 0, t ∈ [0, 1],

x(t) = λϕ(t), t ∈ [−r, 0],

x(t) = λϕ(t), t ∈ [1, d],

where λ ∈ [0, 1]. In view of the reduction from (1), (2) to (3), the BVP (5)
is equivalent to the equation

(6) x = A(x, λ), x ∈ X,

where

(7) A(x, λ)(t) =







λϕ(t), t ∈ [−r, 0],

(−∆p)
−1(λNx)(t), t ∈ [0, 1],

λϕ(t), t ∈ [1, d].

First, we verify that the set of all possible solutions of the family (5)
of BVPs, λ ∈ [0, 1], is a priori bounded by a constant independent of λ.
In fact, suppose x ∈ X is a solution of (5) for some λ ∈ [0, 1]. Note that
x(0) = x(1) = 0. Then we get

(8) ‖x′‖p
p =

1\
0

〈x,−(φp(x
′))′〉 dx

and

(9)

1\
0

〈

x,
d

dt
grad F (x)

〉

dt =

1\
0

d

dt
〈x, grad F (x)〉 dt −

1\
0

d

dt
F (x) dt = 0.

Thus, in view of (H1), Hölder’s inequality, and (8), (9), we have

0 =

1\
0

〈x,−(φp(x
′))′〉 dx + λ

1\
0

〈

x(t),
d

dt
grad F (x)

〉

dt(10)

+ λ

1\
0

〈x, g(t, x(t), x(δ(t)), x′(t), x′(τ(t)))〉 dt

= ‖x′‖p
p + λ

1\
0

〈x, g(t, x(t), x′(δ(t)), x′(t), x′(τ(t)))〉 dt

≥ ‖x′‖p
p + λ

1\
0

a(t)|x(t)|p dt + λ

1\
0

b1(t)|x(t)|p−m1 |x(δ(t))|m1 dt

+ λ

1\
0

b2(t)|x(t)|p−m2 |x′(t)|m2 dt
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+ λ

1\
0

b3(t)|x(t)|p−m3 |x′(τ(t))|m3 dt + λ

1\
0

c(t)|x(t)|θ dt

≥ ‖x′‖p
p −

1\
0

|a(t)| · |x(t)|p dt −

1\
0

|b1(t)| · |x(t)|p−m1 |x(δ(t))|m1 dt

−

1\
0

|b2(t)| · |x(t)|p−m2 |x′(t)|m2 dt

−

1\
0

|b3(t)| · |x(t)|p−m3 |x′(τ(t))|m3 dt − ‖x‖θ
∞

1\
0

|c(t)| dt

≥ ‖x′‖p
p − a

1\
0

|x(t)|p dt − b1

1\
0

|x(t)|p−m1 |x(δ(t))|m1 dt

− b2

1\
0

|x(t)|p−m2 |x′(t)|m2 dt

− b3

1\
0

|x(t)|p−m3 |x′(τ(t))|m3 dt − ‖x‖θ
∞‖c‖1

≥ ‖x′‖p
p − a‖x‖p

p − b1‖x‖
p−m1

p

(

1\
0

|x(δ(t))|p dt
)m1/p

− b2‖x‖
p−m2

p ‖x′‖m2

p

− b3‖x‖
p−m3

p

(

1\
0

|x′(τ(t))|p dt
)m3/p

− ‖x‖θ
∞‖c‖1.

Again

(11)
(

1\
0

|x(δ(t))|p dt
)m1/p

=

[ 1\
0

|x(δ(t))|p ·
1

δ′(t)
d(δ(t))

]m1/p

≤ δ
−m1/p
0

[ \
δ([0,1])

|x(s)|pds
]m1/p

= δ
−m1/p
0

[

1\
0

|x(s)|p dt +

0\
−r

|x(s)|p ds +

d\
1

|x(s)|p ds
]m1/p

= δ
−m1/p
0

[

‖x‖p
p +

0\
−r

|ϕ(t)|p ds +

d\
1

|ϕ(s)|p ds
]m1/p

= δ
−m1/p
0 [‖x‖p

p + ∆p
1]

m1/p ≤ δ
−m1/p
0 [‖x‖p + ∆1]

m1

= δ
−m1/p
0

[

‖x‖m1

p +

m1
∑

k=1

(

m1

k

)

‖x‖m1−k
p ∆k

1

]
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where ∆1 = (
T0
−r

|ϕ(s)|p ds +
Td
1
|ϕ(s)|p ds)1/p. Similarly

(12)
(

1\
0

|x′(τ(t))|p dt
)m3/p

≤ τ
−m3/p
0

[

‖x′‖m3

p +

m3
∑

k=1

(

m3

k

)

‖x′‖m3−k
p ∆k

2

]

where ∆2 = (
T0
−r

|ϕ′(s)|p ds +
Td
1
|ϕ′(s)|p ds)1/p. From (10)–(12) and Lemma

2, we obtain

0 ≥ ‖x′‖p
p − a‖x‖p

p − b1δ
−m1/p
0

[

‖x‖p
p +

m1
∑

k=1

(

m1

k

)

‖x‖p−k
p ∆k

1

]

− b2‖x‖
p−m2

p ‖x′‖m2

p

− b3τ
−m3/p
0 ‖x‖p−m3

p

[

‖x′‖m3

p +

k
∑

k=1

‖x′‖m3−k
p ∆k

2

]

− ‖x‖θ
∞‖c‖1

≥ ‖x′‖p
p − aπ−p

p ‖x′‖p
p − b1δ

−m1/p
0 π−p

p ‖x′‖p
p − b2π

m2−p
p ‖x′‖p

p

− b3τ
−m3/p
0 πm3−p

p ‖x′‖p
p − b1δ

−m1/p
0

m1
∑

k=1

(

m1

k

)

∆k
1πk−p

p ‖x′‖p−k
p

− b3τ
−m3/p
0 πm3−p

p

m3
∑

k=1

(

m3

k

)

∆k
2‖x

′‖p−k
p − 2−1/q‖c‖1‖x

′‖θ
p,

which yields

‖x′‖p
p ≤

1

Λ

[

b1δ
−m1/p
1

m1
∑

k=1

(

m1

k

)

∆k
1πk−p

p ‖x′‖p−k
p(13)

+ b3τ
−m3/p
0 πm3−p

p

m3
∑

k=1

(

m3

k

)

∆k
2‖x

′‖p−k
p

+ 2−1/q‖c‖1‖x
′‖θ

p

]

where

Λ = 1 − [a + b1δ
−m1/p
0 + b2π

m2

p + b3τ
−m3/p
0 πm3

p ]π−p
p > 0.

Since m1 < p, m3 < p, θ < p, from (13) we see that there exists a constant
M > 0 such that

(14) ‖x′‖p ≤ M.

Hence by Lemma 2, there exists a constant M1 = 2−1/qM such that

(15) ‖x‖∞ ≤ M1.

By (15), |x(t)| = (
∑n

i=1 |xi(t)|
p)1/p is bounded, thus since F ∈ C2(Rn, R),

there exists a constant M2 > 0 such that
∣

∣

∂2F (x)
∂x2

∣

∣ ≤ M2. Therefore, from
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(H2) and (15), we have

1\
0

|(φp(x
′))′| dt = λ

1\
0

∣

∣

∣

∣

d

dt
grad F (x) + g(t, x(δ(t)), x′(t), x′(τ(t)))

∣

∣

∣

∣

dt(16)

≤

1\
0

∣

∣

∣

∣

∂2F (x)

∂x2

∣

∣

∣

∣

|x′| dt +

1\
0

|G(t, x(t)), x(δ(t))| dt

+ α

1\
0

|x′(t)|p dt

+ β

1\
0

|x′(t)|p−n1 |x′(τ(t))|n1 dt +

1\
0

h(t) dt

≤

1\
0

G̺(t) dt + M2‖x
′‖p + α‖x′‖p

p

+ β‖x′‖p−n1

p

(

1\
0

|x′(τ(t))|p dt
)n1/p

+ ‖h‖1

where ̺ = max{M1, ‖ϕ‖−, ‖ϕ‖+}, and G̺ ∈ L1([0, 1], R) is such that

|G(t, x, y)| ≤ G̺(t)

when |x| ≤ ̺, |y| ≤ ̺. The existence of G̺ is guaranteed by the fact that G
is of Carathéodory type.

Similarly to (13), we have

(17)
(

1\
0

|x′(τ(t))|p dt
)n1/p

≤ τ
−n1/p
0

[

‖x′‖n1

p +

n1
∑

k=1

(

n1

k

)

‖x′‖n1−k
p ∆k

2

]

.

Thus from (14), (16), (17) one has

1\
0

|(φp(x
′))′| dt ≤

1\
0

G̺(t) dt + M2M + αMp

+ βτ
−n1/p
0

[

Mp +

n1
∑

k=1

(

n1

k

)

∆k
2Mn1−k

]

= M3.

Again for each i = 1, . . . , n, as xi(0) = xi(1) = 0, we have x′
i(ti) = 0 for

some ti ∈ (0, 1). Thus for any t ∈ [0, 1], we obtain

|φp(x
′
i(t))| = |φp(x

′
i(t)) − φp(x

′
i(ti))| =

∣

∣

∣

t\
ti

(φp(x
′
i(s)))

′ ds
∣

∣

∣
≤ M3.

Hence for all i ∈ {1, . . . , n} and t ∈ [0, 1], one has |x′
i(t)| ≤ φq(M3), which
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yields ‖x′‖∞ ≤ φq(M3). Thus, from (15) we have

‖x‖∗ = max{‖x‖∞, ‖x‖−, ‖x‖+, ‖x′‖−, ‖x′‖+, ‖x′‖∞}

≤ max{M1, ‖ϕ‖−, ‖ϕ‖+, ‖ϕ′‖−, ‖ϕ′‖+, φq(M3)} = M4,

which implies ‖x‖∗ is bounded.

Next, taking r > M4, set

Ω = {x ∈ X : ‖x‖∗ < r}.

From the above argument, (6) does not have a solution for (x, λ) ∈ ∂Ω ×
[0, 1]. Thus for each λ ∈ [0, 1], the Leray–Schauder degree degLS[I −A(·, λ),
Ω, 0] is well defined and by the properties of that degree,

(18) degLS[I − A(·, 1), Ω, 0] = degLS[I − A(·, 0), Ω, 0].

Now it is clear that the problem

(19) x = A(x, 1)

is equivalent to (3). Since A(x, 0) = 0 for all x ∈ Ω, from (18) we have

degLS[I − A(·, 1), Ω, 0] = degLS[I,Ω, 0] 6= 0,

which yields that the problem (19), and hence (3), has a solution, so that
the BVP (1), (2) has at least one solution. This completes the proof.

Remark 1. Similar results can be obtained for the BVP


















−(φp(x
′))′ +

d

dt
grad F (x) + g(t, x(t), x(δ1(t)), . . . , x(δk(t)),

x′(t), x′(τ1(t)), . . . , x
′(τl(t))) = 0, t ∈ [0, 1],

x(t) = ϕ(t), t ≤ 0,
x(t) = ϕ(t), t ≥ 1.

Remark 2. The BVP


















(φp(x
′))′ +

d

dt
grad F (x)

+g(t, x(t), x(δ(t)), x′(t), x′(τ(t))) = 0, t ∈ [0, 1],

x(t) = ϕ(t), t ≤ 0,
x(t) = ϕ(t), t ≥ 1,

can also be studied by the methods of this paper.
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